
These exercises were originally included inline in the text, but my latest feeling is that I
don't have the time to maintain the exercises at a su�cient quality level to match the level
I'm targetting for the rest of the book. I'm including them in this �le for now.

0.1 From InductiveTypes

1. De�ne an inductive type truth with three constructors, Yes, No, and Maybe. Yes

stands for certain truth, No for certain falsehood, andMaybe for an unknown situation.
De�ne �not,� �and,� and �or� for this replacement boolean algebra. Prove that your
implementation of �and� is commutative and distributes over your implementation of
�or.�

2. De�ne an inductive type slist that implements lists with support for constant-time
concatenation. This type should be polymorphic in a choice of type for data values in
lists. The type slist should have three constructors, for empty lists, singleton lists, and
concatenation. De�ne a function �atten that converts slists to lists. (You will want
to run Require Import List. to bring list de�nitions into scope.) Finally, prove that
�atten distributes over concatenation, where the two sides of your quanti�ed equality
will use the slist and list versions of concatenation, as appropriate. Recall from Chapter
2 that the in�x operator ++ is syntactic sugar for the list concatenation function app.

3. Modify the �rst example language of Chapter 2 to include variables, where variables are
represented with nat. Extend the syntax and semantics of expressions to accommodate
the change. Your new expDenote function should take as a new extra �rst argument
a value of type var → nat, where var is a synonym for naturals-as-variables, and the
function assigns a value to each variable. De�ne a constant folding function which does
a bottom-up pass over an expression, at each stage replacing every binary operation
on constants with an equivalent constant. Prove that constant folding preserves the
meanings of expressions.

4. Reimplement the second example language of Chapter 2 to use mutually inductive
types instead of dependent types. That is, de�ne two separate (non-dependent) induc-
tive types nat exp and bool exp for expressions of the two di�erent types, rather than
a single indexed type. To keep things simple, you may consider only the binary opera-
tors that take naturals as operands. Add natural number variables to the language, as
in the last exercise, and add an �if� expression form taking as arguments one boolean
expression and two natural number expressions. De�ne semantics and constant-folding
functions for this new language. Your constant folding should simplify not just binary
operations (returning naturals or booleans) with known arguments, but also �if� ex-
pressions with known values for their test expressions but possibly undetermined �then�
and �else� cases. Prove that constant-folding a natural number expression preserves its
meaning.

1

5. De�ne mutually inductive types of even and odd natural numbers, such that any nat-
ural number is isomorphic to a value of one of the two types. (This problem does not
ask you to prove that correspondence, though some interpretations of the task may be
interesting exercises.) Write a function that computes the sum of two even numbers,
such that the function type guarantees that the output is even as well. Prove that this
function is commutative.

6. Using a re�exive inductive de�nition, de�ne a type nat tree of in�nitary trees, with
natural numbers at their leaves and a countable in�nity of new trees branching out of
each internal node. De�ne a function increment that increments the number in every
leaf of a nat tree. De�ne a function leapfrog over a natural i and a tree nt. leapfrog

should recurse into the ith child of nt, the i+1st child of that node, the i+2nd child
of the next node, and so on, until reaching a leaf, in which case leapfrog should return
the number at that leaf. Prove that the result of any call to leapfrog is incremented by
one by calling increment on the tree.

7. De�ne a type of trees of trees of trees of (repeat to in�nity). That is, de�ne an inductive
type trexp, whose members are either base cases containing natural numbers or binary
trees of trexps. Base your de�nition on a parameterized binary tree type btree that you
will also de�ne, so that trexp is de�ned as a nested inductive type. De�ne a function
total that sums all of the naturals at the leaves of a trexp. De�ne a function increment

that increments every leaf of a trexp by one. Prove that, for all tr, total (increment
tr) ≥ total tr. On the way to �nishing this proof, you will probably want to prove a
lemma and add it as a hint using the syntax Hint Resolve name of lemma..

8. Prove discrimination and injectivity theorems for the nat btree type de�ned earlier in
this chapter. In particular, without using the tactics discriminate, injection, or
congruence, prove that no leaf equals any node, and prove that two equal nodes carry
the same natural number.

0.2 From Predicates

1. Prove these tautologies of propositional logic, using only the tactics apply, assumption,
constructor, destruct, intro, intros, left, right, split, and unfold.

(a) (True ∨ False) ∧ (False ∨ True)

(b) P → ¬ ¬ P

(c) P ∧ (Q ∨ R) → (P ∧ Q) ∨ (P ∧ R)

2. Prove the following tautology of �rst-order logic, using only the tactics apply, assert,
assumption, destruct, eapply, eassumption, and exists. You will probably �nd the
assert tactic useful for stating and proving an intermediate lemma, enabling a kind
of �forward reasoning,� in contrast to the �backward reasoning� that is the default for

2

Coq tactics. The tactic eassumption is a version of assumption that will do matching
of uni�cation variables. Let some variable T of type Set be the set of individuals. x
is a constant symbol, p is a unary predicate symbol, q is a binary predicate symbol,
and f is a unary function symbol.

