
Survey on Proof Complexity

Adam Chlipala (adamc@cs)

December 17, 2004

1 Introduction

In this survey, I will discuss two results inproof complexity. Proof complexity studies
the efficiency of particular formal proof systems for proving particular formulas. The
work in this area has focused on propositional logic, since results about it have a direct
connection to central questions in complexity theory.

In particular, we know thatNP = co − NP if there is a proof system that has
a small proof for every propositional tautology. If for every propositional contradic-
tion there is a refutation of polynomial size, then we haveSAT ∈ NP , using these
refutations as theNP witnesses. In general, these witnesses could be arbitrary data,
and they might not look anything like what we think of as “proofs” in mathematical
logic. However, by studying the suitability of particular proof systems for providing
these witnesses, we might learn something more fundamental about the problem. Each
time we prove that some well-known proof system requires super-polynomial proofs
for some contradictions, we accumulate more informal evidence thatNP 6= co−NP .

The first of the papers I’ll be surveying [BSW99] presents a result about the well-
knownresolutionproof system. The authors present a useful result that relates a prop-
erty calledwidth to the lengths of resolution proofs. They also describe a general
technique for proving proof size lower bounds, based on that result, and show how to
use the technique to duplicate or improve a number of past lower bound results. These
include a number of exponential lower bounds for propositional tautologies, showing
that resolution proofs are not acceptableNP witnesses forSAT .

The second paper I will discuss [Ats04] builds up to a different kind of result.
Instead of fixing a proof system for refuting propositional contradictions, this work
considers the case where programs in theDataloglanguage are used to check a formula
for unsatisfiability. They consider just how useful a fixed Datalog program can be for
this task. The main result establishes that, as the size of input formulas increases, the
proportion of formulas that are solutions to any fixed Datalog program that only accepts
unsatisfiable formulas tends towards zero. This effectively rules out Datalog programs
as well as useful tools for generatingNP witnesses forSAT .

1

2 Width and resolution

2.1 The resolution proof system

Resolutionis one of the simplest known complete proof systems for propositional logic.
It has just one proof rule, theresolution rule:

A ∨ x B ∨ x

A ∨B

HereA andB are arbitrary first-order formulas, andx is any propositional variable.
This rule isn’t purely syntactic. We will be working with formulas in CNF, where we
think of a formula as an unordered set of clauses, and of each clause as an unordered
set of literals. So, for example,A ∨ x can be any clause containing the literalx. We
will treat the resolution rule as a way to derive one new clause from two old ones.

We can use this to give a formal definition of a resolution proof of a clauseE from
hypothesesF : A proof is a sequenceC1, ..., Cn of clauses whereCn = E and, for
eachCi, one of the following is true:

• Ci ∈ F ; or

• Ci is derived by the resolution rule from two clausesCj andCk, for j, k < i.

For instance, say we want to provex from (x ∨ y ∨ z) ∧ (y ∨ z) ∧ (x ∨ z). One
proof is:

x ∨ y ∨ z, y ∨ z, x ∨ z, x ∨ z, x

The first, second, and fourth clauses are hypotheses; the third is derived from the first
and second by resolution; and the goal is derived from the third and fourth clauses by
resolution.

One interesting restricted category of resolution proofs is thetree-like proofs. These
are roughly the proofs that can be represented with natural deduction-style proof trees.
More formally, we can associate with each proof a graph on the clauses it uses, with an
edge from each hypothesis of a use of resolution to the corresponding conclusion. A
tree-like proof corresponds to graph that is a tree.

The previous example happens to be a tree-like proof, which can be seen by putting
it into a natural deduction form:

x ∨ y ∨ z y ∨ z

x ∨ z x ∨ z
x

However, not all resolution proofs are tree-like. In particular, any that uses the
same intermediate clause multiple times as an input to the resolution rule is not tree-
like. It is always possible to duplicate parts of the proof to avoid this problem, but
this duplication can have a significant effect on proof size. [BSW99] presents a class
of formulas that requires exponential size tree-like proofs but admits linear size proofs
in general. Tree-like proofs are interesting because many common automated provers,
like the Davis-Putnam procedure, generate only tree-like proofs.

