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Abstract. Almost all computer users today are aware that malicious code,
such as viruses and worms, can cause a great amount of damage. Nonethe-
less, most software is still distributed as binary executables with basically
no certification of their safety, nor do users use sufficient safeguards when
executing such untrusted code. We assert that while end users know the
security properties they would like upheld, most existing systems do not
provide a method by which those precise properties can be specified. In
this paper, we attempt to address this problem with an instantiation of
Proof-Carrying Code for high-level security policies. We give a policy de-
scription language that can be used to describe security policies of inter-
est to the end user in terms of logical pre- and post-conditions on system
calls, as well as an enforcement mechanism to ensure conformance to the
policy.

1 Introduction

With the publicity of Internet viruses, worms, and “spy-ware” in recent years,
the majority of computer users have come to understand that while software
can provide an extraordinary amount of functionality, bugs or code with mali-
cious intent can cause great harm. Yet the state of practice for distributing and
acquiring software is simply to ship binary executables, with very few safe-
guards applied by end users. Only recently have some commercial operating
systems begun to prompt the user when starting a potentially untrusted exe-
cutable.

Most existing systems, such as most operating systems or even Java stack
inspection [WBDF97], tackle this problem using the abstraction of “privileges”;
however, privileges are often too coarse-grained to express what users really
want to allow. For instance, a root mail daemon may need to execute code as
other users to apply filters, but it should not run one user’s filter as a different
user. Trying to make privileges more specific only leads to an infinite regress;
there is always some program that does not fit into the privilege-management
framework that users find acceptable due to more subtle properties of its inter-
actions with the system.
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The underlying problem here is a common one—conflating policy and mech-
anism. End users do not care how security is achieved, as long as it is achieved.
The end user generally knows the security policy he would like enforced (e.g.,
“this particular program should only read and write files within in the /tmp di-
rectory”), while he does not know or care how it is enforced (e.g., the program
is run in a state where only the /tmp directory is accessible using, say, chroot ).

In this paper, we propose to apply static analysis to the enforcement of such
high-level security policies. We suggest making it the responsibility of the end
user to specify a security policy, while requiring that the code producer show
why it is satisfied, in the style of Proof-Carrying Code (PCC) [Nec97,AF00].
Past work in PCC has applied mostly to memory safety and other fixed, low-
level policies. We put forth a technique towards applying PCC to higher-level
security policies specified by the end user.

The primary contributions of this paper are as follows:

– We have prototyped a system for statically verifying proof-carrying bina-
ries for conformance to security policies specified in the form of logical pre-
and post-conditions on system functions; and

– We have identified a way for the end user to precisely specify security poli-
cies of interest to him, rather than being tied to specifying in terms of par-
ticular fixed “privileges”.

In Section 2, we characterize the driving force behind our design by provid-
ing the threat model and security goals for such a system. We illustrate infor-
mally the problem and allude to a solution in Section 3. In Section 4, we give
a more detailed description of our policy language and the implementation of
the verification procedure. We detail experience from experiments generating
and checking proofs for a few publicly-available programs in Section 5. In Sec-
tion 6, we describe some additional considerations in order to realize this ap-
proach from both the code producer and the code consumer’s perspective. We
summarize related work in Section 7 and conclude with a high level analysis of
our approach in Section 8.

2 Security Analysis

2.1 Threat Model

We make the usual assumptions about mobile code security. A code consumer
will be running some piece of mobile code. The wholly untrusted code producer
provides this code to the consumer. The provided “code” may be any sequence
of bits whatsoever. The consumer hopes that it is a legal native code program
for his architecture. In particular, the method by which the code is generated
(typically by using a compiler) is not trusted. The channel through which the
code is delivered from the producer to the consumer is not trusted either.

We assume that security breaches are only possible by exploiting the func-
tionality of a fixed set of foreign functions. More precisely, we assume that each
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native code program runs within a virtual machine or sandbox. Most instructions
available to the program can only manipulate its own local state. However,
there is a well-defined way for it to request certain non-local actions (e.g., open-
ing a file or starting another process). For the Java Virtual Machine, this comes
through calls to native C functions by the standard class library, which is me-
diated by permission checks. In UNIX, this comes through a well-known set
of system calls. In a correct UNIX implementation, the process abstraction is
sufficient that our assumption is realistic.