(a) p x → (∀ x, p x → ∃ y, q x y) → (∀ x y, q x y → q y (f y)) → ∃ z, q z (f z)

3. De�ne an inductive predicate capturing when a natural number is an integer multiple
of either 6 or 10. Prove that 13 does not satisfy your predicate, and prove that any
number satisfying the predicate is not odd. It is probably easiest to prove the second
theorem by indicating �odd-ness� as equality to 2 × n + 1 for some n.

4. De�ne a simple programming language, its semantics, and its typing rules, and then
prove that well-typed programs cannot go wrong. Speci�cally:

(a) De�ne var as a synonym for the natural numbers.

(b) De�ne an inductive type exp of expressions, containing natural number constants,
natural number addition, pairing of two other expressions, extraction of the �rst
component of a pair, extraction of the second component of a pair, and variables
(based on the var type you de�ned).

(c) De�ne an inductive type cmd of commands, containing expressions and variable
assignments. A variable assignment node should contain the variable being as-
signed, the expression being assigned to it, and the command to run afterward.

(d) De�ne an inductive type val of values, containing natural number constants and
pairings of values.

(e) De�ne a type of variable assignments, which assign a value to each variable.

(f) De�ne a big-step evaluation relation eval, capturing what it means for an ex-
pression to evaluate to a value under a particular variable assignment. �Big step�
means that the evaluation of every expression should be proved with a single in-
stance of the inductive predicate you will de�ne. For instance, �1 + 1 evaluates
to 2 under assignment va� should be derivable for any assignment va.

(g) De�ne a big-step evaluation relation run, capturing what it means for a command
to run to a value under a particular variable assignment. The value of a command
is the result of evaluating its �nal expression.

(h) De�ne a type of variable typings, which are like variable assignments, but map
variables to types instead of values. You might use polymorphism to share some
code with your variable assignments.

(i) De�ne typing judgments for expressions, values, and commands. The expression
and command cases will be in terms of a typing assignment.

(j) De�ne a predicate varsType to express when a variable assignment and a variable
typing agree on the types of variables.

3

(k) Prove that any expression that has type t under variable typing vt evaluates under
variable assignment va to some value that also has type t in vt, as long as va and
vt agree.

(l) Prove that any command that has type t under variable typing vt evaluates under
variable assignment va to some value that also has type t in vt, as long as va and
vt agree.

A few hints that may be helpful:

(a) One easy way of de�ning variable assignments and typings is to de�ne both as
instances of a polymorphic map type. The map type at parameter T can be
de�ned to be the type of arbitrary functions from variables to T. A helpful function
for implementing insertion into such a functional map is eq nat dec, which you
can make available with Require Import Arith.. eq nat dec has a dependent type
that tells you that it makes accurate decisions on whether two natural numbers
are equal, but you can use it as if it returned a boolean, e.g., if eq nat dec n m

then E1 else E2.

(b) If you follow the last hint, you may �nd yourself writing a proof that involves an
expression with eq nat dec that you would like to simplify. Running destruct

on the particular call to eq nat dec should do the trick. You can automate this
advice with a piece of Ltac:

match goal with

| [` context[eq nat dec ?X ?Y]] ⇒ destruct (eq nat dec X Y)
end

(c) You probably do not want to use an inductive de�nition for compatibility of
variable assignments and typings.

(d) The CpdtTactics module from this book contains a variant crush' of crush. crush'
takes two arguments. The �rst argument is a list of lemmas and other functions
to be tried automatically in �forward reasoning� style, where we add new facts
without being sure yet that they link into a proof of the conclusion. The second
argument is a list of predicates on which inversion should be attempted auto-
matically. For instance, running crush' (lemma1, lemma2) pred will search for
chances to apply lemma1 and lemma2 to hypotheses that are already available,
adding the new concluded fact if suitable hypotheses can be found. Inversion will
be attempted on any hypothesis using pred, but only those inversions that narrow
the �eld of possibilities to one possible rule will be kept. The format of the list
arguments to crush' is that you can pass an empty list as tt, a singleton list as the
unadorned single element, and a multiple-element list as a tuple of the elements.

(e) If you want crush' to apply polymorphic lemmas, you may have to do a little
extra work, if the type parameter is not a free variable of your proof context (so
that crush' does not know to try it). For instance, if you de�ne a polymorphic
map insert function assign of some type ∀ T : Set, ..., and you want particular

4

applications of assign added automatically with type parameter U, you would need
to include assign in the lemma list as assign U (if you have implicit arguments
o�) or assign (T := U) or @assign U (if you have implicit arguments on).

