Survey on Proof Complexity

Adam Chlipala (adamc@cs)
December 17, 2004

1 Introduction

In this survey, | will discuss two results proof complexity Proof complexity studies

the efficiency of particular formal proof systems for proving particular formulas. The
work in this area has focused on propositional logic, since results about it have a direct
connection to central questions in complexity theory.

In particular, we know thatvVP = co — NP if there is a proof system that has
a small proof for every propositional tautology. If for every propositional contradic-
tion there is a refutation of polynomial size, then we h&w#T < NP, using these
refutations as théV P witnesses. In general, these witnesses could be arbitrary data,
and they might not look anything like what we think of as “proofs” in mathematical
logic. However, by studying the suitability of particular proof systems for providing
these witnesses, we might learn something more fundamental about the problem. Each
time we prove that some well-known proof system requires super-polynomial proofs
for some contradictions, we accumulate more informal evidenceMiiat: co — N P.

The first of the papers I'll be surveying [BSW99] presents a result about the well-
knownresolutionproof system. The authors present a useful result that relates a prop-
erty calledwidth to the lengths of resolution proofs. They also describe a general
technique for proving proof size lower bounds, based on that result, and show how to
use the technique to duplicate or improve a number of past lower bound results. These
include a number of exponential lower bounds for propositional tautologies, showing
that resolution proofs are not acceptablé witnesses foS AT .

The second paper | will discuss [Ats04] builds up to a different kind of result.
Instead of fixing a proof system for refuting propositional contradictions, this work
considers the case where programs inDagaloglanguage are used to check a formula
for unsatisfiability. They consider just how useful a fixed Datalog program can be for
this task. The main result establishes that, as the size of input formulas increases, the
proportion of formulas that are solutions to any fixed Datalog program that only accepts
unsatisfiable formulas tends towards zero. This effectively rules out Datalog programs
as well as useful tools for generatingP witnesses folSAT .

2 Width and resolution

2.1 The resolution proof system

Resolutioris one of the simplest known complete proof systems for propositional logic.
It has just one proof rule, thesolution rule

Avxz BVTZT
AV B

Here A and B are arbitrary first-order formulas, ands any propositional variable.
This rule isn’t purely syntactic. We will be working with formulas in CNF, where we
think of a formula as an unordered set of clauses, and of each clause as an unordered
set of literals. So, for examplel vV = can be any clause containing the literal We
will treat the resolution rule as a way to derive one new clause from two old ones.

We can use this to give a formal definition of a resolution proof of a cldufem
hypothesesF: A proof is a sequencé’, ..., C,, of clauses wher€’, = FE and, for
eachC;, one of the following is true:

o C, € F,or
e (; is derived by the resolution rule from two clauggésandCy, for j, k < 1.

For instance, say we want to proxerom (z Vy V z) A (T V z) A (x V Z). One
proof is:
ztVyVz,yvVz,xVz,xVZzx

The first, second, and fourth clauses are hypotheses; the third is derived from the first
and second by resolution; and the goal is derived from the third and fourth clauses by
resolution.

One interesting restricted category of resolution proofs isrtreelike proofs These
are roughly the proofs that can be represented with natural deduction-style proof trees.
More formally, we can associate with each proof a graph on the clauses it uses, with an
edge from each hypothesis of a use of resolution to the corresponding conclusion. A
tree-like proof corresponds to graph that is a tree.

The previous example happens to be a tree-like proof, which can be seen by putting
it into a natural deduction form:

tVyVz yVz

xVz xV7Z
T

However, not all resolution proofs are tree-like. In particular, any that uses the
same intermediate clause multiple times as an input to the resolution rule is not tree-
like. It is always possible to duplicate parts of the proof to avoid this problem, but
this duplication can have a significant effect on proof size. [BSW99] presents a class
of formulas that requires exponential size tree-like proofs but admits linear size proofs
in general. Tree-like proofs are interesting because many common automated provers,
like the Davis-Putnam procedure, generate only tree-like proofs.

Following [BSW99], I'll use the notations§(F + C) andSp(F F C) to denote
the textual length of the shortest general or tree-like proof, respectively,fiafm F.
Since the focus will be on proving that a formula is contradictory, | $16€) to stand
for S(F + 0) and St (F) to stand forS(F F 0). Here, 0 stands for the empty (false)
clause.