2

Following [BSW99], I’ll use the notationsS(F ` C) andST (F ` C) to denote
the textual length of the shortest general or tree-like proof, respectively, ofC fromF .
Since the focus will be on proving that a formula is contradictory, I useS(F) to stand
for S(F ` 0) andST (F) to stand forST (F ` 0). Here, 0 stands for the empty (false)
clause.

2.2 Width and its connection to proof size

[BSW99] defines a measure of proof complexity calledwidth. The width of a clause
C, denotedw(C), is the number of literals in it. The width of a set of hypotheses or of
a resolution proof is the maximum width among its clauses. Finally, we can also use
width as a measure of the complexity of proving a particular goal. We writew(F ` C)
to denote the smallest width of a proof of clauseC from hypothesesF .

The main idea of [BSW99] is that often the easiest way to prove that a goal formula
has only long proofs is to show that all proofs of it have large width. They prove a
formal result that can be used to do this:

Theorem 1. For any hypothesesF usingn variables,S(F) = exp
(
Ω

(
(w(F`0)−w(F))2

n

))
.

They also have a tighter result for tree-like proofs:

Theorem 2. For any hypothesesF , ST (F) ≥ 2w(F`0)−w(F).

2.3 A strategy for proving width lower bounds

[BSW99] presents the following outline of a method for proving width lower bounds
on refutations of some hypothesesF :

1. Define a complexity measureµ mapping clauses toN, such thatµ(C) ≤ 1 for
eachC ∈ F .

2. Prove thatµ(0) is “large”.

3. Prove that any refutation ofF must include a clauseC with a “medium”µ value.

4. Prove thatw(C) is “large” if µ(C) is “medium”.

The particularµ to be used will depend onF , but [BSW99] suggests a parametric
definition that is useful for many examples. They defineµA, whereA is a set of
propositional formulas. For any clauseC,A |= C is defined to mean that every variable
assignment satisfying every formula ofA also satisfiesC.

Definition 1 (µA). For any setA of formulas and any clauseC, µA(C) ≡ min{|A′| :
A′ ⊆ A,A′ |= C}.

This corresponds with an intuitive notion of hardness. We fix some set of hypothe-
sesA that is enough to prove our final goal. The complexity of any clauseC found in a
proof of it is measured by how many of the hypotheses we must assume at a minimum
for C to follow. Since we want to use this to show that some propositional contradic-
tions are hard to prove, it should turn out that the goal0 requires many members ofA.
If it didn’t, it wouldn’t be hard to prove.

3

Lemma 1. For any clausesB, C, andD, if D can be inferred fromB andC with one
resolution step, thenµA(D) ≤ µA(B) + µA(C).

Proof. ChooseB ⊆ A such that|B| = µA(B) andB |= B; and likewise forC and
C. Since adding to a set of hypotheses can only increase the set of consequences, we
haveB ∪ C |= B andB ∪ C |= C. Since resolution is a sound inference rule, andD is
deduced fromB andC by resolution, we haveB ∪C |= D. Thus,µA(D) ≤ |B ∪C| ≤
|B|+ |C| = µA(B) + µA(C).

Definition 2 (Compatibility). For any unsatisfiable setF of hypotheses,A is compat-
ible withF if A |= 0 and, for everyC ∈ F , µA(C) ≤ 1.

Informally, a particular choice of unsatisfiableA is compatible withF if every
member ofF , which has an “obvious” proof, is also considered trivial underµA. Each
C ∈ F should follow from assuming no more than one member ofA.