The basic philosophy is that a process is free to do whatever it feels like,
so long as this behavior cannot affect any other process directly. Most previous
work in mobile code security has focused on memory safety and has been based
around certifying compilers for high-level programming languages. In contrast,
we more or less assume that an operating system, virtual machine sandbox, or
similar system provides us with sufficient isolation between processes that we
do not need to worry about memory safety explicitly. We will still need to do
much of the work associated with proving memory safety, because we will need
to have some idea of the state of registers and memory locations to analyze
foreign function calls and avoid buffer overflow-style attacks, but we can allow
any memory accesses that can be proved not to effect any foreign calls. There
should be no way to cause unsafe behavior without going through the single
channel of foreign function calls.

For the initial prototype, we have focused on dealing with x86 assembly
code produced from C programs by gcc on the Linux operating system; how-
ever, we do not allow the consumer to assume that every program he receives
was built by gcc . This would not be much help, anyway, since gcc allows inline
assembly. The producer is free to provide whatever nefarious data he wants, in
an effort to subvert the consumer’s security. For this project, we will also ex-
pand the set of foreign functions to include a set of trusted library functions not
provided by the operating system. A summary of what is trusted and untrusted
is given in Table 1.

2.2 Security Goals

We want to provide the code consumer with a way to guarantee that partic-
ular programs only make particular kinds of foreign function calls. This goal
decomposes into two parts.

First, recall that we have placed the responsibility of specifying the security
policy on the end user, the one who ultimately cares that the policy is upheld.
As such, the method by which security policies are specified must be carefully
considered both for expressivity and usability. An end user with a reasonable
amount of programming knowledge ought to be able to construct his own poli-
cies without much effort. Indeed, we hope to make it feasible for policies to be
created and modified quite often.

The handling of Java applets by popular web browsers provides a kind
of anti-example here. There is usually one “applet policy” that specifies what
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Trusted Untrusted

The code consumer. The good intentions of the code
producer.

System calls provided by the operating
system.

Binary executables provided by the
code producer.

A simple proof checker. The compiler used by the code pro-
ducer (e.g., gcc).

A formalization of the machine seman-
tics for the target architecture (e.g., x86).

The proof generation mechanism used
by the code producer.

An interpreter that translates security
policies to this formalization

The channel through which the mobile
code is delivered.

Table 1. Trusted and untrusted components.

kinds of foreign functions any applet may access. If the user wants to run an
applet that requires just one more permission to do its job, he is out of luck. He
must give the applet full permissions or give up on running it. The extra per-
mission might be to read a particular file, open a particular network connection,
or do some other thing that could be described easily by the end user. In such a
case, we would like to give the user the option to extend the standard policy to
include the extra capability.

There are many different levels of expressiveness for security policies that
we might consider. For the initial prototype, we have focused on stateless poli-
cies, expressed in terms of logical pre- and post-conditions on foreign func-
tions. It would be natural to allow policies to include something like security
automata that model state changes resulting from foreign function calls. We
leave this for future work, as it would build upon the work we do here for sim-
pler policies. For even greater usability, one may also imagine building defaults
and higher-level user interfaces for specifying common policies.

In summary of this requirement, we want a security policy language that is
simple enough for end users to be confident that particular policies accurately
represent their intentions. We want it to be tractable for semi-expert users to
create their own policies without any special training. A final goal is to facilitate
expressing as many different kinds of policies as possible, but for the initial
prototype, we focus on a particular subset of policies.

Second, we need a framework for checking that a program satisfies a se-
curity policy. Here we build upon past work in Proof-Carrying Code (PCC).
Our implementation works within the Open Verifier framework [CCNS05] for
Foundational PCC. In particular, we ask that the end user trust the following
components:

– A proof checker for a logic expressive enough to explain why programs sat-
isfy the safety policy;
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– A formalization of how programs execute on the target architecture (in our
prototype, the x86 ); and

– An interpreter that translates security policies into this formalization

This is the standard kind of trusted base in Foundational PCC [AF00]. It
should be reasonably small, so that we can have confidence in its correctness
after manual auditing. In particular, we are not asking the end user to trust that
a complicated optimizing compiler works correctly. A bug in gcc should not
provide a way to circumvent a security policy. We also do not assume anything
about the soundness of particular mechanisms for achieving the policy, since
formalizing this introduces more potentially complicated code to audit.