2.2 Width and its connection to proof size

[BSW99] defines a measure of proof complexity caledth. The width of a clause
C, denotedw(C), is the number of literals in it. The width of a set of hypotheses or of
a resolution proof is the maximum width among its clauses. Finally, we can also use
width as a measure of the complexity of proving a particular goal. We wi(i{€ - C)
to denote the smallest width of a proof of cladséom hypotheses.

The main idea of [BSW99] is that often the easiest way to prove that a goal formula
has only long proofs is to show that all proofs of it have large width. They prove a
formal result that can be used to do this:

Theorem 1. For any hypothese® usingn variables,S(F) = exp (Q(M))
They also have a tighter result for tree-like proofs:
Theorem 2. For any hypothese#, Sp(F) > 2w(FH0)—w(F),

2.3 A strategy for proving width lower bounds

[BSW99] presents the following outline of a method for proving width lower bounds
on refutations of some hypothesgs

1. Define a complexity measugemapping clauses td, such thatu(C) < 1 for
eachC € F.

2. Prove thap(0) is “large”.
3. Prove that any refutation &f must include a claus@ with a “medium” u value.
4. Prove that(C) is “large” if u(C) is “medium”.

The particular to be used will depend aoft, but [BSW99] suggests a parametric
definition that is useful for many examples. They defing, where A is a set of
propositional formulas. For any clauége A = C'is defined to mean that every variable
assignment satisfying every formula.dfalso satisfieg.

Definition 1 (u.4). For any setA of formulas and any claus@, j4(C) = min{|A’| :
A CA A ECY

This corresponds with an intuitive notion of hardness. We fix some set of hypothe-
sesA that is enough to prove our final goal. The complexity of any clauseund in a
proof of it is measured by how many of the hypotheses we must assume at a minimum
for C to follow. Since we want to use this to show that some propositional contradic-
tions are hard to prove, it should turn out that the goadquires many members gf.
If it didn’t, it wouldn’t be hard to prove.

Lemma 1. For any clauses3, C, and D, if D can be inferred fronB and C with one
resolution step, thep 4 (D) < pa(B) + pua(C).

Proof. ChooseB C A such thaiB| = p4(B) andB = B; and likewise forC and
C. Since adding to a set of hypotheses can only increase the set of consequences, we
haveBUC = BandBUC = C. Since resolution is a sound inference rule, @b
deduced fromB andC' by resolution, we havB UC = D. Thus,u4(D) < |BUC| <
|B| + 1C] = na(B) + pa(C). 0

Definition 2 (Compatibility). For any unsatisfiable s of hypotheses4 is compat-
ible with F if A |= 0 and, forevenyC' € F, ua(C) < 1.

Informally, a particular choice of unsatisfiahlé is compatible withF if every
member ofF, which has an “obvious” proof, is also considered trivial ungdgr Each
C € F should follow from assuming no more than one membed of

Lemma 2. If A is compatible with7 and p4(0) > 2, then every proof ofF = 0
contains a claus€’ with

L14(0) < 14(C) < Spa(0)

Proof. Assume for a contradiction that some proof®fl= 0 contains no claus€’
with £/04(0) < 4(C) < 214(0). Let C be the earliest clause of the proof with
pa(C) > %MA(O). Such aC' exists because 0 itself appears eventually in the proof,
and u4(0) > %,U_A(O). Sincep(0) > 2, pa(C) > 1, s0C ¢ F. Therefore,C
must be deduced by resolution from two earlier clausesnd E. By the choice of”,
both earlier clauses have width no more tign4(0). By the initial assumptionp
and E must have widths belov;.4(0). By Lemma 1,4(C) < pa(D) + pa(E), a
contradiction. O

This takes care of the first three steps in the proof strategy outline. The remaining
step uses the idea of ampansiorio lower bound width. Expansion is based on a series
of definitions:

Definition 3 (Sensitivity). A boolean functiory is sensitiveif, for every variable as-
signmenix with f(«) = 0 and any assignmerst formed by flipping one variable af,

f(B) =1.

Definition 4 (Critical Assignment). For any setA of boolean functions and anfy €
A, a critical assignmenfor f is a variable assignment such thatf(«) = 0 and

g(a) =1foranyg € A\ {f}.

Definition 5 (Dependence).A boolean functionf is dependent ora variable z if
there are two variable assignmentsand 5 differing only on the value of such that

fla) # £(B).