0.3 From Coinductive

1. (a) De�ne a co-inductive type of in�nite trees carrying data of a �xed parameter type.
Each node should contain a data value and two child trees.

(b) De�ne a function everywhere for building a tree with the same data value at every
node.

(c) De�ne a functionmap for building an output tree out of two input trees by travers-
ing them in parallel and applying a two-argument function to their corresponding
data values.

(d) De�ne a tree falses where every node has the value false.

(e) De�ne a tree true false where the root node has value true, its children have value
false, all nodes at the next have the value true, and so on, alternating boolean
values from level to level.

(f) Prove that true false is equal to the result of mapping the boolean �or� function
orb over true false and falses. You can make orb available with Require Import

Bool.. You may �nd the lemma orb false r from the same module helpful. Your
proof here should not be about the standard equality =, but rather about some
new equality relation that you de�ne.

0.4 From Subset

All of the notations de�ned in this chapter, plus some extras, are available for import from
the module MoreSpecif of the book source.

1. Write a function of type ∀ n m : nat, {n ≤ m} + {n > m}. That is, this function
decides whether one natural is less than another, and its dependent type guarantees
that its results are accurate.

2. (a) De�ne var, a type of propositional variables, as a synonym for nat.

(b) De�ne an inductive type prop of propositional logic formulas, consisting of vari-
ables, negation, and binary conjunction and disjunction.

(c) De�ne a function propDenote from variable truth assignments and props to Prop,
based on the usual meanings of the connectives. Represent truth assignments as
functions from var to bool.

5

(d) De�ne a function bool true dec that checks whether a boolean is true, with a
maximally expressive dependent type. That is, the function should have type ∀
b, {b = true} + {b = true → False}.

(e) De�ne a function decide that determines whether a particular prop is true under
a particular truth assignment. That is, the function should have type ∀ (truth
: var → bool) (p : prop), {propDenote truth p} + {� propDenote truth p}.
This function is probably easiest to write in the usual tactical style, instead of
programming with refine. The function bool true dec may come in handy as a
hint.

(f) De�ne a function negate that returns a simpli�ed version of the negation of a
prop. That is, the function should have type ∀ p : prop, {p' : prop | ∀ truth,
propDenote truth p ↔ ¬ propDenote truth p'}. To simplify a variable, just
negate it. Simplify a negation by returning its argument. Simplify conjunctions
and disjunctions using De Morgan's laws, negating the arguments recursively and
switching the kind of connective. Your decide function may be useful in some
of the proof obligations, even if you do not use it in the computational part of
negate's de�nition. Lemmas like decide allow us to compensate for the lack of a
general Law of the Excluded Middle in CIC.

3. Implement the DPLL satis�ability decision procedure for boolean formulas in conjunc-
tive normal form, with a dependent type that guarantees its correctness. An example
of a reasonable type for this function would be ∀ f : formula, {truth : tvals | formu-
laTrue truth f } + {∀ truth, ¬ formulaTrue truth f }. Implement at least �the basic
backtracking algorithm� as de�ned here:

http://en.wikipedia.org/wiki/DPLL_algorithm

It might also be instructive to implement the unit propagation and pure literal elimi-
nation optimizations described there or some other optimizations that have been used
in modern SAT solvers.

0.5 From MoreDep

1. De�ne a kind of dependently typed lists, where a list's type index gives a lower bound on
how many of its elements satisfy a particular predicate. In particular, for an arbitrary
set A and a predicate P over it:

(a) De�ne a type plist : nat → Set. Each plist n should be a list of As, where it
is guaranteed that at least n distinct elements satisfy P. There is wide latitude
in choosing how to encode this. You should try to avoid using subset types or
any other mechanism based on annotating non-dependent types with propositions
after-the-fact.

6

http://en.wikipedia.org/wiki/DPLL_algorithm

(b) De�ne a version of list concatenation that works on plists. The type of this new
function should express as much information as possible about the output plist.

(c) De�ne a function plistOut for translating plists to normal lists.

(d) De�ne a function plistIn for translating lists to plists. The type of plistIn should
make it clear that the best bound on P -matching elements is chosen. You may
assume that you are given a dependently typed function for deciding instances of
P.

(e) Prove that, for any list ls, plistOut (plistIn ls) = ls. This should be the only part
of the exercise where you use tactic-based proving.

(f) De�ne a function grab : ∀ n (ls : plist (S n)), sig P. That is, when given a
plist guaranteed to contain at least one element satisfying P, grab produces such
an element. The type family sig is the one we met earlier for sigma types (i.e.,
dependent pairs of programs and proofs), and sig P is extensionally equivalent
to {x : A | P x}, though the latter form uses an eta-expansion of P instead of P
itself as the predicate.

0.6 From DataStruct

remove printing *
Some of the type family de�nitions and associated functions from this chapter are dupli-

cated in the DepList module of the book source. Some of their names have been changed to
be more sensible in a general context.