Instead, it is the code producer’s responsibility to provide the mechanism for
proving policy conformance. The trusted parts of the Open Verifier define a pre-
cise logical notion of when a program conforms to a policy, in effect generating
a theorem statement per program-policy pair. The code producer should deter-
mine what policies his customers are interested in, through some out-of-band
mechanism. He should then include with his program a proof that it satisfies
all of these policies.

The standard security benefits of PCC also apply here. If a program in fact
violates a policy, it will be impossible for the producer to construct a proof to
the contrary, so we need not worry about ever running an unsafe program. It
may be hard to prove that some programs satisfy some policies, but we assume
that the honest code producer has a good idea of why his program is safe. If he
does, then it is reasonable to expect that he can prove it.

The big security property that we require of our system is that it be sound.
As described above, it should never declare an unsafe program to be safe, no
matter what purported proof is attached to it. Completeness is a secondary
goal, which we will only be able to hint at through experiments showing that it
is tractable to prove the safety of particular programs.

3 A Motivating Example

Suppose the code consumer would like to download and use a program that
provides some helpful statistics about the contents of some files on his hard
drive. It will write its results to the file /tmp/results. He wants to let it read
any files it chooses, but it should not be writing to any file except /tmp/results.
It also should not try any funny business like uploading the results of its anal-
ysis to a server somewhere. The following Byte Bouncer policy enforces these
requirements:

Function open(name, mode)

Pre StrEq(name, "/tmp/results") || mode == O_RDONLY

Function read(fd, buf, count)

Function write(fd, buf, count)

Function close(fd)
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if (strcmp(name,"/tmp/results") == 0)
fd = open(name, O_WRITE);

else
fd = open(name, O_RDONLY);

movl $.LC0, 4(%esp)
movl -8(%ebp), %eax # name
movl %eax, (%esp)
call strcmp
testl %eax, %eax
jne .L9
# true-case (write)
movl $1, 4(%esp)
movl -8(%ebp), %eax # name
movl %eax, (%esp)
call open
movl %eax, -4(%ebp) # fd
jmp .L10

.L9:
# false-case (read)
movl $0, 4(%esp)
movl -8(%ebp), %eax # name
movl %eax, (%esp)
call open
movl %eax, -4(%ebp) # fd

.L10:

(a) C source (b) x86 assembly

Fig. 1. Example untrusted program.

The policy declares that foreign functions open, read, write, and close may be
called. Furthermore, the open system call should only be allowed when opening
/tmp/results or opening in read-only mode. The other functions may be called
with any arguments. Note that we do not allow a program to make a call to a
foreign function that does not appear in the current policy, so the above policy
is enough to enforce that, for instance, the program does not open any network
connections.

Suppose the source of the downloaded program contains the fragment of
C code in Figure 1 with the corresponding x86 assembly produced by gcc .
Given this assembly and an appropriate proof, Byte Bouncer should be able
to conclude that the security policy is never violated. To make this possible,
we will extend the security policy to mention strcmp as an allowable foreign
function, since it will be provided by the standard C library and not the mobile
code. We also want to specify enough about its semantics:

Function strcmp(s1, s2)

Post (result == 0) ==> StrEq(s1, s2)

Here, we use a post-condition, which only serves to make the code producer’s
job easier, hopefully by allowing him to assume some extra true statements.
We use the built-in predicate StrEq, which expresses equality of strings with
respect to the current memory.
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4 Design and Implementation

Armed with the intuition of our overall task, we proceed to a more formal de-
scription of the Byte Bouncer policy language and a description of the verifica-
tion procedure.

4.1 Policy Description Language

Following the principle of least-privilege, the security policy specifies the al-
lowable system calls, along with the conditions that must provably hold for
them to be called. For familiarity, the conditions on calls are specified using a
C-like syntax of boolean expressions. A complete description of the policy lan-
guage is as follows:

policy P ::= ~F
function policy F ::= Function f (~x) ~c
contracts c ::= Pre b pre-condition

| Post b post-condition
boolean expressions b ::= true | false boolean constants

| !b | b0 && b1 boolean connectives
| b0 ‖ b1 | b0 ==> b1
| e0 == e1 | e0 != e1 | e0 < e1 integer comparisons
| e0 <= e1 | e0 > e1 | e0 >= e1
| StrEq(e0, e1) | Prefix(e0, e1) string comparisons

expressions e ::= n integers
| x parameters
| result return value
| ′′s′′ string constants
| e0 + e1 | e0 − e1 | e0 ∗ e1 arithmetic

