
An Untrusted Verifier for Typed Assembly Language

Adam Chlipala (adamc@cs.berkeley.edu)

1. INTRODUCTION
Software downloaded onto computers and executed with-

out user oversight or intervention, otherwise known as mo-
bile code, is playing an increasingly prominent role in to-
day’s computing infrastructure. Java applets and ActiveX
components are well known to the general public. Software
components are routinely downloaded to and executed by
cellular phones, smart cards, and other devices that con-
sumers generally don’t think of as sophisticated computers.
The seemingly innocuous nature of mobile code for these
applications opens up opportunities for exploitation by ma-
licious software creators.

The traditional technique for preventing such abuses in-
volves running untrusted code in a sandbox, inserting many
dynamic run-time tests, and other methods that can add
significant execution overhead. Newer methods rely more
strongly on static analysis of code to prove absence of unde-
sirable behavior. The Java Virtual Machine (JVM) format
[4] and the Microsoft .NET Common Language Infrastruc-
ture (CLI) [1] are both designed to allow static verification
of basic properties, including memory safety. However, they
depend on the inclusion of many very high level instructions,
including those for object-oriented features, different types
of function calls, and more. Thus, while these formats are
designed to be easy targets for many high level programming
languages, it is common that languages sufficiently different
from those original considered will have sufficiently different
features to make the JVM and CLI formats poor targets.

The Open Verifier project seeks to develop a more flexible
and trustworthy alternative to these infrastructures. It is
based around the idea of minimizing the set of abstractions
built into the software verification process. Instead of using
bytecode formats with many high-level instructions, it veri-
fies programs written in standard assembly languages. The
job of proving memory safety of these programs is delegated
to untrusted modules, which produce proofs that are checked
by a small trusted core. Each compilation strategy for each
high level language can have a separate module of this kind.
This frees language designers and compiler implementors to
consider many different implementation strategies without
being constrained by language specific features of a target
format or requiring constant addition of new instructions to
that format. The Open Verifier architecture’s design also
reduces the amount of code that a mobile code user must
trust.

I am currently developing an untrusted Open Verifier mod-
ule to enable checking of programs compiled from Typed
Assembly Language (TAL) [5]. TAL is similar to the com-

mon language target formats described above. However, it
uses a sophisticated type system to remove most need for
instructions at a higher level than those generally provided
by real processors. Most TAL instructions are real machine
instructions augmented with typing information.

The status of TAL as possibly the most expressive lan-
guage of its kind makes producing a verification module for
it a good test of the flexibility of the Open Verifier system.
Here I present a fairly straightforward encoding of its type
system in the mostly first-order logic system used by the
Open Verifier. While the verifier that uses this encoding
is not yet complete, the chances that the final product will
integrate well with the Open Verifier seem promising.

2. RELATED WORK

2.1 Prior work on safety of low level code
Proof-carrying code (PCC) [7] is the inspiration for the

Open Verifier architecture. PCC introduced the idea of a
certifying compiler, which can produce a safety proof for
each machine code program it produces. The proof system a
compiler uses is custom tailored to the high level language it
is compiling. While this simplifies the compiler’s burden, it
also requires much repeated effort in producing proof check-
ing infrastructures for different languages and proving the
proof systems sound. There is also no common ground on
which an end user can base trust of different PCC systems.
This last point is a serious weakness for using traditional
PCC as a basis for a flexible and safe mobile code platform.

Foundational PCC (FPCC) [2] attempts to repair this de-
fect. An FPCC system creates a PCC infrastructure “from
the smallest possible set of axioms, using the simplest pos-
sible verifier and the smallest possible runtime system” [2].
Properties of type systems that traditional PCC takes as ax-
ioms are defined explicitly in higher-order logic based only
on underlying machine properties. The needed properties
can be proved, and the the proofs can be checked by a min-
imal higher-order logic proof checker. However, the expres-
sivity of higher-order logic does not come without a price.
The proof of soundness for each type system under consid-
eration is usually quite involved. Relations indexed by the
number of execution steps [3] for which particular code is
known to run safely “infect” the proofs to a degree that can
be confusing for those who might want to implement FPCC
for their languages’ type systems. The proofs end up con-
taining many aspects that don’t seem central to why the
corresponding type systems imply memory safety.