1. De�ne a tree analogue of hlist. That is, de�ne a parameterized type of binary trees with
data at their leaves, and de�ne a type family htree indexed by trees. The structure of
an htree mirrors its index tree, with the type of each data element (which only occur
at leaves) determined by applying a type function to the corresponding element of the
index tree. De�ne a type standing for all possible paths from the root of a tree to
leaves and use it to implement a function tget for extracting an element of an htree

by path. De�ne a function htmap2 for �mapping over two trees in parallel.� That is,
htmap2 takes in two htrees with the same index tree, and it forms a new htree with
the same index by applying a binary function pointwise.

Repeat this process so that you implement each de�nition for each of the three de�ni-
tion styles covered in this chapter: inductive, recursive, and index function.

2. Write a dependently typed interpreter for a simple programming language with ML-
style pattern-matching, using one of the encodings of heterogeneous lists to represent
the di�erent branches of a case expression. (There are other ways to represent the
same thing, but the point of this exercise is to practice using those heterogeneous list
types.) The object language is de�ned informally by this grammar:

t ::= bool | t + t

7

p ::= x | b | inl p | inr p

e ::= x | b | inl e | inr e | case e of [p ⇒ e]* | ⇒ e

The non-terminal x stands for a variable, and b stands for a boolean constant. The
production for case expressions means that a pattern-match includes zero or more
pairs of patterns and expressions, along with a default case.
Your interpreter should be implemented in the style demonstrated in this chapter. That
is, your de�nition of expressions should use dependent types and de Bruijn indices to
combine syntax and typing rules, such that the type of an expression tells the types
of variables that are in scope. You should implement a simple recursive function
translating types t to Set, and your interpreter should produce values in the image of
this translation.

0.7 From Equality

1. Implement and prove correct a substitution function for simply typed lambda calculus.
In particular:

(a) De�ne a datatype type of lambda types, including just booleans and function
types.

(b) De�ne a type family exp : list type → type → Type of lambda expressions,
including boolean constants, variables, and function application and abstraction.

(c) Implement a de�nitional interpreter for exps, by way of a recursive function over
expressions and substitutions for free variables, like in the related example from
the last chapter.

(d) Implement a function subst : ∀ t' ts t, exp (t' :: ts) t → exp ts t' → exp ts

t. The type of the �rst expression indicates that its most recently bound free
variable has type t'. The second expression also has type t', and the job of subst
is to substitute the second expression for every occurrence of the ��rst� variable
of the �rst expression.

(e) Prove that subst preserves program meanings. That is, prove

∀ t' ts t (e : exp (t' :: ts) t) (e' : exp ts t') (s : hlist typeDenote ts),
expDenote (subst e e') s = expDenote e (expDenote e' s ::: s)

where ::: is an in�x operator for heterogeneous �cons� that is de�ned in the book's
DepList module.

The material presented up to this point should be su�cient to enable a good solution
of this exercise, with enough ingenuity. If you get stuck, it may be helpful to use the
following structure. None of these elements need to appear in your solution, but we
can at least guarantee that there is a reasonable solution based on them.

8

(a) The DepList module will be useful. You can get the standard dependent list
de�nitions there, instead of copying-and-pasting from the last chapter. It is worth
reading the source for that module over, since it de�nes some new helpful functions
and notations that we did not use last chapter.

(b) De�ne a recursive function liftVar : ∀ ts1 ts2 t t', member t (ts1 ++ ts2) →
member t (ts1 ++ t' :: ts2). This function should �lift� a de Bruijn variable so
that its type refers to a new variable inserted somewhere in the index list.

(c) De�ne a recursive function lift' : ∀ ts t (e : exp ts t) ts1 ts2 t', ts = ts1 ++
ts2 → exp (ts1 ++ t' :: ts2) t which performs a similar lifting on an exp. The
convoluted type is to get around restrictions on match annotations. We delay
�realizing� that the �rst index of e is built with list concatenation until after a
dependent match, and the new explicit proof argument must be used to cast some
terms that come up in the match body.

(d) De�ne a function lift : ∀ ts t t', exp ts t → exp (t' :: ts) t, which handles simpler
top-level lifts. This should be an easy one-liner based on lift'.

(e) De�ne a recursive function substVar : ∀ ts1 ts2 t t', member t (ts1 ++ t' :: ts2)
→ (t' = t) + member t (ts1 ++ ts2). This function is the workhorse behind
substitution applied to a variable. It returns inl to indicate that the variable we
pass to it is the variable that we are substituting for, and it returns inr to indicate
that the variable we are examining is not the one we are substituting for. In the
�rst case, we get a proof that the necessary typing relationship holds, and, in the
second case, we get the original variable modi�ed to re�ect the removal of the
substitutee from the typing context.