We have provided some initial predicate constructors for specifying arith-
metic and string properties in our prototype system, though we expect that in
a realistic system, more predicate constructors would be needed and perhaps a
mechanism for giving user-defined predicates (and their meanings). The choice
of predicates to provide for strings has been driven by what may be necessary
(or useful) when specifying conditions on files. Predicate StrEq(e0, e1) checks
that e0 and e1 are the same string; Prefix(e0, e1) asserts that a prefix of e0 is
equal to e1 . The special identifier result is used to name the return value of
the function call used in post-conditions.

4.2 Verification Procedure

As mentioned earlier, Byte Bouncer is an implementation of these ideas within
the Open Verifier Foundational PCC framework. In this paper, we will only
sketch the high level operation of the Open Verifier and how this work fits in
with it. More detail can be found in [CCNS05].



8

Fundamentally, the Open Verifier is an engine for executing abstract inter-
pretations of assembly programs. The concrete interpretation of a program is
dictated by the semantics of the processor it runs on. This semantics involves
states that include very specific information, including the precise value of ev-
ery register and memory slot. Since this state space is too large to explore ex-
haustively, the standard trick of program verification is to introduce a notion
of abstract states, where one abstract state stands for many concrete states. If
the set of possible abstract states is small enough, then we can use exhaustive
verification to consider all possible executions of a program. If none of these vi-
olates the security policy, then we know that no real execution could violate the
policy, as long as we chose a sound abstraction. Any use of the Open Verifier
involves specifying an abstraction that is useful for proving some property of
programs.

While we have described Byte Bouncer in terms of the traditional PCC model
of “programs with proofs attached,” the Open Verifier actually uses a more ef-
ficient interaction model. A piece of mobile code comes with an untrusted pro-
gram, called an extension, that can be run inside a sandbox to construct, in effect,
the proof on the consumer’s side. The extension’s main job is to come up with a
system of abstract states and prove that it is sound with respect to the real ma-
chine semantics. The Open Verifier uses first-order predicates on concrete machine
states as its type of abstract states.

For instance, consider the sequence of assembly instructions from the earlier
example that pushes the arguments for a call to open onto the stack in the true-
case of the if :

Assembly code Concrete effect Abstract effect

movl $1, 4(%esp) rmem := upd(rmem ,4 + resp ,1) stack10 := 1
movl -8(%ebp),%eax reax := sel(rmem ,-8 + rebp) reax := stack7

movl %eax,(%esp) rmem := upd(rmem ,resp ,reax ) stack9 := reax
call open

Next to each instruction, we have summarized its concrete effect on a real ma-
chine. We treat the memory as an extra register, with values constructed us-
ing the standard sel and upd functions for reading or changing a memory cell,
respectively (c.f., [HW73]). An extension attached to this program most likely
does not care about the details of memory. It is more useful to maintain the same
abstraction of a stack that the C language provides. The third column shows an
alternate, abstract interpretation of the effects of instructions. Instead of taking
the instructions literally, we interpret them as manipulating some infinite array
of numbered stack slots.

The extension needs to phrase its abstraction in terms of first order logic.
Each instruction transforms a state represented as a list of logical assertions.
For example, right before the call to open in the true-case of the if , the state
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might include the following assertions:

CurrentStackSlot(resp ,9)
StackSlotIs(9, string0)

StackSlotIs(10,1)
StrEq(string0,"/tmp/results")

The CurrentStackSlot predicate relates the stack abstraction with the real ma-
chine state. It says that register esp is pointing to stack slot number 9. The
StackSlotIs predicates records the contents of particular stack slots. Finally, the
StrEq predicate was added previously after a call to strcmp, based on its post-
condition in the security policy.

Open Verifier safety policies are expressed as functions from assembly in-
structions to logical predicates. A program is considered safe if each time it
executes an instruction the predicate assigned to that instruction is provable.
For Byte Bouncer, we require that, at any call instruction to a foreign function,
the function’s pre-condition is provable.