Lemma 2. If A is compatible withF and µA(0) ≥ 2, then every proof ofF |= 0
contains a clauseC with

1
3
µA(0) ≤ µA(C) ≤ 2

3
µA(0)

Proof. Assume for a contradiction that some proof ofF |= 0 contains no clauseC
with 1

3µA(0) ≤ µA(C) ≤ 2
3µA(0). Let C be the earliest clause of the proof with

µA(C) > 2
3µA(0). Such aC exists because 0 itself appears eventually in the proof,

andµA(0) > 2
3µA(0). SinceµA(0) ≥ 2, µA(C) > 1, so C 6∈ F . Therefore,C

must be deduced by resolution from two earlier clausesD andE. By the choice ofC,
both earlier clauses have width no more than2

3µA(0). By the initial assumption,D
andE must have widths below13µA(0). By Lemma 1,µA(C) ≤ µA(D) + µA(E), a
contradiction.

This takes care of the first three steps in the proof strategy outline. The remaining
step uses the idea of anexpansionto lower bound width. Expansion is based on a series
of definitions:

Definition 3 (Sensitivity). A boolean functionf is sensitiveif, for every variable as-
signmentα with f(α) = 0 and any assignmentβ formed by flipping one variable ofα,
f(β) = 1.

Definition 4 (Critical Assignment). For any setA of boolean functions and anyf ∈
A, a critical assignmentfor f is a variable assignmentα such thatf(α) = 0 and
g(α) = 1 for anyg ∈ A \ {f}.

Definition 5 (Dependence).A boolean functionf is dependent ona variable x if
there are two variable assignmentsα andβ differing only on the value ofx such that
f(α) 6= f(β).

Definition 6 (Boundary). LetA be a set of boolean functions. Theboundary ofA, or
∂A, is the set of variablesx such that there is exactly one function inA dependent on
x.

4

Now we can define the central idea:

Definition 7 (Expansion). Let someA withA |= 0 be given. Define theexpansion of
A by:

e(A) = min{|∂A′| : A′ ⊂ A,
1
3
µA(0) ≤ |A′| ≤ 2

3
µA(0)}

Now we can use expansion to lower bound width. First, one last lemma:

Lemma 3. If f ∈ A is sensitive,α is a critical assignment forf , andx ∈ V ars(f) ∩
∂A, then flipping the value ofx in α yields an assignmentβ that satisfiesA.

Proof. Let β be the result of flipping the value ofx in α. Sinceα is critical for f , we
know thatf(α) = 0 andg(α) = 1 for everyg ∈ A \ {f}. Becausef is sensitive and
α andβ differ only onx, we havef(β) = 1. This also shows thatf is dependent on
x. Sincex ∈ ∂A, we have that no other function inA is dependent onx. Therefore,
sinceα satisfies all of them, so doesβ. Thus,β satisfies all ofA.

Theorem 3. Let F be an unsatisfiable set of hypotheses.w(F ` 0) ≥ max e(A),
whereA ranges over all sets of sensitive functions compatible withF and withµA(0) ≥
2.

Proof. Let A as specified in the theorem statement be given, and consider any proof
of F ` 0. By Lemma 2, there is a clauseC in the proof with 1

3µA(0) ≤ µA(C) ≤
2
3µA(0). Let A′ ⊂ A be a minimal set such thatA′ |= C. By definition, |A′| =
µA(C).

Let x ∈ ∂A′ be given. Consider eachf ∈ A′. There must be an assignmentαf

such thatC(αf) = f(αf) = 0 andg(αf) = 1 for all g ∈ A′ \ {f}. If not, we can
deriveA′ \ {f} |= C as follows: This could only be false if there existed anα such
that g(α) = 1 for all g ∈ A′ \ {f} but C(α) = 0. We know thatf(α) = 1, so
such a counterexample would also showA′ 6|= C. Since this is contradictory, no such
counterexample can exist. Thus, we could have chosenA′ \ {f} instead ofA′, which
contradictsA′’s minimality, so anαf as posited must exist.

Now suppose for a contradiction thatx ∈ V ars(f)∩ ∂A′ butx does not appear in
C. Let β be the result of flipping the value ofx in αf . We have thatf is sensitive (be-
cause it’s inA), αf is a critical assignment forf , andx ∈ V ars(f) ∩ ∂A′. Therefore,
by Lemma 3,β satisfiesA′. Sincex does not appear inC, β still does not satisfyC.
Therefore,A′ 6|= C, a contradiction.