(f) De�ne a recursive function subst' : ∀ ts t (e : exp ts t) ts1 t' ts2, ts = ts1 ++
t' :: ts2 → exp (ts1 ++ ts2) t' → exp (ts1 ++ ts2) t. This is the workhorse
of substitution in expressions, employing the same proof-passing trick as for lift'.
You will probably want to use lift somewhere in the de�nition of subst'.

(g) Now subst should be a one-liner, de�ned in terms of subst'.

(h) Prove a correctness theorem for each auxiliary function, leading up to the proof
of subst correctness.

(i) All of the reasoning about equality proofs in these theorems follows a regular
pattern. If you have an equality proof that you want to replace with eq re�

somehow, run generalize on that proof variable. Your goal is to get to the
point where you can rewrite with the original proof to change the type of the
generalized version. To avoid type errors (the infamous �second-order uni�cation�
failure messages), it will be helpful to run generalize on other pieces of the
proof context that mention the equality's lefthand side. You might also want to
use generalize dependent, which generalizes not just one variable but also all
variables whose types depend on it. generalize dependent has the sometimes-
helpful property of removing from the context all variables that it generalizes.

9

Once you do manage the mind-bending trick of using the equality proof to rewrite
its own type, you will be able to rewrite with UIP re�.

(j) The ext eq axiom from the end of this chapter is available in the Coq standard
library as functional extensionality in module FunctionalExtensionality, and you
will probably want to use it in the lift' and subst' correctness proofs.

(k) The change tactic should come in handy in the proofs about lift and subst,
where you want to introduce �extraneous� list concatenations with nil to match
the forms of earlier theorems.

(l) Be careful about destructing a term �too early.� You can use generalize on
proof terms to bring into the proof context any important propositions about the
term. Then, when you destruct the term, it is updated in the extra propositions,
too. The case eq tactic is another alternative to this approach, based on saving
an equality between the original term and its new form.

0.8 From LogicProg

printing * ·

1. I did a Google search for group theory and found a page that proves some standard
theorems1. This exercise is about proving all of the theorems on that page automati-
cally.

For the purposes of this exercise, a group is a set G, a binary function f over G, an
identity element e of G, and a unary inverse function i for G. The following laws de�ne
correct choices of these parameters. We follow standard practice in algebra, where all
variables that we mention are quanti�ed universally implicitly at the start of a fact.
We write in�x × for f, and you can set up the same sort of notation in your code with
a command like Infix "*" := f..

• Associativity: (a × b) × c = a × (b × c)

• Right Identity: a × e = a

• Right Inverse: a × i a = e

The task in this exercise is to prove each of the following theorems for all groups, where
we de�ne a group exactly as above. There is a wrinkle: every theorem or lemma must
be proved by either a single call to crush or a single call to eauto! It is allowed to pass
numeric arguments to eauto, where appropriate. Recall that a numeric argument sets
the depth of proof search, where 5 is the default. Lower values can speed up execution
when a proof exists within the bound. Higher values may be necessary to �nd more
involved proofs.

1http://dogschool.tripod.com/housekeeping.html

10

http://dogschool.tripod.com/housekeeping.html

• Characterizing Identity: a × a = a → a = e

• Left Inverse: i a × a = e

• Left Identity: e × a = a

• Uniqueness of Left Identity: p × a = a → p = e

• Uniqueness of Right Inverse: a × b = e → b = i a

• Uniqueness of Left Inverse: a × b = e → a = i b

• Right Cancellation: a × x = b × x → a = b

• Left Cancellation: x × a = x × b → a = b

• Distributivity of Inverse: i (a × b) = i b × i a

• Double Inverse: i (i a) = a

• Identity Inverse: i e = e

One more use of tactics is allowed in this problem. The following lemma captures one
common pattern of reasoning in algebra proofs:

Lemma mult both : ∀ a b c d1 d2,
a × c = d1

→ b × c = d2

→ a = b

→ d1 = d2.
crush.

Qed.

That is, we know some equality a = b, which is the third hypothesis above. We derive
a further equality by multiplying both sides by c, to yield a × c = b × c. Next, we do
algebraic simpli�cation on both sides of this new equality, represented by the �rst two
hypotheses above. The �nal result is a new theorem of algebra.

The next chapter introduces more details of programming in Ltac, but here is a quick
teaser that will be useful in this problem. Include the following hint command before
you start proving the main theorems of this exercise:

Hint Extern 100 (=) ⇒
match goal with

| [: True `] ⇒ fail 1
| ⇒ assert True by constructor; eapply mult both

end.

This hint has the e�ect of applying mult both at most once during a proof. After the
next chapter, it should be clear why the hint has that e�ect, but for now treat it as a
useful black box. Simply using Hint Resolve mult both would increase proof search

11

time unacceptably, because there are just too many ways to use mult both repeatedly
within a proof.