Typed Assembly Language (TAL) [5] takes a different ap-

1

proach to remedying the same problem. Instead of removing
a specific type system and its properties from the trusted
computing base, a type system expressive enough to be a
good target for a wide range of high level languages is used.
A TAL for a particular processor architecture modifies that
architecture’s assembly language by adding typing informa-
tion to the existing instructions and adding a few extra high
level instructions. For example, the first release of x86 TAL
added 8 high level instructions that require concrete execu-
tion while not corresponding to real x86 instructions. This
is less than the number of instructions the Microsoft CLI
features for different kinds of function calls alone. However,
these few instructions still impose some limitations on pos-
sible runtime optimizations. For example, the built-in array
type must be accessed through checked subscript read and
update operations, removing opportunities for eliding un-
necessary bounds checks. The type system is not expressive
enough to support an alternate implementation of arrays
with the same performance characteristics. Also, it seems
unlikely that language designers will never invent new fea-
tures that aren’t adequately handled by a single monolithic
type system.

2.2 The Open Verifier
The Open Verifier architecture is an alternative to FPCC

as a successor to PCC. They have similar goals but achieve
them through different means and with different emphases.
Building on work on untrusted proof rules [8] and verifica-
tion condition generators [9], the Open Verifier architecture,
like FPCC, avoids building program semantics above the
machine code level into its trusted base. The two systems
diverge when it comes to choosing which additional pieces of
a complete program verifier to move into the trusted base.

Besides the unavoidable semantic model of machine code
execution, the Open Verifier includes a simple engine for
traversing the reachable states of a program. Checking all
possible states is an inherent requirement of verification of
safety properties, so this does not impose undue constraints.

The exact nature of the descriptions of individual states
is left up to an untrusted extension module that is specific
to the high level language and compilation strategy used to
produce the program being checked. An extension writer
chooses an encoding of possible machine states in first-order
logic, where the ground theory only includes notions related
to the underlying machine architecture and execution envi-
ronment.

To verify a program’s safety, the trusted core of the Open
Verifier performs a traversal of the program’s reachable states.
A trusted strongest postcondition generator produces exact
first-order logic characterizations of the different machine
states that may follow a given one, while the current exten-
sion produces its own first-order logic characterizations of
successor states. The extension’s state descriptions will gen-
erally be less detailed than the concrete state descriptions.
For instance, while the built-in postcondition generator may
track the exact values of all machine registers, an extension
may choose to track only the types of those values. It is the
extension’s ability to drop information while keeping enough
to prove the needed safety properties that makes verification
practical.

Of course, verification is not sound if the Open Verifier
allows the extension to declare successor states that have
no relation with actual machine behavior. It is important

that an extension be able to prove that the abstract succes-
sors it declares somehow cover all possible concrete successor
states.

In a system like FPCC, this could be proved with standard
higher-order logic proof rules. The Open Verifier attempts
to keep the job of the extension writer simple by sticking
to first-order logic. To handle this one case which seems
to call for higher-order reasoning, a single new proof rule is
introduced, the coverage rule. It is based on fairly intuitive
notions of when any machine state that realizes any member
of a set of abstract states must also be realized by some
machine state realizing an abstract state from another set.
This rule is used to show that any concrete successor state
of a particular program state is covered by one or more of
the abstract successors chosen by the extension.