This shows that every variable in∂A′ also appears inC. Thus,w(C) ≥ |∂A′|.
By the definition of boundaries,|∂A′| ≥ e(A), since 1

3µA(0) ≤ |A′| ≤ 2
3µA(0).

Therefore,w(C) ≥ e(A).
Since this argument works for every proof ofF ` 0, we havew(F ` 0) ≥ e(A).

Since the argument works for every validA, we have the final result.

2.4 Example: A lower bound for Tseitin Formulas

The simplest application of this technique that [BSW99] presents involvesTseitin For-
mulas:

5

Definition 8 (Tseitin Formulas). Let G be a finite connected graph. A functionf :
V (G) → {0, 1} hasodd weightif

∑
v∈V (G) f(v) ≡ 1 (mod 2). Let dG(v) be the

degree of vertexv in G. Fix an odd weight functionf . Associate a variablexe with
each edge ofG. For v ∈ V (G), definePARITYv ≡ (

⊕
v∈e xe ≡ f(v) (mod 2)).

TheTseitin Contradictionof G andf is:

τ(G, f) =
∧

v∈V (G)

PARITYv

EachPARITY must be represented with a number of clauses. [BSW99] cites
without proof a lemma that characterizes just how efficientlyτ(G, f) can be repre-
sented in CNF:

Lemma 4. If d is the maximal degree ofG, thenτ(G, f) is a d-CNF with at most
n2d−1 clauses andnd

2 variables.

A definition of another type of expansion is introduced, this time over graphs:

Definition 9 (Expansion). For G = (V,E) a finite connected graph, theexpansionof
G is:

e(G) = min{|E(V ′, V \ V ′)| : V ′ ⊆ V,
1
3
|V | ≤ |V ′| ≤ 2

3
|V |}

Here,E(V ′, V \V ′) denotes the cut betweenV ′ andV \V ′ in G. Graph expansion
characterizes how effectively a graph can be partitioned into two mostly disjoint pieces
of roughly equal size.

The main theorem about expansion and weight uses this lemma from a previous
paper:

Lemma 5. If G is connected, thenτ(G, f) is contradictory ifff is an odd weight
function.

Theorem 4. For G a connected graph andf an odd-weight function onV (G), w(τ(G, f) `
0) ≥ e(G).

Proof. They defineAV = {PARITYv : v ∈ V (G)} andµ = µAV
, and proceed to

apply Theorem 3. We can check each requirement of that theorem:

AV contains only sensitive functions. Each member ofAV is a parity function,
which is clearly sensitive: changing any input to a parity function changes its output.

AV is contradictory. This is trivial, since the conjunction ofAV ’s elements is pre-
cisely a Tseitin Contradiction.

For every C ∈ τ(G, f), µ(C) ≤ 1. EachC is one of the clauses used to encode
PARITYv for somev ∈ V (G). SincePARITYv ∈ AV and{PARITYv} |= C, we
haveµ(C) = 1.

6

µ(0) ≥ 2. This is trivial if |V (G)| ≤ 2. Otherwise, assume for a contradiction that
there isA ⊆ AV with |A| = 1 such thatA |= 0. A must be{PARITYu} for some
u ∈ V (G). DefineV ′ = V (G) \ {u}. Choosev ∈ V ′. Definef ′(v) to be1 − f(v)
andf ′(w) to bef(w) whenw 6= v. Sincef has odd weight,f ′ does not. Therefore, by
Lemma 5,τ(G, f ′) is satisfiable.A{u} is a sub-formula ofτ(G, f ′), so it is satisfiable
as well. Thus, every size-1 subset ofAV is satisfiable, soµ(0) ≥ 2.

So, by Theorem 3,w(τ(G, f) ` 0) ≥ e(AV). Any subsetA′ ⊆ AV is AV ′ for
someV ′ ⊆ V . Consider such aV ′. ∂AV ′ = {xe : e ∈ E(V ′, V \V ′}, because clearly
anyPARITYv is dependent on the variable for any edge incident on it; and any other
edge variable appearing inAV ′ besides those listed must connect two elements ofV ′,
meaning that multiple elements ofAV ′ depend on it. Thus, by the definitions of the
two kinds of expansion,e(AV) ≥ e(G), sow(τ(G, f) ` 0) ≥ e(G).

