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About Me

● 4th year CS PhD student in programming 
languages

● Started doing interactive computer 
theorem proving in Spring 2004, as part 
of the Open Verifier project

● Now it's the main focus of my research.
● Specifically, developing programming 

language tools with proofs of correctness
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This Class

● A practical perspective on computer 
theorem proving

● Designed to be accessible to anyone 
who's taken a basic logic and discrete 
math class

● Experience with functional programming 
is a plus
– Scheme/Lisp good, ML/Haskell better :-)
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Administrivia

● Usually meet only on Thursdays
● One homework assignment a week during 

the first half of the course
– Exercises using Coq (a proof assistant)

● For people taking the class for 3 units, a 
standard research project in a small 
group
– Probably some application of interactive 

computer theorem proving
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Administrivia II

● No required text, but the Coq'Art book is 
a useful reference
– We have a few copies that we can loan out as 

needed

● This class probably won't satisfy any CS 
PhD breadth requirement, but see us if 
this is a problem for you.
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What is a Proof?
● Proof by example

– The author gives only the case n = 2 and suggests that it 
contains most of the ideas of the general proof.

● Proof by intimidation

– "Trivial."

● Proof by vigorous handwaving

– Works well in a classroom or seminar setting.

● Proof by cumbersome notation

– Best done with access to at least four alphabets and special 
symbols.

● Proof by exhaustion

– An issue or two of a journal devoted to your proof is useful.

[excerpt from a popular e-mail forwarding bonanza]
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Classical Motivations

● Mathematicians and philosophers want to 
formalize their reasoning processes.

● Interest in formal methods driven by how 
difficult it is to be sure that a 
mathematical system corresponds to our 
intuitions.

● Want to come up with tiny but very 
expressive systems to study very 
carefully.
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Don't Worry!

● This class is not about sitting around 
debating the metaphysics of “1 + 1 = 2.”

● We'll focus on a variety of practical 
applications of theorem proving 
technology.

● ...not that those philosophers didn't have 
some ideas that have turned out to be 
very practical. ;-)
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Correctness is Nice

● Expensive mistakes
– Pentium FDIV bug
– Ariane rocket crash
– etc.

● Programming language semantics
– The POPLmark Challenge
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The Age of “Security”

● The Internet isn't a friendly place 
anymore.

● “We want to make sure our software can't 
be exploited.”
– Verification of cryptographic protocols, etc.

● “We want to use software written by 
someone we don't trust.”
– Proof-carrying code
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Software Engineering

● Developing programs and their 
correctness proofs simultaneously is an 
alternative to test-based development.

● The more intricate the system, the more 
likely it is that proof is more effective 
than testing.

● Exactly how to do this is a very active 
research topic today.
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Goals for This Course

● Learn how to use the Coq proof 
assistant to:
– Formalize most any kind of math
– Formalize theory related to your research
– Develop practical functional programs with 

total correctness proofs

● Learn exactly what it means for a proof to 
be rock solid, so that even a computer 
believes it.
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The World of Computer 
Theorem Proving

First-Order Logic Higher-Order Logic

Automated

Interactive

ACL2

many systems... not so many systems...
Untyped Typed

Functional Programming

Ad-Hoc Proof Language

Twelf

Small Proof Language

Logic 
Programming

PVS

Classical Logic Constructive Logic

Isabelle
/HOL

Coq,
NuPRL
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● Theorem: There exist irrational numbers a and b 
such that ab is rational.

● If √2√2 is rational, then we have the theorem with 
a = b = √2.

● If √2√2 is irrational, then we have the theorem 
with a = √2√2 and b = √2.

– (√2√2)√2 = √2(√2√2) = √22 = 2

Constructive Logic?
OK, but how does that help me 

compute a and b?
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A Constructive Proof

● Theorem: Every degree-one rational polynomial y = 
mx + b has a rational root if m is not 0.

● Proof: -b/m is the answer, because:

– m(-b/m) + b = -b + b = 0

rational root(rational m, rational b) {
return ­b / m;

}
● Precondition: m is not 0.

● Postcondition: The return value is a root of y = mx + b.



16

An Even Nicer Idea

● Theorem: Every Java program has an equivalent 
x86 machine language program.

● By choosing a suitable constructive logic, we 
guarantee that any proof of this theorem can 
be converted into a genuine Java compiler!

● By using a generic program extraction mechanism, 
we get the “free” theorem that our compiler 
preserves the semantics of programs.

– ...which saves us a huge amount of testing.
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Example: Alias Analysis

int x, y;
int *p;

p = &y;
x = 1;
*p = 2;

return x;

return 1;Compiler Optimizer

The path x only ever denotes elements of {&x}.
The path y only ever denotes elements of {&y}.
The path *p only ever denotes elements of {&y}.

Empty 
intersection!
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Andersen's Analysis
x = new x = y

x = *y *x = y

L:

L∈PT x PT y ⊆PT x 

● Ignore order of instructions in the program.

● Treat all allocations occurring in the same 
instruction as if they allocated the same object.

● For each program variable x, build a set PT(x) that 
overapproximates the locations x might point to.

● Generate and solve a set of constraints over the PT 
sets.

∀ v∈PT y ,PT v ⊆PT x  ∀ v∈PT x  ,PT y ⊆PT v 
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Andersen in Coq

● A Coq implementation of Andersen's 
Analysis for this toy language, with a 
proof of total correctness

● Not quite so convoluted as you may be 
expecting from the slides on constructive 
logic, thanks to connections between 
proofs and functional programs that I 
haven't presented yet
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But First...

How would you prove 
the correctness of 

Andersen's Analysis?
(if you had to convince someone who can only 
be convinced by a series of “obvious” steps)
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Conclusion

● The full code of this example is available 
on the course web site.

● HW0 is posted
– Install Coq and make sure you can run some 

simple examples through it.

● Next lecture: Revisiting freshman logic 
class
– Natural deduction and interactive Coq proofs 

of theorems in propositional and first-order 
logic