It is possible to prove the soundness of the coverage rule
and the Open Verifier architecture in general. The greatest
complexity arises in making the notion of coverage general
enough to handle the wide variety of ways programs can use
code addresses. The idea of a progress continuation is in-
troduced to allow state descriptions to express higher-order
facts, in the form of formulas such that any machine state
satisfying one of them is known to be safe. The proof uses
indexed relations much like those used for FPCC soundness
proofs. However, the soundness proof only needs to be done
once, not once per type system.

For the purposes of this paper, the details of coverage are
not important. The TAL type system is expressive enough
that the needed uses of coverage can be folded into a single
construct, the idea of one global progress continuation that
is essentially a first-order formula such that any machine
state satisfying it will execute safely from that point on. At
the beginning of verification, the extension must prove that
every machine state satisfying this predicate has in fact been
queued to be verified, using the coverage rule. This will be
described in more detail in later sections.

3. AN OVERVIEW OF X86 TAL
Here I will present a fragment of the parts of TAL for

Intel x86 processors that are interesting in the context of
this project. In particular, an extension for a language sup-
porting first class functions or parametric polymorphism has
not yet been produced for the Open Verifier. TAL is well
suited as a target for such languages, as shown in the trans-
formation from System F (the polymorphic typed lambda
calculus) to TAL of [6]. Therefore, I will consider a TALx86
fragment that brings out the issues involved in supporting
these features.

3.1 Grammar
Figure 1 gives the grammar for this fragment. None of the

features under consideration require the use of any of the
high level TALx86 instructions not corresponding to stan-
dard x86 assembly instructions. This means that, for this
fragment, TAL simply provides typing information on top
of a traditional assembly program, so I will not give the de-
tails of the instructions and machine values involved. The
typing information can be thought of as a register typing for
each instruction in an assembly program, where a register
typing is a mapping from each register in a subset of the x86
registers to a TALx86 constructors; as well as assignments
of types to selected code labels within a program, such as
function entry points. Constructors encompass both types

2

Type variables α

Kinds k ::= k4byte | kstack | k1 → k2

Type contexts Γ ::= · | Γ, α :: k | Γ, α = τ

Registers r ::= eax | esp | ...

Register typings T ::= {r1 : τ1, ..., rn : τn}
Constructors τ ::= word | code T | α | ∀α :: k.τ | nil | cons(τ1, τ2) | stackptr(τ)

Expressions e, m

Code labels L

Register values V ::= {r1 = e1, ..., rn = en}

Figure 1: Basic x86 TAL grammar

∀α :: kstack.code {esp : stackptr(cons(code {eax : word, esp : stackptr(cons(word, α))}, cons(word, α)))}

Figure 2: A TALx86 type for a pointer to the entry point of a C function with prototype int f(int), using

standard x86 calling conventions

describing runtime values and “type-level terms” that can be
used to compute types programmatically. Both actual ma-
chine values and values representing entire memory states
will be named with expressions.

To handle polymorphism, type variables and type contexts
are introduced. Type contexts map unique type variables
to TALx86 types and kinds. A kind is a grouping of types.
For instance, there are types whose values are all word-sized
and types whose values are all multi-word stacks in memory.
These categories of types are given different kinds, k4byte
and kstack. When a type context maps a type variable
to a type, it indicates that the type variable stands for the
given type. When a type variable is mapped to a kind,
it indicates that the variable stands for some type of that
kind. The latter case will be used for varieties of parametric
polymorphism that are sensitive to such properties as the
amount of storage needed to hold values of a universally
bound type variable.

3.2 Judgments
The type system is made up of three basic judgments:
Γ ` τ :: k means that constructor τ has kind k in context

Γ. Γ provides assumptions about type variables bound in τ

in the usual way.
Γ `m e : τ means that expression e has type τ in context

Γ with memory contents m.
Γ `m V : T means that register values V are compatible

with register types T in context Γ with memory contents m.
This means that for each ri : τi appearing in T , ri = ei such
that Γ `m ei : τi must appear in V .