From this result, [BSW99] re-proves an old result which says: IfG is 3-regular
and e(G) = Ω(|V (G)|), thenS(τ(G, f)) = 2Ω(|τ(G,f)|). To derive this, we can

first use Theorem 1 to deduceS(τ(G, f) ` 0) = exp
(
Ω

(
(e(G)−w(τ(G,f)))2

|E(G)|

))
=

exp
(
Ω

(
(|V (G)|−3)2

3|V (G)|/2

))
= exp(Ω(|V (G)|)).

3 Refuting random instances of 3SAT

Resolution proofs are one way of encoding witnesses for the unsatisfiability of for-
mulas. To determine whether or not3SAT ∈ NP , we need somehow to considerall
possible proof systems, so it is natural to study successively more complex mechanisms
to see what we can learn about the general case. [Ats04] considers what can be accom-
plished using programs in theDatalog language to encode procedures for determining
formula unsatisfiability. Datalog is not a Turing-complete language, but it is expressive
enough for a large variety of procedures, including resolution.

The high-level result of [Ats04] is that no Datalog program can be very useful
for detecting unsatisfiability in random 3CNF formulas. Any Datalog program that
only accepts unsatisfiable inputs will tend asymptotically towards only accepting a
negligible fraction of allowed inputs.

3.1 Datalog

The Datalog language is a subset of the well-known logic programming language Pro-
log. While Prolog allows rules to build new expressions by applying function symbols,
in Datalog variables are the only expressions. It is easy to compensate for this re-
striction by using relations to stand for particular functions. For instance, the Prolog
rule

length(cons(x, y)) = 1 + length(y).

expresses the recursive case of a length function for lists. We can use relations
instead of the functionslength andcons to obtain a Datalog equivalent:

length(l, z) a cons(x, y, l), length(y, l′), add(1, l′, z).

7

Datalog equivalents of Prolog programs can require significantly more variables,
which will be important later. However, the expressiveness is still quite good. [BSW99]
mentions unsatisfiability of 2CNF instances, graph reachability, and non-2-colorability
as some computational problems solvable by Datalog programs.

The results of [Ats04] use number of distinct variables in Datalog programs as the
crucial computational resource. They define ak-Datalog programto be one using at
mostk distinct variables and using no relation symbol with arity greater thank.

3.2 Characterizing Datalog programs with infinitary logic

To simplify the overall argument, [Ats04] reduces Datalog programs to formulas in a
particular infinitary logic, called∃Lk

∞ω. Atomic formulas of∃Lk
∞ωare applications

of constant relation symbols or second-order variables (which stand for unknown rela-
tions) to first-order variables (which stand for unknown individuals in some underlying
universe). The full set of formulas is the closure of this set of atomic formulas under
conjunction (possibly with infinitely many conjuncts), (possibly infinite) disjunction,
and existential quantification over first-order variables. Because negation and universal
quantification are left out, this logic is calledpositive existentialinfinitary logic. The
“k” in the name denotes a limit ofk distinct variables in formulas.

[Ats04] cites a result that says that, for anyk-Datalog programP , there is a for-
mula ϕ of ∃Lk

∞ωsuch that the set of solutions toP is precisely the set of satisfying
assignments forϕ. Thus, the rest of the development focuses on stronger results about
the inability of∃Lk

∞ωformulas to express useful tests for unsatisfiability.

3.3 Encoding 3SAT in first-order logic

We want to use first-logic to reason about propositional formulas. Since we are only
interested in using first-order logic to express this reasoning, we will need to encode
propositional formulas in some way, instead of reasoning about them directly. The
strategy [Ats04] takes is to identify 3SAT formulas with particular models for a fixed
logical vocabulary.