Definition 6 (Boundary). Let.A be a set of boolean functions. Theundary ofA, or
0A, is the set of variables such that there is exactly one functiondhdependent on
Z.

Now we can define the central idea:

Definition 7 (Expansion). Let someA with A = 0 be given. Define thexpansion of

A by:
. / I]‘ / 2
e(A) = min{[0A| : A C A, Spua(0) < [4] < Zpa(0)}

Now we can use expansion to lower bound width. First, one last lemma:

Lemma 3. If f € Alis sensitiveq is a critical assignment foff, andz € Vars(f) N
0A, then flipping the value af in « yields an assignmerit that satisfies4.

Proof. Let 5 be the result of flipping the value afin a. Sinceq is critical for f, we
know thatf(a) = 0 andg(a) = 1 for everyg € A\ {f}. Becausef is sensitive and
a andg differ only onz, we havef(5) = 1. This also shows thaf is dependent on
x. Sincex € 0.A, we have that no other function A is dependent on. Therefore,
sincec satisfies all of them, so dogk Thus, 3 satisfies all ofA. O

Theorem 3. Let F be an unsatisfiable set of hypotheses.F + 0) > maxe(A),
whereA ranges over all sets of sensitive functions compatible wigmd withy 4 (0) >
2.

Proof. Let A as specified in the theorem statement be given, and consider any proof
of 7 + 0. By Lemma 2, there is a clauge in the proof with$1.4(0) < pa(C)
2/14(0). Let A’ C A be a minimal set such that’ = C. By definition, |A'|
14(C).

Letz € 0A’ be given. Consider each € A’. There must be an assignment
such thatC(ay) = f(ay) = 0 andg(ay) = 1forallg € A"\ {f}. If not, we can
derive A’ \ {f} = C as follows: This could only be false if there existedasuch
thatg(a) = 1 forallg € A"\ {f} butC(a) = 0. We know thatf(a) = 1, so
such a counterexample would also shdivl= C'. Since this is contradictory, no such
counterexample can exist. Thus, we could have choBen{ f} instead ofA’, which
contradictsA”’s minimality, so anx ¢ as posited must exist.

Now suppose for a contradiction that Vars(f) N d.A’ butz does not appear in
C. Let 3 be the result of flipping the value afin ;. We have thaf is sensitive (be-
cause it's ind), a is a critical assignment fof, andz € Vars(f) N 0A". Therefore,
by Lemma 3,5 satisfiesA’. Sincex does not appear i€, 3 still does not satisfy’.
Therefore, A’ |~ C, a contradiction.

This shows that every variable mA’ also appears id€'. Thus,w(C)
By the definition of boundariegpA’| > e(A), sincepu(0) < |A'] <
Thereforew(C) > e(A).

Since this argument works for every proof Bf 0, we havew(F + 0) > e(A).
Since the argument works for every valij we have the final result. O

A

aA|.

> |
214(0).

2.4 Example: A lower bound for Tseitin Formulas

The simplest application of this technique that [BSW99] presents invdlsesin For-
mulas

Definition 8 (Tseitin Formulas). Let G be a finite connected graph. A functign:
V(G) — {0,1} hasodd weightif > -) = 1 (mod 2). Letdg(v) be the
degree of vertex in G. Fix an odd WEIg(ht funct|0|f Assomate a variable:, with
each edge ofi. Forv € V(G), definePARITY, = (D,c. ze = f(v) (mod 2)).
TheTseitin Contradictiorof G and f is:

7(G.f)= /\ PARITY,
veV(Q)

Each PARITY must be represented with a number of clauses. [BSW99] cites
without proof a lemma that characterizes just how efficien{l§, /) can be repre-
sented in CNF:

Lemma 4. If d is the maximal degree a¥, thent(G, f) is a d-CNF with at most
n2?-! clauses andy! variables.

A definition of another type of expansion is introduced, this time over graphs:

Definition 9 (Expansion). For G = (V, E) a finite connected graph, thexpansiorof
Gis:
1 2
e(G) =min{|E(V, V\V|: V' CV, §‘V‘ <|V'| < g\V\}

Here,E(V’, V' \ V') denotes the cut betweéfl andV \ V' in G. Graph expansion
characterizes how effectively a graph can be partitioned into two mostly disjoint pieces
of roughly equal size.

The main theorem about expansion and weight uses this lemma from a previous
paper:

Lemma 5. If G is connected, them(G, f) is contradictory iff f is an odd weight
function.