Recall that the relevant part of our example safety policy for the open func-
tion is as follows:

Function open(name, mode)

Pre StrEq(name, "/tmp/results") || mode == O_RDONLY

For the open call in the example code, this pre-condition is instantiated as

StrEq(sel(rmem , resp),"/tmp/results") ∨ sel(rmem ,4 + resp) = 0

Parameters are changed into memory projections, based on the x86 C calling
convention. The extension uses knowledge of its abstraction technique to prove
this safety predicate, using the assertions in the logical state as hypotheses. In
this case, the extension uses the following key lemma to prove the first dis-
junct:1

CurrentStackSlot(sp, k) StackSlotIs(k + n, x)
sel(mem ,4 · n + sp) = x

STACKREAD

We will not go into the details here of how an extension proves its abstrac-
tion sound (i.e., that lemmas like the above hold). The high-level idea is that a
successful extension needs to determine what information is worth keeping at
which points, and it needs to use that information to prove the safety predicates
for all reachable instructions.

In our implementation, we have used a modified version of an extension
that we call the PCC extension, first described in [CCNS05], to generate proofs.
This extension’s strategy is relatively simple. It does four main things:

1 Some technical details have been elided for clarity’s sake, such as an invariant about
the well-formedness of memory.
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– It provides the abstractions for function call-and-return and disjoint mem-
ory regions used for the stack, the heap, and the statically-allocated data;

– It manages some basic bookkeeping that is useful in tracking the execution
of programs output by gcc , such as information on the contents of particu-
lar stack slots;

– It uses loop invariants included in C source files to determine where to
introduce abstraction; and

– It uses a proof-generating Prolog interpreter to prove any safety predicates
that are encountered.

Actually, the PCC extension does not use “loop invariants” directly, but
rather cutpoint annotations. A cutpoint annotation designates a point in the code
that the code producer expects to be reachable along multiple different paths.
Associated with each cutpoint is a description of what parts of program state
to remember at that cutpoint; any other state will be forgotten.

For example, suppose we had program code like:

mode = O_RDONLY;

while (some_complicated_condition()) {

name = some_complicated_function();

fd = open(name, mode);

}

Exhaustive verification of all paths through this code may not be possible, de-
pending on the workings of the functions called. However, it’s easy to see that
the code is safe, because mode is always O RDONLY. This is the sort of fact that
would go into a loop invariant in traditional program verification. It’s also the
kind of property we could reasonably expect the code producer to know and
use in his justification that the code adheres to the safety policy. In our proto-
type implementation, we add the following macro use as the first line of the
loop:

CUTPOINT(FRESHVARS(name, fd));

What this means is that, every time this line of code is reached, the contents of
the variables name and fd should be forgotten. As a result, states that would
have been considered different will become equal, so that we can check the
safety of infinitely many paths. There are a number of other macros that specify
ways to forget aspects of program state at cutpoints.

We started from the basic PCC extension and made some improvements
necessary to handle more ambitious programs than it had been used with pre-
viously. We added support for foreign function calls and their pre- and postcon-
ditions. We needed to add support for strings and global and static variables (as
compiled by gcc ), as well as assorted behaviors of gcc that we hadn’t encoun-
tered previously in toy examples. Finally, we developed a Prolog formalization
of some useful properties of strings. With these changes in place, the main effort
in proving a program safe is in adding appropriate cutpoints to the program
source.
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To ease the burden on the code producer, these simple annotations, like
FRESHVARS , can be inferred automatically either by the PCC extension itself or
as a separate analysis. In fact, we have written such an analysis that instruments
the C source code with cutpoint annotations and the appropriate FRESHVARS for
our trials. Experimentally, we have not needed more complicated annotations
to verify the security policies described earlier (see Section 5 for details).

It is important to remember that Byte Bouncer is not limited to using just this
extension. The extension is not a part of the trusted base, and code producers
are always free to design their own extensions based on mechanisms particular
to their programs. For example, a code producer who programs in Java would
be able to provide an extension that could do more automatic reasoning based
on the safety guarantees provided by Java. Also, there are some features of C
(most having to do with pointers) that the current PCC implementation is often
unable to deduce any useful information from. Additional support for these
features could be added without needing to change any of the trusted code,
since the extension must prove all of its reasoning sound.