We fix a language of 3-ary relation symbolsR0, R1, R2, andR3. Every input
3CNF F will correspond with a particularmodelM(F) for this language.M(F)’s
universe is the set of variables appearing inF . Ri will stand for those clauses of the
input with exactlyi negated literals. Whenever the input contains a clause:

¬x1 ∨ . . . ∨ ¬xi ∨ y1 ∨ . . . ∨ y3−i

we say that:
Ri(x1, . . . , xi, y1, . . . , y3−i)

Ri does not hold for any other arguments. Since we consider clauses to be unordered,
a given clause will in this way contribute multiple true argument lists to a particular
Ri.

[Ats04] also defines another model for the same language, atemplate structure
calledT . While the previous kind of models stand for particular inputs,T will repre-
sent the properties of satisfiable 3CNF’s. We define the universe ofT to be the truth

8

assignments{0, 1}. EachRi is again associated with clauses of exactlyi negated vari-
ables, but now we must define their behavior over inputs that are truth values. We will
have eachRi interpret its inputs as truth assignments to the variables that appear in
some clause withi negated variables. The firsti inputs give the truth values of the
negated variables, and the next3 − i give truth values to the non-negated variables.
Thus,R0 accepts every input but(0, 0, 0), R1 every input but(1, 0, 0), and so on.

With these definitions, we can express the satisfiability of a 3CNFF in terms of a
relationship between that formula’s model and the templateT . F is satisfiable iff there
is ahomomorphismfromM(F) toT . A homomorphism is a function from the universe
of one model to the universe of another that respects the two models’ interpretations
of the relation symbols. In this case, this would mean a functionf from V ars(F) to
{0, 1} such that, ifR(x1, x2, x3) in M(F), thenR(f(x1), f(x2), f(x3)) in T . Such a
homomorphism is precisely a satisfying assignment ofF .

3.4 A connection with a combinatorial game

[Ats04] presents a combinatorial game, called theexistentialk-pebble game, that pro-
vides a different way of thinking about homomorphisms. The game has two players.
One player, called the Duplicator, is trying step-by-step to construct a homomorphism
between two structures. His adversary, the Spoiler, is trying to prevent him from ac-
complishing this.

Each game is played over two logical structuresA andB for the same language.
Each player hask numbered pebbles. The game is played on a “board” made up of the
elements of the universes ofA andB. For each round of the game, Spoiler can either
place one of his unused pebbles on an element ofA that has no pebble on it, or Spoiler
can remove one of his pebbles from an element ofA. Duplicator’s job is to mimic
Spoiler’s action. If Spoiler placed pebblei on an element ofA, Duplicator must place
his pebble numberedi on some unpebbled element ofB. If Spoiler removed pebblei,
Duplicator must remove his pebblei as well.

Duplicator’s goal is to maintain the invariant that, after each round, the configura-
tion of pebbles denotes apartial homomorphismfrom A to B. For any configuration,
we can define a functionf mapping the pebbled elements ofA to the pebbled elements
of B, where the element with Spoiler’s pebblei is mapped to the element with Dupli-
cator’s pebblei. This mapping is a partial homomorphism if Duplicator could place
the remaining pebbles however he likes, without moving the already-placed pebbles,
such that the resultingf is a homomorphism.

If Duplicator is ever forced to create a configuration that does not denote a partial
homomorphism, Spoiler wins the game. Duplicator wins when he is able to continue
the game forever.

[Ats04] cites a result that says, informally, that this game has exactly the power of
∃Lk

∞ωto distinguish between structures.

Theorem 5. LetL be a relational vocabulary,C a class of finite structures forL, and
Q a Boolean query onC. The following are equivalent:

1. Q is definable in∃Lk
∞ωonC.

9

2. For every two structuresA,B ∈ C, if A |= Q and Duplicator wins the existential
k-pebble game onA andB, thenB |= Q.

So now, by way of the last section, we have a connection between expressibility in
Datalog and the winnability of this game.