The order of the theorems above is itself a meta-level hint, since I found that order
to work well for allowing the use of earlier theorems as hints in the proofs of later
theorems.

The key to this problem is coming up with further lemmas like mult both that formalize
common patterns of reasoning in algebraic proofs. These lemmas need to be more
than sound: they must also �t well with the way that eauto does proof search. For
instance, if we had given mult both a traditional statement, we probably would have
avoided �pointless� equalities like a = b, which could be avoided simply by replacing all
occurrences of b with a. However, the resulting theorem would not work as well with
automated proof search! Every additional hint you come up with should be registered
with Hint Resolve, so that the lemma statement needs to be in a form that eauto
understands �natively.�

I recommend testing a few simple rules corresponding to common steps in algebraic
proofs. You can apply them manually with any tactics you like (e.g., apply or eapply)
to �gure out what approaches work, and then switch to eauto once you have the full
set of hints.

I also proved a few hint lemmas tailored to particular theorems, but which do not give
common algebraic simpli�cation rules. You will probably want to use some, too, in
cases where eauto does not �nd a proof within a reasonable amount of time. In total,
beside the main theorems to be proved, my sample solution includes 6 lemmas, with
a mix of the two kinds of lemmas. You may use more in your solution, but I suggest
trying to minimize the number.

0.9 From Match

1. An anonymous Coq fan from the Internet was excited to come up with this tactic
de�nition shortly after getting started learning Ltac:

Ltac deSome :=
match goal with

| [H : Some = Some `]⇒ injection H ; clear H ; intros; subst; deSome
| ⇒ reflexivity

end.

Without lifting a �nger, exciting theorems can be proved:

Theorem test : ∀ (a b c d e f g : nat),
Some a = Some b

→ Some b = Some c

→ Some e = Some c

12

→ Some f = Some g

→ c = a.
intros; deSome.

Qed.

Unfortunately, this tactic exhibits some degenerate behavior. Consider the following
example:

Theorem test2 : ∀ (a x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 : nat),
Some x1 = Some y1

→ Some x2 = Some y2

→ Some x3 = Some y3

→ Some x4 = Some y4

→ Some x5 = Some y5

→ Some x6 = Some y6

→ Some a = Some a

→ x1 = x2.
intros.
Time try deSome.

Abort.

This (failed) proof already takes about one second on my workstation. I hope a pattern
in the theorem statement is clear; this is a representative of a class of theorems, where
we may add more matched pairs of x and y variables, with equality hypotheses between
them. The running time of deSome is exponential in the number of such hypotheses.

The task in this exercise is twofold. First, �gure out why deSome exhibits exponential
behavior for this class of examples and record your explanation in a comment. Second,
write an improved version of deSome that runs in polynomial time.

2. Sometimes it can be convenient to know that a proof attempt is doomed because the
theorem is false. For instance, here are three non-theorems about lists:

Theorem test1 : ∀ A (ls1 ls2 : list A), ls1 ++ ls2 = ls2 ++ ls1.

Theorem test2 : ∀ A (ls1 ls2 : list A), length (ls1 ++ ls2) = length ls1 - length ls2.

Theorem test3 : ∀ A (ls : list A), length (rev ls) - 3 = 0.

The task in this exercise is to write a tactic that disproves these and many other related
�theorems� about lists. Your tactic should follow a simple brute-force enumeration
strategy, considering all list bool values with length up to some bound given by the
user, as a nat argument to the tactic. A successful invocation should add a new
hypothesis of the negation of the theorem (guaranteeing that the tactic has made a
sound decision about falsehood).

13

A few hints: A good starting point is to pattern-match the conclusion formula and use
the assert tactic on its negation. An assert invocation may include a by clause to
specify a tactic to use to prove the assertion.

The idea in this exercise is to disprove a quanti�ed formula by �nding instantiations for
the quanti�ers that make it manifestly false. Recall the specialize tactic for special-
izing a hypothesis to particular quanti�er instantiations. When you have instantiated
quanti�ers fully, discriminate is a good choice to derive a contradiction. (It at least
works for the three examples above and is smart enough for this exercise's purposes.)
The type of Ltac construct may be useful to analyze the type of a hypothesis to choose
how to instantiate its quanti�ers.

To enumerate all boolean lists up to a certain length, it will be helpful to write a
recursive tactic in continuation-passing style, where the continuation is meant to be
called on each candidate list.

Remember that arguments to Ltac functions may not be type-checked in contexts large
enough to allow usual implicit argument inference, so instead of nil it will be useful to
write @nil bool, which speci�es the usually implicit argument explicitly.

3. Some theorems involving existential quanti�ers are easy to prove with eauto.

Theorem test1 : ∃ x, x = 0.
eauto.

Qed.