Theorem 4. For G a connected graph anflan odd-weight function ol (G), w(7(G, f) F
0) > e(G).

Proof. They definedy = {PARITY, : v € V(G)} andyu = p4,, and proceed to
apply Theorem 3. We can check each requirement of that theorem:

Ay contains only sensitive functions. Each member of4,, is a parity function,
which is clearly sensitive: changing any input to a parity function changes its output.

Ay is contradictory. This is trivial, since the conjunction ody/’'s elements is pre-
cisely a Tseitin Contradiction.

For every C € 7(G, f), u(C) < 1. EachC is one of the clauses used to encode
PARITY, forsomev € V(G). SincePARITY, € Ay and{PARITY,} = C, we
haveyu(C) = 1.

©(0) > 2. This s trivial if |[V(G)| < 2. Otherwise, assume for a contradiction that
there isA C Ay with | A| = 1 such thatd = 0. A must be{ PARITY, } for some

u € V(G). DefineV' = V(G) \ {u}. Choosev € V'. Define f'(v) to bel — f(v)
andf’(w) to be f(w) whenw # v. Sincef has odd weightf’ does not. Therefore, by
Lemma 5,7(G, f) is satisfiable. Ay, is a sub-formula of (G, f'), so itis satisfiable
as well. Thus, every size-1 subset4y is satisfiable, s(0) > 2.

So, by Theorem 3w (7 (G, f) F 0) > e(Ay). Any subsetd’ C Ay is Ay for
someV’ C V. Consider such &’. 0 Ay = {z. : e € E(V',V\ V'}, because clearly
any PARITY, is dependent on the variable for any edge incident on it; and any other
edge variable appearing ity besides those listed must connect two elementis’of
meaning that multiple elements gf,» depend on it. Thus, by the definitions of the
two kinds of expansiorg(Ay) > e(G), sow(r(G, f) F 0) > e(G). O

From this result, [BSW99] re-proves an old result which saysZ ls 3-regular
ande(G) = QV(Q)]), thenS(7(G, f)) = 220NN, To derive this, we can

first use Theorem 1 to deducq7(G, f) + 0) = exp(Q(W)) =
cap(Q(UG)) = eap(@V(G)D).

3 Refuting random instances of 3SAT

Resolution proofs are one way of encoding witnesses for the unsatisfiability of for-
mulas. To determine whether or B$ AT € N P, we need somehow to considat
possible proof systems, soitis natural to study successively more complex mechanisms
to see what we can learn about the general case. [Ats04] considers what can be accom-
plished using programs in thgataloglanguage to encode procedures for determining
formula unsatisfiability. Datalog is not a Turing-complete language, but it is expressive
enough for a large variety of procedures, including resolution.

The high-level result of [Ats04] is that no Datalog program can be very useful
for detecting unsatisfiability in random 3CNF formulas. Any Datalog program that
only accepts unsatisfiable inputs will tend asymptotically towards only accepting a
negligible fraction of allowed inputs.

3.1 Datalog

The Datalog language is a subset of the well-known logic programming language Pro-
log. While Prolog allows rules to build new expressions by applying function symbols,
in Datalog variables are the only expressions. It is easy to compensate for this re-
striction by using relations to stand for particular functions. For instance, the Prolog
rule

length(cons(x,y)) = 1 + length(y).

expresses the recursive case of a length function for lists. We can use relations
instead of the function&ngth andcons to obtain a Datalog equivalent:

length(l, z) - cons(z,y,1),length(y,l'), add(1,1, 2).

Datalog equivalents of Prolog programs can require significantly more variables,
which will be important later. However, the expressiveness is still quite good. [BSW99]
mentions unsatisfiability of 2CNF instances, graph reachability, and non-2-colorability
as some computational problems solvable by Datalog programs.

The results of [Ats04] use number of distinct variables in Datalog programs as the
crucial computational resource. They defing-Batalog programto be one using at
mostk distinct variables and using no relation symbol with arity greater than

3.2 Characterizing Datalog programs with infinitary logic

To simplify the overall argument, [AtsO4] reduces Datalog programs to formulas in a
particular infinitary logic, calledL®_ . Atomic formulas ofdL%_ _are applications

of constant relation symbols or second-order variables (which stand for unknown rela-
tions) to first-order variables (which stand for unknown individuals in some underlying
universe). The full set of formulas is the closure of this set of atomic formulas under
conjunction (possibly with infinitely many conjuncts), (possibly infinite) disjunction,
and existential quantification over first-order variables. Because negation and universal
quantification are left out, this logic is callgmbsitive existentiainfinitary logic. The

“k” in the name denotes a limit &f distinct variables in formulas.