5 Case Studies

We began by checking some standard command-line UNIX utilities, like cat,
with respect to some simple policies (e.g., only read files and no network con-
nections). Then, we experimented with some richer policies, such as those that
require simple arithmetic, basic string properties, and use of post-conditions. In
this section, we describe larger case studies based on currently available open-
source programs implemented in C to evaluate and demonstrate the feasibility
of our approach. The examples we chose are perhaps more security critical than
the average consumer application in order to “stress test” our approach.

5.1 Pico Server

We have prepared and analyzed the code for the small web server Pico Server,
which is available at http://pserv.sourceforge.net/. The source distribution in-
cludes about 2000 lines of C code, split among 4 files. We made a few modi-
fications to the code to make it compatible with the current Byte Bouncer im-
plementation. For instance, we elided any code that required non-word sized
memory accesses, since the latest Open Verifier version does not support other
widths. We refactored small amounts of code dealing with arrays, structures,
pointers, and bitwise operations, which we do not entirely handle yet. Besides
these changes, we also made a number of semantics-preserving simplifications,
some using the CIL library [NMRW02] and some manually.

We have been able to check a number of important properties of the com-
piled Pico Server object files.

– We allow calling fopen for reading by including in the policy file

Function fopen(filename, modes)

Pre StrEq(modes, "r")
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But we omit any other foreign functions that could together be used to gain
access to the file system, so we know that the web server will only perform
read-only file system accesses.

– By omitting the connect function from the security policy, we know that
the web server will never initiate any network connections of its own.

– We also know that Pico Server does not use any other system calls that we
did not include in the safety policy (purposely or through negligence), like
remove.

Our annotation generation program was able to add most of the necessary
cutpoint information to the Pico Server source. We only had to spend about an
hour adding a few additional annotations. A few more hours were required
to change parts of the code that were confusing our verifier, but this problem
would not exist in a production version of Byte Bouncer. We think we could
improve our annotator enough that the extra annotation work would go away
completely, for the complexity of security policies that we used here.

It is worth emphasizing that none of us had ever seen this source code before
beginning this case study, and we still managed to come up with certified object
files in only a few hours. If programmers have Byte Bouncer in mind while
developing their applications, it seems reasonable to expect that they will have
a very easy time certifying those applications with policies like the one above.

We check each of the four object files separately, with a combined verifica-
tion time of about 6 seconds on a 3.2 GHz Pentium 4 with 2 GB of RAM. This
time includes both proof generation and proof checking. It would be possible
for a user who is willing to trust an extension to speed up the process by not
checking proofs. It’s also true that the current PCC extension is not optimized
for speed. A generic proof-generating Prolog interpreter handles all of the prov-
ing. We expect that running time would be much lower in a finely tuned imple-
mentation.

5.2 Goldwater

Goldwater, developed by netFluid Technology, is distributed by the FSF un-
der the GNU Public License. Goldwater implements distributed message-based
middleware supporting multiple languages, providing services like session per-
sistence, result caching, resource control, load balancing, connection pooling,
database connectivity, integration with web servers, web browsers, and wire-
less device data formats and protocols, XML web services, etc. Goldwater has
been chosen as the base architecture of the Virtual Remote Server (VRS) project,2

which is a part of the DotGNU Project.3 As a larger case study, we chose Gold-
water version 1.4.0, framed appropriate security policies for some of its various
modules and verified that these policies are satisfied.

2 VRS aims to create software for a peer-to-peer server clusters for hosting web services.
VRS combines the advantages of p2p architecture while still providing benefits of
centralized servers, like persistent availability and a common database.

3 DotGNU is FSF’s open-source platform for web services and C# programs.
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Module File File size (loc) Proof generation (sec) Proof checking (sec)

admin goldinit.c 720 5.80 0.51
admin bsguardls.c 315 2.58 0.65

guardian guardian.c 1915 4.06 0.64

Table 2. Verification of Goldwater source files.

We selected the admin and guardian modules of Goldwater. The module
admin implements Goldwater’s administration tool, and the guardian module
runs at the top level of the Goldwater architecture managing the distributed
Goldwater server. We verified the files goldinit.c, bsguardls.c and guardian.c

with respect to a specified set of safe foreign functions. As Table 2 shows, proof
generation and proof checking are both performed in a few seconds time. With
no prior knowledge of the software, verification was accomplished in a few
days of work.