3.3 Constructors
There are four basic varieties of constructors, each based

on a notion of type that might be applied informally in de-
scribing the execution of an x86 assembly language program.

3.3.1 Primitive types
Γ ` word :: k4byte. word’s represent any 4-byte quanti-

ties.

3.3.2 Code types
Γ ` code {r1 : τ1, ..., rn : τn} :: k4byte. Such a code type

is the type of pointers to code blocks that are safe whenever
the values of registers r1, ..., rn have the specified types.

3.3.3 Stack types
nil is the type of an empty stack. (Γ ` nil :: kstack)

When Γ ` τ1 :: k4byte and Γ ` τ2 :: kstack, Γ ` cons(τ1, τ2) ::
kstack. This is the type of stacks with values of type τ1 on
top and stacks of type τ2 below them. When Γ ` τ :: kstack,
Γ ` stackptr(τ) :: k4byte. This is the type of pointers to
stacks of type τ .

3.3.4 Universal types
When Γ, α :: k1 ` τ :: k2, Γ ` ∀α :: k1.τ :: k1 → k2. This

is the type for universal quantification over a type variable
of a particular kind.

3.4 Compilation of functions to TAL
TAL doesn’t have any notion of functions. The usual

function call-return idiom is captured by giving continuation
passing style typings to the actual register values involved
during a function call. For instance, using the standard x86
calling conventions, a function that takes a single integer
parameter and returns an integer can be given the type in
Figure 2.

The universal type quantifies over the type of the portion
of the caller’s stack that the callee should not modify. This
is the part below the argument. Callee save registers are
ignored here, though they are handled with singleton types
in current TAL versions.

If the start address of the function has this type, then we
know that for any stack type substituted for α, the function
will run without modifying anything below its argument,
because the type of this part of the stack is abstract within
the function. The register typing for this code pointer shows
that a valid return pointer is on top of the stack upon en-
try. Its validity is expressed through the fact that it expects
eax to hold a word, matching with the x86 convention for
returning a value; and it expects the stack to be restored
to its state before the call, expressed using the universally
quantified stack type. Since α appears only as the tail of
the function entry and function return stacks, it is guaran-
teed that the tail of the stack upon return must in fact be

3

∃Γ, L, T, m, v1, ..., vn.pc = L ∧ mem = m ∧ r1 = v1 ∧ ... ∧ rn = vn ∧ Γ `m L : code T ∧ Γ `m {r1 = v1, ..., rn = vn} : T

Figure 3: The global progress continuation

the original tail. The function lacks enough typing infor-
mation to construct new values of this stack type if it is to
typecheck.

One important thing to note is that TAL’s strategy of us-
ing general code types to describe functions allows a great
deal of freedom in choosing calling conventions. The stan-
dard x86 convention can be a good choice based on instruc-
tion set support for it, but any well-typed convention is pos-
sible and enforceable by TAL typecheckers.

4. VERIFYING A FUNCTION CALL WITH
THE TALX86 OPEN VERIFIER EXTEN-
SION

The TALx86 Open Verifier extension I am developing is
based on the TALx86 library provided with the TALC 1.0
release from Cornell University. These libraries perform
typechecking of TAL code using custom representations and
logic. The job of a TAL extension is to express the involved
information in a first-order logic form and prove the sound-
ness of the lemmas that trusted TAL typecheckers take for
granted in verifying a program’s type safety.

4.1 Definitions of predicates
Kind judgments translate trivially into a recursive defini-

tion of a first-order has-kind relation.

Any expression may treated as a machine word, so Γ `m

e : word ≡ true.
stackptr(nil) may be treated similarly, since a nil stack

will never be accessed. Γ `m e : stackptr(cons(τ1, τ2))
iff (addr e) and Γ `m (sel m e) : τ1 and Γ `m e + 4 :
stackptr(τ2). Here addr is a built-in unary predicate on
expressions that is true only for an expression that indicates
the memory address of a machine word available for reading
and writing. The fact that every address a program accesses
satisfies this predicate is the basic definition of the safety
policy the Open Verifier enforces. The built-in binary sel

function maps from a memory state and an address to the
contents of the machine word at that address.

