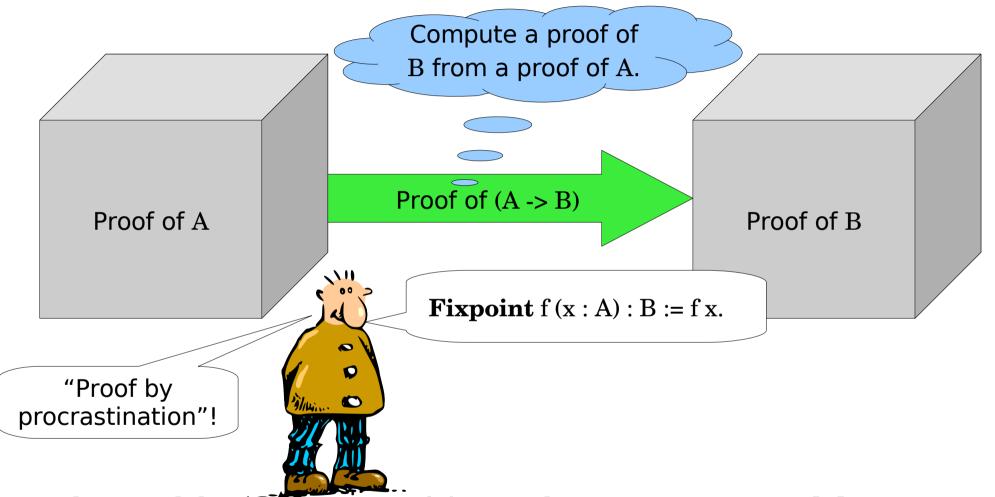
Interactive Computer Theorem Proving

Lecture 9: Beyond Primitive Recursion

CS294-9 October 19, 2006 Adam Chlipala UC Berkeley

Recap: Termination Matters



If proof functions could run forever, **everything** would be "true"! So guaranteeing termination is critical to soundness....

Primitive Recursion

Fixpoint fib (n : nat) : nat :=

match n with

$$| 0 = > 1$$

match n' with

$$| O = > 1$$

$$\mid S n'' = \inf n'' + \operatorname{fib} n'$$

end

end.

Every recursive call must have an argument that has a syntactic path from the original.

General Recursion

```
let rec nat to int = function
    0 -> 0
   S O -> 1
S (S n) ->
    let i = nat to int (n / 2) in
    if isEven n then
      2 * i
    else
      1 + 2 * i
let rec mergeSort = function
    [] -> []
   [x] \rightarrow [x]
    let (ls1, ls2) = split ls in
    merge (mergeSort ls1) (mergeSort ls2)
let rec looper = function
    true -> ()
    false -> looper false
```

Recursion Principle:

When defining f(n), you may use f(n') for all n' < n.

Alternative Principle:

When defining f(n) with n > 1, you may use f(n / 2).

Recursion Principle:

When defining f(L), you may use f(L') for all L' with length(L') < length(L).

This really **is** nonterminating, but we want to reason about the terminating cases!

Outline of Techniques

- Relations instead of functions
- Bounded recursion
- Recursion on ad-hoc predicates
- Well-founded recursion
- Constructive domain theory

Using Relations

```
Inductive plusR: nat -> nat -> nat -> Set:=
 \mid \text{plusR\_O} : \mathbf{forall} \ n,
   plusR O n n
 | plusR_Sn : forall n m sum,
   plusR n m sum
-> plusR (Sn) m (Ssum).
type plusR =
   PlusR_O of nat
PlusR Sn of nat * nat * nat * plusR
```

Bounded Recursion

Fixpoint nat_to_int (bound : nat) (n : nat) {**struct** bound} : int :=

```
match bound with
 | O => 0
  | S bound' =>
  match n with
    | O \rightarrow 0
    1 S O -> 1
    \mid S(Sn') \rightarrow
     let i := \text{nat\_to\_int } bound' (n / 2) \textbf{in}
     if isEven n then
      2*i
     else
      1 + 2 * i
  end
```

end.

Pros

• We can prove that $nat_{to_{int}}(S n) n$ satisfies the spec, for any n.