Others are harder. The problem with the next theorem is that the existentially quanti-
�ed variable does not appear in the rest of the theorem, so eauto has no way to deduce
its value. However, we know that we had might as well instantiate that variable to tt,
the only value of type unit.

Theorem test2 : ∃ x : unit, 0 = 0.

We also run into trouble in the next theorem, because eauto does not understand the
fst and snd projection functions for pairs.

Theorem test3 : ∃ x : nat × nat, fst x = 7 ∧ snd x = 2 + fst x.

Both problems show up in this monster example.

Theorem test4 : ∃ x : (unit × nat) × (nat × bool),
snd (fst x) = 7 ∧ fst (snd x) = 2 + snd (fst x) ∧ snd (snd x) = true.

The task in this problem is to write a tactic that preprocesses such goals so that eauto
can �nish them. Your tactic should serve as a complete proof of each of the above
examples, along with the wide class of similar examples. The key smarts that your
tactic will bring are: �rst, it introduces separate uni�cation variables for all the �leaf

14

types� of compound types built out of pairs; and second, leaf uni�cation variables of
type unit are simply replaced by tt.

A few hints: The following tactic is more convenient than direct use of the built-in
tactic evar, for generation of new uni�cation variables:

Ltac makeEvar T k := let x := fresh in

evar (x : T); let y := eval unfold x in x in clear x ; k y.

This is a continuation-passing style tactic. For instance, when the goal begins with
existential quanti�cation over a type T, the following tactic invocation will create a
new uni�cation variable to use as the quanti�er instantiation:

makeEvar T ltac:(fun x ⇒ exists x)

printing exists ∃
Recall that exists formulas are desugared to uses of the ex inductive family. In
particular, a pattern like the following can be used to extract the domain of an exists

quanti�er into variable T :

| [` ex (A := ?T)] ⇒ ...

The equate tactic used as an example in this chapter will probably be useful, to unify
two terms, for instance if the �rst is a uni�cation variable whose value you want to set.

Ltac equate E1 E2 := let H := fresh in

assert (H : E1 = E2) by reflexivity; clear H.

Finally, there are some minor complications surrounding overloading of the × operator
for both numeric multiplication and Cartesian product for sets (i.e., pair types). To
ensure that an Ltac pattern is using the type version, write it like this:
| (?T1 × ?T2)%type ⇒ ...

4. An exercise in the last chapter dealt with automating proofs about rings using eauto,
where we must prove some odd-looking theorems to push proof search in a direction
where uni�cation does all the work. Algebraic proofs consist mostly of rewriting in
equations, so we might hope that the autorewrite tactic would yield more natural
automated proofs. Indeed, consider this example within the same formulation of ring
theory that we dealt with last chapter, where each of the three axioms has been added
to the rewrite hint database cpdt using Hint Rewrite:

Theorem test1 : ∀ a b, a × b × i b = a.
intros; autorewrite with cpdt ; reflexivity.

Qed.

So far so good. However, consider this further example:

Theorem test2 : ∀ a, a × e × i a × i e = e.
intros; autorewrite with cpdt.

15

The goal is merely reduced to a × (i a × i e) = e, which of course reflexivity cannot
prove. The essential problem is that autorewrite does not do backtracking search.
Instead, it follows a �greedy� approach, at each stage choosing a rewrite to perform
and then never allowing that rewrite to be undone. An early mistake can doom the
whole process.
The task in this problem is to use Ltac to implement a backtracking version of autorewrite
that works much like eauto, in that its inputs are a database of hint lemmas and a
bound on search depth. Here our search trees will have uses of rewrite at their nodes,
rather than uses of eapply as in the case of eauto, and proofs must be �nished by
reflexivity.
An invocation to the tactic to prove test2 might look like this:

rewriter (right identity, (right inverse, tt)) 3.

The �rst argument gives the set of lemmas to consider, as a kind of list encoded with
pair types. Such a format cannot be analyzed directly by Gallina programs, but Ltac
allows us much more freedom to deconstruct syntax. For example, to case analyze such
a list found in a variable x, we need only write:

match x with

| (?lemma, ?more) ⇒ ...
end

In the body of the case analysis, lemma will be bound to the �rst lemma, and more

will be bound to the remaining lemmas. There is no need to consider a case for tt,
our stand-in for nil. This is because lack of any matching pattern will trigger failure,
which is exactly the outcome we would like upon reaching the end of the lemma list
without �nding one that applies. The tactic will fail, triggering backtracking to some
previous match.
There are di�erent kinds of backtracking, corresponding to di�erent sorts of decisions
to be made. The examples considered above can be handled with backtracking that
only reconsiders decisions about the order in which to apply rewriting lemmas. A full-
credit solution need only handle that kind of backtracking, considering all rewriting
sequences up to the length bound passed to your tactic. A good test of this level of
applicability is to prove both test1 and test2 above. However, some theorems could
only be proved using a smarter tactic that considers not only order of rewriting lemma
uses, but also choice of arguments to the lemmas. That is, at some points in a proof, the
same lemma may apply at multiple places within the goal formula, and some choices
may lead to stuck proof states while others lead to success. For an extra challenge
(without any impact on the grade for the problem), you might try bee�ng up your
tactic to do backtracking on argument choice, too.