[Ats04] cites a result that says that, for alnDatalog programP, there is a for-
mula of 3L _such that the set of solutions @ is precisely the set of satisfying
assignments fop. Thus, the rest of the development focuses on stronger results about
the inability of 3L%__formulas to express useful tests for unsatisfiability.

3.3 Encoding 3SAT in first-order logic

We want to use first-logic to reason about propositional formulas. Since we are only
interested in using first-order logic to express this reasoning, we will need to encode
propositional formulas in some way, instead of reasoning about them directly. The
strategy [Ats04] takes is to identify 3SAT formulas with particular models for a fixed
logical vocabulary.

We fix a language of 3-ary relation symbadly, R;, R2, and R3. Every input
3CNF F will correspond with a particulamodel M (F’) for this language.M (F)'s
universe is the set of variables appearing‘in R; will stand for those clauses of the
input with exactly; negated literals. Whenever the input contains a clause:

‘Il\/---\/‘xi\/yl\/---\/yfﬁ—i

we say that:
Rz’(gj17~ s Lgy Y1y - 7y3_7;)

R; does not hold for any other arguments. Since we consider clauses to be unordered,
a given clause will in this way contribute multiple true argument lists to a particular
R;.

[Ats04] also defines another model for the same languagemplate structure
calledT. While the previous kind of models stand for particular inptsyill repre-
sent the properties of satisfiable 3CNF's. We define the univergétofbe the truth

assignment$0, 1}. EachR; is again associated with clauses of exacthegated vari-
ables, but now we must define their behavior over inputs that are truth values. We will
have eachR; interpret its inputs as truth assignments to the variables that appear in
some clause with negated variables. The firstinputs give the truth values of the
negated variables, and the né&xt i give truth values to the non-negated variables.
Thus, R, accepts every input b0, 0,0), R; every input bui(1,0,0), and so on.

With these definitions, we can express the satisfiability of a 3GNR/ terms of a
relationship between that formula’s model and the tem@até' is satisfiable iff there
is ahomomorphisrfrom M (F) toT. Ahomomorphism is a function from the universe
of one model to the universe of another that respects the two models’ interpretations
of the relation symbols. In this case, this would mean a funcfidrom Vars(F) to
{0, 1} such that, ifR(z1, x2, z3) iIn M(F), thenR(f(x1), f(x2), f(x3)) in T. Such a
homomorphism is precisely a satisfying assignmerit of

3.4 A connection with a combinatorial game

[Ats04] presents a combinatorial game, calledekistentialk-pebble gamgthat pro-
vides a different way of thinking about homomorphisms. The game has two players.
One player, called the Duplicator, is trying step-by-step to construct a homomorphism
between two structures. His adversary, the Spoiler, is trying to prevent him from ac-
complishing this.

Each game is played over two logical structuresind B for the same language.
Each player has numbered pebbles. The game is played on a “board” made up of the
elements of the universes dfand B. For each round of the game, Spoiler can either
place one of his unused pebbles on an elementitfat has no pebble on it, or Spoiler
can remove one of his pebbles from an elementofDuplicator’s job is to mimic
Spoiler’s action. If Spoiler placed pebhle@n an element ofl, Duplicator must place
his pebble numberedon some unpebbled elementBf If Spoiler removed pebblg
Duplicator must remove his pebhlas well.

Duplicator’s goal is to maintain the invariant that, after each round, the configura-
tion of pebbles denotesgartial homomorphisnfrom A to B. For any configuration,
we can define a functiofi mapping the pebbled elementsato the pebbled elements
of B, where the element with Spoiler’s pebhls mapped to the element with Dupli-
cator’s pebble. This mapping is a partial homomorphism if Duplicator could place
the remaining pebbles however he likes, without moving the already-placed pebbles,
such that the resulting is a homomorphism.

If Duplicator is ever forced to create a configuration that does not denote a patrtial
homomorphism, Spoiler wins the game. Duplicator wins when he is able to continue
the game forever.

[Ats04] cites a result that says, informally, that this game has exactly the power of
3Lk _to distinguish between structures.