Cons

- ...but nat_to_int gives the wrong answer if we pass it too low a bound!
 - Alternatively, we could have it return an error code, but that isn't much better.
- Threading a nat around is a pain.
- The extraction of this function retains the extra argument, though we'd probably rather it didn't.

The Big Problem: Compositional Reasoning

```
Variable f : nat -> A -> option B.
```

Variable g : nat -> C -> option D.

Variable $h : B \rightarrow D \rightarrow E$.

```
Definition foo (n : nat) (x : A) (y : C) :=
  match f n x, g n y with
    | Some r1, Some r2 => Some (h r1 r2)
    | _, _ => None
```

Prepdsal: For any F: nat -> T1 -> option T2, say that "F(x) = y" if there exists n such that F(x) = y" if there is

If we know f(u) = v and g(w) = x, we want to conclude foo(u)(w) = h(v)(x). This requires **looking inside the definitions** of f and g!

Fixpoint nat_to_int (n : nat) : int :=

match n with

 $| O \rightarrow 0$

1 S O -> 1

 $\mid S(Sn') \rightarrow$

let $i := \text{nat_to_int} (n / 2)$ **in**

if is Even n then

2*i

else

This may not be primitive recursive, but the recursive structure is still very predictable and "obviously" well-founded!

Inductive P : nat -> **Set** :=

| P 0:P0

| P_1:P1

 $P_{\perp} \text{div} 2 : \text{forall } n, P(n/2) \rightarrow P n.$

Key Property: There exists a P n for any n!

```
Fixpoint nat_to_int (n : nat) (p : P n) \{struct p\} : int :=
 match n with
  | O \rightarrow 0
  1 S O -> 1
  \mid S(Sn') \rightarrow
   match p with
     | P_{\text{div2}} p' =>
      let i := \text{nat\_to\_int} (n / 2) p' in
      if is Even n then
        2*i
      else
        1 + 2 * i
     | _ => (* show a contradiction *)
```

This one turns out to be easy to solve! Just put P in Prop.

end

Inductive P : nat -> **Set** := | P 0:P0 | P 1:P1 | $P_{\text{div}2}$: **forall** n, $P(n/2) \to P n$.

Pros

nat_to_int always returns a correct answer!

<u>Cons</u>

- To call nat_to_int, we have to come up with a P n value through some ad-hoc mechanism.
 - The P n values survive extraction and add even more runtime complexity than the nats from bounded recursion. 10

```
Fixpoint nat_to_int (n : nat) (p : P n) \{struct p\} : int :=
 match n with
  | O -> 0
  1 S O -> 1
  \mid S(Sn') \rightarrow
   match p with
     | P_div2 _ p' =>
      let i := \text{nat\_to\_int} (n / 2) p' in
      if is Even n then
       2*i
      else
       1 + 2 * i
     | _ => (* show a contradiction *)
   end
end.
```

You can't eliminate a **Prop** to form a **Set**!


```
Fixpoint nat_to_int (n : nat) (p : P n) {struct p} : int := match n with Inductive P : nat \rightarrow Prop := |P_0 : P 0|

|S 0 \rightarrow 1| |P_1 : P 1|

|S (S n') \rightarrow |P_1 : P 1|

|S (S n') \rightarrow |P_2 : P n|

Finally nat_to_int extracts to exactly the
```

if is Even n then

2*i

else

1 + 2 * i

end) in

end.

 Finally nat_to_int extracts to exactly the OCaml program we want, since any P n values are erased.

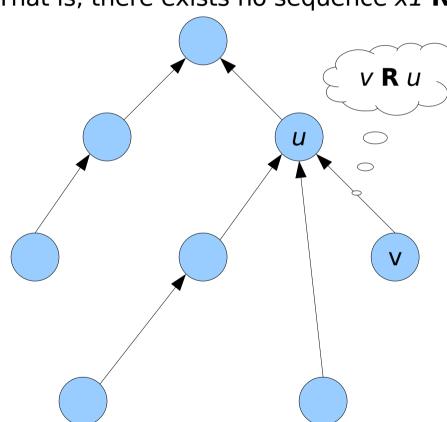
Cons

 Manipulating these witnesses is still a bookkeeping hassle.