0.10 Exercises

remove printing *

16

1. Implement a re�ective procedure for normalizing systems of linear equations over ra-
tional numbers. In particular, the tactic should identify all hypotheses that are linear
equations over rationals where the equation righthand sides are constants. It should
normalize each hypothesis to have a lefthand side that is a sum of products of constants
and variables, with no variable appearing multiple times. Then, your tactic should add
together all of these equations to form a single new equation, possibly clearing the orig-
inal equations. Some coe�cients may cancel in the addition, reducing the number of
variables that appear.

To work with rational numbers, import module QArith and use Local Open Scope

Q scope. All of the usual arithmetic operator notations will then work with rationals,
and there are shorthands for constants 0 and 1. Other rationals must be written as
num # den for numerator num and denominator den. Use the in�x operator == in
place of =, to deal with di�erent ways of expressing the same number as a fraction.
For instance, a theorem and proof like this one should work with your tactic:

Theorem t2 : ∀ x y z, (2 # 1) × (x - (3 # 2) × y) == 15 # 1
→ z + (8 # 1) × x == 20 # 1
→ (-6 # 2) × y + (10 # 1) × x + z == 35 # 1.
intros; reifyContext ; assumption.

Qed.

Your solution can work in any way that involves reifying syntax and doing most cal-
culation with a Gallina function. These hints outline a particular possible solution.
Throughout, the ring tactic will be helpful for proving many simple facts about ratio-
nals, and tactics like rewrite are correctly overloaded to work with rational equality
==.

(a) De�ne an inductive type exp of expressions over rationals (which inhabit the Coq
type Q). Include variables (represented as natural numbers), constants, addition,
subtraction, and multiplication.

(b) De�ne a function lookup for reading an element out of a list of rationals, by its
position in the list.

(c) De�ne a function expDenote that translates exps, along with lists of rationals
representing variable values, to Q.

(d) De�ne a recursive function eqsDenote over list (exp × Q), characterizing when
all of the equations are true.

(e) Fix a representation lhs of �attened expressions. Where len is the number of
variables, represent a �attened equation as ilist Q len. Each position of the list
gives the coe�cient of the corresponding variable.

(f) Write a recursive function linearize that takes a constant k and an expression e

and optionally returns an lhs equivalent to k × e. This function returns None
when it discovers that the input expression is not linear. The parameter len of
lhs should be a parameter of linearize, too. The functions singleton, everywhere,

17

and map2 from DepList will probably be helpful. It is also helpful to know that
Qplus is the identi�er for rational addition.

(g) Write a recursive function linearizeEqs : list (exp × Q)→ option (lhs × Q). This
function linearizes all of the equations in the list in turn, building up the sum of
the equations. It returns None if the linearization of any constituent equation
fails.

(h) De�ne a denotation function for lhs.

(i) Prove that, when exp linearization succeeds on constant k and expression e, the
linearized version has the same meaning as k × e.

(j) Prove that, when linearizeEqs succeeds on an equation list eqs, then the �nal
summed-up equation is true whenever the original equation list is true.

(k) Write a tactic �ndVarsHyps to search through all equalities on rationals in the
context, recursing through addition, subtraction, and multiplication to �nd the
list of expressions that should be treated as variables. This list should be suitable
as an argument to expDenote and eqsDenote, associating a Q value to each natural
number that stands for a variable.

(l) Write a tactic reify to reify a Q expression into exp, with respect to a given list
of variable values.

(m) Write a tactic reifyEqs to reify a formula that begins with a sequence of impli-
cations from linear equalities whose lefthand sides are expressed with expDenote.
This tactic should build a list (exp × Q) representing the equations. Remember
to give an explicit type annotation when returning a nil list, as in constr:(@nil
(exp × Q)).

(n) Now this �nal tactic should do the job:

Ltac reifyContext :=
let ls := �ndVarsHyps in

repeat match goal with

| [H : ?e == ?num # ?den `] ⇒
let r := reify ls e in

change (expDenote ls r == num # den) in H ;
generalize H

end;
match goal with

| [` ?g] ⇒ let re := reifyEqs g in

intros;
let H := fresh "H" in

assert (H : eqsDenote ls re); [simpl in *; tauto
| repeat match goal with

| [H : expDenote == `] ⇒ clear H

end;

18

generalize (linearizeEqsCorrect ls re H); clear H ; simpl;
match goal with

| [` ?X == ?Y →] ⇒
ring simplify X Y ; intro

end]
end.

19