3.5 Another game

[Ats04] now develops some results about a similar game which had been studied in
previous work, with the goal of importing these results. The new game, called the
matching game onG with k fingers, deals with a bipartite graphG = (U ∪ V,E).
The structure of the game is very similar to the existentialk-pebble game. Two players
Prover and Disprover take the roles of Spoiler and Duplicator, respectively. Each has
k numbered pebbles, and the board is composed of the vertices ofG. On each round,
Prover places a pebble over an element ofU or removes such a pebble. Disprover
must respond by placing his same-numbered pebble on an unpebbled neighbor ofU
or removing his same-numbered pebble from the board, respectively. Prover wins if
Disprover is ever unable to make a legal move, and Disprover wins if he can prolong
the game forever.

For givens ∈ N andε > 0, we say thatG is an(s, ε)-bipartite expanderif every
A ⊆ U of size at mosts has at least(1 + ε)|A| neighbors inV . We also define theleft-
degreeof G to be the largest degree of any member ofU , with an analogous definition
for right-degree andV . The main result about this game used by [Ats04] is:

Theorem 6. Let G be an(s, ε)-bipartite expander of left-degree at mostl, and letr
be a positive integer bounded byεsl+ε . Disprover wins the matching game onG with r
fingers.

3.6 Putting it together

To be able to make use of this result, [Ats04] defines a bipartite graphG(F) for every
3CNFF . One side of the graph has nodes corresponding to the clauses ofF , and the
other side is the variables ofF . We place an edge from each clause to each variable
appearing in it. Now we have the result:

Theorem 7. Let F be a3CNF such thatG(F) has right-degree at mostd. If Dis-
prover wins the matching game withr fingers onG(F), then Duplicator wins the exis-
tential

⌊
r
d

⌋
-pebble game onM(F) andT .

This is the last tool needed to prove the main theorem of the paper:

Theorem 8. For all constantsδ > 0 and∆ > 0, and for all sufficiently largen, if Cn

is a set of 3CNF’s with no more thann variables, and

1. Every member ofCn is unsatisfiable.

2. Pr[M(F) ∈ Cn] ≥ δ whenF is drawn uniformly from the set of possible
3CNF’s withn variables and∆n clauses.

10

thenCn is not definable in∃Lk
∞ωover 3CNF’s withn variables fork ≤ n

ln(n)2 .

The proof assumes for a contradiction that the theorem is false, so, for some large
enoughn, we haveCn satisfying both conditions above and also definable in∃Lk

∞ωwith
the parameters given. They use the probabilistic method to show that there must exist

3CNF F with M(F) ∈ Cn andG(F) an
(
s = n

ln(n) , ε = 1
4

)
-bipartite expander of

right-degree at mostd = ln(n)
13 and left-degree at most 3. They use a union bound to

do this, proving separate bounds on the probabilities that the right degree ofG(F) is
bigger thand, thatG(F) is not an(s, ε)-bipartite expander, and thatM(F) 6∈ Cn, this
last part provided by assumption 2 of the theorem statement. The sum of these proba-
bilities is proved to be below 1 for the parameters chosen andn large enough, so such
anF must exist.

Now, by Theorem 6, Disprover wins the matching game onG(F); and by Theorem
7, Duplicator wins the existentialk-pebble game onM(F) andT . This means that,
by Theorem 5,T satisfies the∃Lk

∞ωversion ofCn. SinceT encodes satisfiability of
3CNF’s, we reach the contradictory result thatCn contains a satisfiable formula.

With this result, it is easy to see that no Datalog program can be very useful for
finding unsatisfiable formulas. Any Datalog program has only a fixed numberk of
variables. Theorem 8 shows that, for large enoughn, any formula of∃Lk

∞ωeither al-
lows satisfiable formulas or doesn’t find many formulas. Since anyk-Datalog program
is representable in∃Lk

∞ω, we have that such a program is not very useful past a certain
input size.

References

[Ats04] Albert Atserias. On sufficient conditions for unsatisfiability of random for-
mulas.J. ACM, 51(2):281–311, 2004.

[BSW99] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow: resolution
made simple. InSTOC ’99: Proceedings of the thirty-first annual ACM
symposium on Theory of computing, pages 517–526. ACM Press, 1999.

11