6 Discussion

In this section, we discuss some practical considerations for realizing such a
system, namely how to make it more usable for both the code producer and
the code consumer. We also discuss some other uses for Byte Bouncer that are
outside the code producer-consumer scenario we have described.

6.1 Usability for the Code Producer

One of the main concerns with PCC systems is the difficulty of proof gener-
ation. A system won’t be very useful if code producers find it too difficult to
prove that their programs are safe. Some of the work is easily automatable. For
instance, we have a tool that adds a cutpoint at the beginning of every loop and
automatically annotates it with information on which variables might change
across loop iterations. However, we, of course, need heavier weight machinery
when programs are safe for complicated enough reasons.

The PCC extension takes the strategy of using a Prolog interpreter to do the
drudge work of proving. The code producer is responsible for proving and in-
cluding with his program additional Prolog proof rules. These might be neces-
sary for proving the program correct, or they might just make verification more
efficient. There are generally only a few of these, and it should be possible to re-
use them across programs. Program verification experts could create libraries
of these rules and distribute them freely, avoiding any need for expertise on
logic by the average code producer.

The other main non-trivial component needed by the PCC extension is loop
invariants and non-foreign function pre-conditions and post-conditions. These
are the hardest to come up with. They are analogous to induction hypotheses
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in inductive proofs, in that verification can be trivial when they are known and
next to impossible when they are not. However, there has been some promising
past work on generating loop invariants automatically. For instance, one project
modified the BLAST model checker to output loop invariants [HJM + 02]. BLAST
uses some heavy-weight automated theorem proving machinery to build ab-
stractions for input programs automatically. The nice part about this approach
is that much simpler machinery will suffice on the code consumer’s end. The
consumer only needs to check the inductive proof that the producer and BLAST
have spent much effort constructing.

It is also true that much effort that has gone into this project has come from
the unrestricted nature of C programs. We chose to study C programs for this
project because C is the most common language for security-critical daemons,
but our task would have been much easier with a higher-level, type-safe lan-
guage. Compiled versions of programs in such a language would have much
more predictable behavior, making it easier to provide higher level abstractions
about them. This adds more evidence for the increasingly popular belief that
it’s necessary to transition systems programs away from C to achieve practical
security goals.

6.2 Usability for the Code Consumer

For any successful security mechanism, one must consider the usability for the
consumer, but we suspect that this is a much more tractable problem. The criti-
cal issue is displaying policies to the user in as succinct a way as possible, while
still enabling the user to make smart security decisions. We think that there are
a number of ways to do this well for common types of programs.

For example, Byte Bouncer could come with a number of default policies.
Each one would have a descriptive name chosen to be understandable to the
average user. For instance, we could have policies named “game,” “server,”
“word processor,” etc. Mobile programs could come with descriptions of the
security policies they are known to satisfy, and the consumer’s Byte Bouncer
could try to find the most restrictive default policy that implies one of these. If
one is found, a simple dialog box could ask the user if he would like to allow
the program to run with, for example, “game security settings.”

When no default policy is sufficient, it may be possible to find a small delta
from one of them. For instance, a given program may behave appropriately for
a “game,” except that it wants to send data to an unknown IP address. If Byte
Bouncer figures this out (a form of “policy inference”), it can make this differ-
ence explicit in its query to the user (e.g., “The downloaded software asks to be
allowed to read your game configurations file game.conf. Do you agree ?”). A
system like this might even encourage software vendors to provide more pre-
cise documentation, listing every non-standard capability required by a pro-
gram, along with the reason for its inclusion. This would be a useful conse-
quence in its own right, especially in preventing the installation of unwanted
spy-ware.
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6.3 Other Uses for Byte Bouncer

Byte Bouncer is also useful as a tool for enforcing software quality. Program-
mers can make Byte Bouncer checks a regular part of their development cycle.
Even if a program is going to be run with more traditional security mecha-
nisms, Byte Bouncer can be helpful in avoiding surprises for end users. When
a Byte Bouncer policy models a particular dynamic security mechanism ac-
curately enough, a successful Byte Bouncer run implies that the program be-
ing analyzed will never trip that mechanism. Testing-based approaches always
leave open the possibility that a program misbehaves in some unexpected case,
surprising the user in the middle of execution.