Γ `m e : α iff α = τ ∈ Γ and Γ `m e : τ . Universal typing
judgments can be given the obvious meanings in terms of
universal quantification over types in first-order logic.

The only values TAL gives code type are code labels. Ev-
ery program has a fixed set of code labels, where each has
code type wrapped in zero or more levels of universal types,
abstracting such things as caller stacks and regular types for
parametric polymorphism. Thus, Γ `m e : code T can be
defined to be true iff e equals a code label L and T is the
result of substituting constructors of appropriate kinds for
the universally quantified type variables in the body of the
universal type that is L’s type annotation in the program.
This typing of labels can be made part of Γ through a simple
extension not given in the language grammar.

The register set typing judgment’s definition follows from
that of the expression typing judgment.

4.2 Lemmas
A few lemmas are critical for proving function call sound-

ness. There are the obvious introduction and elimination
rules for stack pointer types that arise directly from the
corresponding predicate definitions. There is also the obvi-
ous elimination rule for universal types, based on syntactic
substitution for the type variable the universal type binds.
No introduction rule for universal types is provided; the cur-
rent implementation only allows them to arise from program
code labels. There are also lemmas that define register set
type-value compatibility recursively.

None of these lemmas seem to pose any great proof bur-
den. It seems likely that standard first-order logic tech-
niques allow straightforward proofs of them all, although
they have not yet been proven for the TALx86 extension.

4.3 The global progress continuation
A single progress continuation is needed for verifying TAL

programs. It says “it’s OK to jump to any value of code type
as long as the registers have values of appropriate types.”
Formally, where r1, ..., rn is the complete set of registers, the
progress continuation is expressed by the formula in Figure
3. The occurrences of pc, mem, and r1, .., rn in the for-
mula are constants to which a concrete machine state gives
values, corresponding to the current program counter value,
the memory contents, and the values of the registers, respec-
tively.

At the beginning of verification, this continuation is proved
covered by the set of all program verification roots corre-
sponding to TAL labels: Since the notion of having code
type is defined in terms of equality to a code label, the
first typing predicate in the continuation is equivalent to
a disjunction over L’s equality to the labels of the program,
quantifying over the possible substitutions for bound type
variables in each case. The register set typing lemmas al-
low the unrolling of the second predicate to show for each
disjunct that the second typing predicate implies the known
facts about the registers in the corresponding verification
root’s first-order state. Each such root contains predicates
giving only the kinds of the universally bound type variables
of an existentially quantified context. Thus, this context
may be instantiated to give any concrete type variable sub-
stitutions consistent with this kind information. This allows
proofs of coverage for each disjunct of the global continua-
tion, meaning that every machine state satisfying the global
continuation also satisfies the first-order formula associated
with one of the program states that has been queued to be
verified safe before declaring the whole program safe. It is
clear intuitively that this implies that a concrete state sat-
isfying the progress continuation’s formula may be declared
safe at any point during verification.

4.4 Coverage proofs for function call jumps
Consider a function label L with the example one-argument

function type of Figure 2. Directly before a jump to the
function entry point, the argument and return pointer have
been pushed onto the stack. The TAL extension will make

4

stackptr(cons(code {eax : word, esp : stackptr(cons(word, τ))}, cons(word, τ)))

Figure 4: The type of register esp directly before a call to a function with the type from Figure 2, where τ

describes the part of the stack the function will ignore

code {esp : stackptr(cons(code {eax : word, esp : stackptr(cons(word, τ))}, cons(word, τ)))}

Figure 5: A type for a function with the type from Figure 2, where the universally bound type variable has

been instantiated to τ

sure it can prove Γ `m sp : σ, where sp is the current value
of esp, τ a type known to describe the appropriate part of
the stack, and σ the type in Figure 4. The type of the return
pointer label is part of Γ, and its inclusion in Γ is justified
by including every possible return pointer in the program as
a verification root.