Theorem 5. Let L be a relational vocabulary a class of finite structures fat, and
@ a Boolean query od. The following are equivalent:

1. Q is definable idLY onC.

2. For every two structured, B € C, if A = @Q and Duplicator wins the existential
k-pebble game or and B, thenB = Q.

So now, by way of the last section, we have a connection between expressibility in
Datalog and the winnability of this game.

3.5 Another game

[Ats04] now develops some results about a similar game which had been studied in
previous work, with the goal of importing these results. The new game, called the
matching game o6 with k fingers deals with a bipartite grapy = (U U V, E).
The structure of the game is very similar to the existertipebble game. Two players
Prover and Disprover take the roles of Spoiler and Duplicator, respectively. Each has
k numbered pebbles, and the board is composed of the verticggs ©h each round,
Prover places a pebble over an element/obr removes such a pebble. Disprover
must respond by placing his same-numbered pebble on an unpebbled neiglbor of
or removing his same-numbered pebble from the board, respectively. Prover wins if
Disprover is ever unable to make a legal move, and Disprover wins if he can prolong
the game forever.

For givens € N ande > 0, we say thati is an(s, ¢)-bipartite expandeif every
A C U of size at moss has at leastl + ¢)| A| neighbors inl”. We also define thkeft-
degreeof G to be the largest degree of any membet/ofvith an analogous definition
for right-degree and’. The main result about this game used by [Ats04] is:

Theorem 6. Let G be an(s, €)-bipartite expander of left-degree at mdstand letr
be a positive integer bounded By.. Disprover wins the matching game Ghwith r
fingers.

3.6 Putting it together

To be able to make use of this result, [Ats04] defines a bipartite geqpt) for every
3CNF F'. One side of the graph has nodes corresponding to the clauggsaofl the
other side is the variables df. We place an edge from each clause to each variable
appearing in it. Now we have the result:

Theorem 7. Let F' be a3C' N F such thatG(F) has right-degree at most If Dis-
prover wins the matching game witHingers onG/(F), then Duplicator wins the exis-
tential | Z |-pebble game ot/ (F) andT.

This is the last tool needed to prove the main theorem of the paper:

Theorem 8. For all constants) > 0 and A > 0, and for all sufficiently large, if C,,
is a set of 3CNF's with no more thanvariables, and

1. Every member af’, is unsatisfiable.

2. Pr[M(F) € C,] > 6 whenF is drawn uniformly from the set of possible
3CNF's withn variables andAn clauses.

10

thenC,, is not definable irdL*__over 3CNF’s withn variables fork < —"—

In(n)2"

The proof assumes for a contradiction that the theorem is false, so, for some large
enough, we haveC,, satisfying both conditions above and also definabify with
the parameters given. They use the probabilistic method to show that there must exist

3CNF F with M(F) € C,, andG(F) an (s = Gy €= i)—bipartite expander of

right-degree at most = lnl(g) and left-degree at most 3. They use a union bound to

do this, proving separate bounds on the probabilities that the right degtegtfis

bigger thand, thatG(F') is not an(s, €)-bipartite expander, and that (F') ¢ C,,, this

last part provided by assumption 2 of the theorem statement. The sum of these proba-
bilities is proved to be below 1 for the parameters chosenalagige enough, so such

an F' must exist.

Now, by Theorem 6, Disprover wins the matching game&@#’); and by Theorem
7, Duplicator wins the existentigl-pebble game od/(F) andT. This means that,
by Theorem 5] satisfies thelL”__version ofC,,. SinceT encodes satisfiability of
3CNF’s, we reach the contradictory result tht contains a satisfiable formula.

With this result, it is easy to see that no Datalog program can be very useful for
finding unsatisfiable formulas. Any Datalog program has only a fixed nuratodr
variables. Theorem 8 shows that, for large enoughny formula ofL%__either al-
lows satisfiable formulas or doesn’t find many formulas. SincelabBwtalog program
is representable iBL"__, we have that such a program is not very useful past a certain
input size.

References

[Ats04] Albert Atserias. On sufficient conditions for unsatisfiability of random for-
mulas.J. ACM 51(2):281-311, 2004.

[BSW99] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow: resolution
made simple. IMFSTOC '99: Proceedings of the thirty-first annual ACM
symposium on Theory of computimgges 517-526. ACM Press, 1999.

11