Our system can also be used as a standard tool for checking dynamic in-
strumentation schemes. For instance, with appropriate security policies, Byte
Bouncer can verify that transformations like software fault isolation [WLAG93],
StackGuard [CPM+ 98], and inline reference monitors [ES00] achieve their goals.
This double-checks that the potentially complicated instrumentor did not miss
an instrumentation point, moving the instrumentor out of the trusted comput-
ing base.

7 Related Work

As alluded to throughout the text, our work essentially is an instantiation of
Proof-Carrying Code. Prior work in PCC has primarily focused on fixed, low-
level policies [Nec97,AF00,CCNS05,HST+ 02,Cra03,MWCG99] (such as, mem-
ory safety), while this work has aimed to lift this idea to higher-level security
policies given by the end user. While memory safety is often a prerequisite in or-
der to enforce higher-level security policies, we, in principle, defer the choice of
how its enforced to another methodology (e.g., one of the traditional PCC meth-
ods or with, say, the Java Virtual Machine). Rather, we have identified kinds of
policies that the end user can and would like to specify, as well as the means of
enforcing those policies via pre-conditions on foreign function calls.

Our prototype implementation is built on the Open Verifier framework for
foundational verifiers [CCNS05], leveraging mechanisms that are common to
both enforcing memory safety and our higher-level security policies. As such,
we have followed the principle of separating policy from the enforcement mech-
anism (i.e., trusting only a proof checker and the machine semantics and not,
say, the soundness of some high-level type system) from Foundational Proof-
Carrying Code [AF00,CCNS05,HST+ 02,Cra03].

We have explored a common theme in security enforcement—applying static
techniques to a problem that has been considered using dynamic or run-time
solutions. One dynamic counterpart of Byte Bouncer is Janus [GWTB96], which
runs browser helper applications in a environment that checks for dangerous
system calls at run-time. The primary advantage of a static approach is that the
code consumer can be confident that the code only makes safe system calls prior
to running the application. Dynamic and static approaches are not necessarily
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exclusive. As noted in Section 6.3, one may choose to run Byte Bouncer on the
code resulting from instrumentation techniques for enforcing security policies
at run-time (e.g., software fault isolation [WLAG93] and inline reference moni-
tors [ES00]).

8 Conclusion

To summarize the design of Byte Bouncer, we evaluate our choices with respect
to Saltzer and Schroeder’s relevant recommendations for building secure sys-
tems [SS75].

– Economy of mechanism: The trusted components are simple in design and
small in number.

– Fail-safe defaults: The user must explicitly specify the foreign functions and
on under what conditions they may be called.

– Complete mediation: Every call to a function outside the code of the untrusted
binary is checked (statically) for possible violations of the user-specified
security policy.

– Open design: The enforcement mechanism is not secret (and must not be
secret for the code producer to generate valid proofs). The security of the
system does not depend on knowledge of any secret at all. Instead of a
syntactic view of security (security that depends on syntactic possession of
some information, such as a key), we enforce semantic security—the pro-
gram semantics is analyzed to produce a proof that it abides by the given
security policy. This contrasts with “code signing” approaches for mobile
code security.

– Least privilege: Our approach supports granting privileges to untrusted pro-
grams in, essentially, arbitrarily precise increments by the end user. In con-
trast, the standard privilege-management schemes conflate policy with en-
forcement mechanism setting up the list of privileges at the system level at
the very beginning when the computer system is designed.

– Least common mechanism: We have minimized the trusted computing base
necessary for enforcing the security policy to that of the proof checker, the
policy interpreter, and the formalization of the machine semantics.

– Psychological acceptability: From the code consumer’s perspective, he need
only be concerned with the security policies, which are much simpler ob-
jects than the program, its execution semantics, or the theorem-prover frame-
work for generating proofs. Writing policies is relatively easy, and requires
no knowledge of the behavior or implementation of the untrusted binary.
We have also described ways in Section 6.2 how the burden of scripting
the policy may be shifted to the code producer. From the code producer’s
perspective, Byte Bouncer places additional burden on him that can be mit-
igated to some extent by automated analysis techniques, but in the end,
he will only be motivated to take such actions if demanded by code con-
sumers. With the ever increasing virulence of malicious code, it seems plau-
sible that such security enforcement mechanisms shall be demanded by
code consumers.
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Note that the remaining recommendation by Saltzer and Schroeder, separation
of privilege, is not relevant in this context, because our scheme does not place
trust in any entity based on the syntactic possession of information.
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