The universal type elimination rule can be used to show
that, since L has the type from Figure 2, it has the type in
Figure 5. The register set typing lemmas allow a straightfor-
ward proof that the current register values are compatible
with this code type’s register typing. Thus, using the clear
instantiations of the global continuation’s existential vari-
ables, we have the needed coverage proof showing that the
entry state for the function call satisfies the global continu-
ation formula and is thus safe.

The critical aspect of this is that the existential variable
instantiations are not being chosen for the called function’s
verification root. They are being chosen for the meta-root
represented by the global continuation. This allows the cur-
rent Γ to be used as the new instantiation, despite the fact
that different functions will generally need different typing
contexts. It is the coverage proof for the global continua-
tion at the beginning that does all the work of proving this
sound.

4.5 Other coverage proofs
Function returns and normal jumps use the same basic

method as above. All code labels may be treated in the
same way for these purposes. Functions bodies are just code
blocks that happen to use continuation passing style. Func-
tion returns are simply jumps to first-class continuations
that have been saved on the stack.

5. CONCLUSIONS
One of the central open questions about the Open Veri-

fier architecture is how well progress continuations can be
used to encode different models of program state. If the
Open Verifier is to meet its goals as a flexible verification
platform, progress continuations should be flexible enough
to encode any higher-order properties relevant to the safety
of particular languages. My experiences to date with the
TAL extension seem to indicate that the Open Verifier can
indeed handle nontrivial uses of higher-order program prop-
erties, including first-class functions and parametric poly-
morphism.

The current implementation requires that a number of
key components be trusted. Calls to runtime system func-
tions are assumed safe, proofs that the initial verification
roots chosen by an extension cover the real program entry
point are omitted, and formal proofs have not yet been con-

structed for the lemmas used at each verification step. The
process of proving safety of interactions with a complete
runtime system that includes a realistic garbage collector
remains a research problem. The extension modifications
needed to add the other two missing aspects seem to be
straightforward.

With these omissions, the current TAL extension han-
dles programs compiled from Popcorn (a safe C dialect) and
Scheme, using the compilers included in the TALC 1.0 re-
lease. The interesting types and constructs are handled in
a reasonably straightforward way that is close to the way
a standard typechecker would be implemented. These re-
sults provide good evidence that the Open Verifier supports
construction of diverse kinds of extensions without requir-
ing proofs involving indexed relations or other unintuitive
techniques.

6. REFERENCES
[1] The CLI architecture. Technical Report ECMA

TC39/TG3, ECMA, October 2001.

[2] Andrew W. Appel. Foundational proof-carrying code.
In Logic in Computer Science, 2001.

[3] Andrew W. Appel and David A. McAllester. An
indexed model of recursive types for foundational
proof-carrying code. Programming Languages and
Systems, 23(5):657–683, 2001.

[4] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. Addison-Wesley, 2nd edition,
1999.

[5] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman,
Richard Samuels, Frederick Smith, David Walker,
Stephanie Weirich, and Steve Zdancewic. TALx86: A
realistic typed assembly language. 1999.

[6] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From System F to typed assembly language.
ACM Transactions on Programming Languages and
Systems, 21(3):527–568, 1999.

[7] George C. Necula. Proof-carrying code. In Proceedings
of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Langauges (POPL ’97),
pages 106–119, Paris, January 1997.

[8] George C. Necula and Robert Schneck. Proof-carrying
code with untrusted proof rules. In Proceedings of the
2nd International Software Security Symposium,
November 2002.

[9] George C. Necula and Robert Schneck. A sound
framework for untrustred verification-condition
generators. In Proceedings of IEEE Symposium on
Logic in Computer Science (LICS03), July 2003.

5