Well-Founded Recursion

A well-founded relation on set X is a binary relation R on such that there are no infinite descending chains.

That is, there exists no sequence x1 R x2 R x3 R x4 R ...



Say *x* is **accessible** if it has no outgoing edges or all of its successors are accessible.

Alternate definition:

R is well-founded iff every element of **X** is accessible.

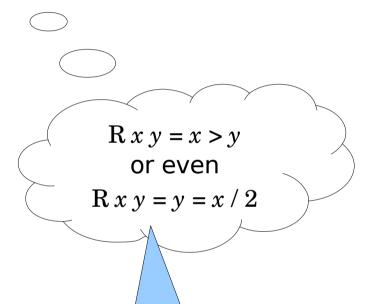
Accessibility graph: Connect x to y if x R y.

Back to Our Exa

Not quite legal Coq syntax in 8.0, but something similar added in 8.1 beta.

Fixpoint nat_to_int (n : nat) {**well_founded** \mathbb{R} } : int :=

match n with | O -> 0 | S O -> 1 | S(S n') -> pf let $i := \text{nat_to_int}$ (n/2) in if isEven n then 2 * ielse 1 + 2 * iend. R n (n/2)



Prove your relation is well-founded by showing that every nat is accessible for it.

One catch....

We have to show that our function is **extensional**.

For any self1 and self2 that **return** equal values on equal inputs, f

behaves the

same.

Universal extensionality can be expressed as an axiom, and the result is a *new* sound formal system....

Definition $f(self : nat \rightarrow int) (n : nat) : int :=$ matol with $0 \rightarrow 0$ |SO>1| $\mid S(S n') \rightarrow$ **let** $i := \operatorname{self} \operatorname{pf} (n / 2)$ **in** if is Even n then 2*ielse +2*i

Waaait a minute. Coq doesn't allow you to "look inside of functions," so every function must be extensional!

That may be true, but the logic isn't strong enough to prove it!

Real General Recursion

```
let rec looper = function
    true -> ()
    false -> looper false
```

A Turing-complete programming language **must** allow general recursion, which implies **allowing non-termination**.

How can we "add Turing completeness" to Coq in a way that:

- Preserves logical soundness?
- Allows us to reason about programs?
- Allows extraction of executable programs?

My answer: A principled version of bounded recursion ...inspired by domain theory

Solving The Big Problem

Variable f : nat -> A -> option B.

Variable g : nat -> C -> option D.

Variable $h : B \rightarrow D \rightarrow E$.

Whenever f n x = Some y, for any n' > n, f n' x = Some y.

Definition foo (n : nat) (x : A) (y : C) := **match** f n x, g n y **with**

| Some r1, Some r2 => Some (h r1 r2)

| _, _ => None

What very general condition can we impose on f and g to avoid this problem?

Prepdsal: For any F: nat -> T1 -> option T2, say that "F(x) = y" if there exists n such that F $n \times x = S$ ome y.

If we know f(u) = v and g(w) = x, we want to conclude foo(u)(w) = h(v)(x). This requires **looking inside the definitions** of f and g!

Solving the Little Problem

Threading bounds throughout a program is a pain. We want to build up a library of combinators that let us program naturally.

Return e

$$x < -e1; e2$$

For f: (A -> B) -> (A -> B):

Fix f

Theorem:

Theorem:

Theorem:

Return $e \Rightarrow e$

If e1 => v1,

If $f(Fix f) x \Rightarrow v$,

And e2[x := v1] => v2,

Then Fix $f x \Rightarrow v$

Implementation:

The lementation: v^2

Implementation:

 λn . Some e

 λn . match e1 n with

| None => None

I Some $v \Rightarrow (e2 v) n$

 $\lambda n. \ \lambda x. \ \mathbf{f}^n \ n \ x$ where $\mathbf{f}^0 = \lambda x. \ \lambda n.$ None and $\mathbf{f}^{n+1} = \mathbf{f} \ (\mathbf{f}^n)$

end.