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Abstract

| present the results of constructing a fully untrusted verifier for memory safety
of Typed Assembly Language programs, using the Open Verifier architecture. The
verifier is untrusted in the sense that its soundness depends only on axioms about
the semantics of a concrete machine architecture, not on any axioms specific to
a type system. This experiment served to evaluate both the expressiveness of the
Open Verifier architecture and the quality of its support for simplifying the con-
struction of verifiers. | discuss issues of proof generation that are generally not
the focus of previous efforts for foundational checking of TAL, and I contrast with
these past approaches the sort of logical formalization that is natural in the context
of the Open Verifier. My approach is novel in that it uses direct reasoning about
concrete machine states where past approaches have formalized typed abstract ma-
chines and proved their correspondence with concrete machines. | also describe a
new approach to modeling higher-order functions that uses only first-order logic.

1 Introduction

It is increasingly common for today’s computing systems to run software produced
by potentially untrustworthy sources. Such mobile code may run in many different
settings, from fast personal computers to heavily resource-constrained mobile phones.
Naturally, it is important that users be able to place some degree of trust in mobile code
if they are to be expected to run it.

The Java Virtual Machine Language (JVML) [LY99] and the Microsoft Common
Intermediate Language (CIL) [GS01, Gou02], two popular mobile code platforms, use
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access control mechanisms [WF98] that depend on type correctness of code. It is
straightforward to guarantee this by running these high-level bytecode programs within
a “sandbox” that forces them to interact with the host environment through authorized
means only. However, especially on small mobile and embedded hardware platforms
with very limited battery life, the cost of interpretation can be prohibitive. Even on
high-end PC’s, there is much efficiency to be gained by avoiding interpretation.

Just-in-time (JIT) compilation is a popular answer to these concerns. A program
in a safe high-level bytecode language like JVML or CIL is compiled to native code
before being executed. The JIT compiler is trusted to preserve the desired security
properties of programs it translates. While the full range of native code programs might
be able to circumvent the access control mechanisms of the mobile code platform, end
users trust that the JIT compiler will never generate such code. JIT compiler imple-
mentation involves enough subtleties that this can be a risky proposition. It is also true
that end users tend to be impatient. They will likely not be willing to wait the time it
would take a JIT compiler to produce optimized native code on par with that produced
by a good compiler for the native platform. This difference in efficiency can mean a
crucial savings of battery power for resource-constrained platforms.

It is also the case that these high-level bytecode languages inevitably sacrifice ex-
pressiveness for tractability of checking. To avoid dealing with complicated low-level
details, they will do things such as have separate instructions for different varieties
of function calls. Despite CIL’s eight call instructions, there are still requests for the
addition of new instructions to support efficient compilation of different language fea-
tures [SymO1]. Yet all of these types of calls have traditionally been implemented with
just a few basic machine instructions as building blocks.

Proof-carrying code (PCC) [Nec97] was developed to address these deficiencies.
PCC provides a means for evaluating directly the trustworthiness of native code: each
such program comes with a proof of the properties that the end user requires hold.
The original PCC approach relied on trusted proof rules specific to a type system
for a safe source language. A subsequent approach known as Foundational PCC
(FPCC) [App01] opts instead to trust only concrete machine semantics and the safety
policy. Nonetheless, FPCC work to date has tended to focus on attempting to con-
struct a single, though untrusted, type system usable to certify the safety of all source
languages.

The Open Verifier project takes another approach to foundational-style verification
of native code. Instead of attempting to produce compilers for all source languages into
machine code describable by a single low-level type system, we allow the use of differ-
ent verification strategies for different compilers. Instead of fixing the mechanism for
code safety, such as a particular type system, we fix only the policy, such as memory
safety. The Open Verifier architecture is designed to allow easy adaptation of existing
verifiers written in the style of the Java Bytecode Verifier, while still maintaining the
full power of PCC. An extension for a particular safety mechanism answers queries
from the trusted core of the Open Verifier to guide the verification process. The exten-
sion must provide proofs of the soundness of its actions where necessary. The result is
that a code consumer need only trust the core of the Open Verifier, not any particular
extension.

Previous work on the Open Verifier [Sch04] had been successful in implementing



extensions for a Java-like language, verified using abstract interpretation on types; and
annotated C code, verified in traditional PCC style. To test the expressiveness of our
architecture as compared to previous foundational systems, | constructed an extension
for a Typed Assembly Language (TAL) [MWCG99], the preferred subject of these
systems. | have found the architecture to be quite sufficient and natural for this task.
In the process of implementing the extension, | also discovered a way of encoding
function calls that allows the removal of the most complex element of the architecture.

In the following section, | provide more detailed background on TAL, proof-carrying
code, and the Open Verifier. Next, | introduce the logical formalization and describe
the verifier extension that uses it. | generalize one aspect of the extension, its handling
of control flow, to extract the fundamental pieces of the approach. Finally, I describe
the implementation and conclude.

2 Background

2.1 Typed Assembly Language

Morrisett et al. [MWCG99] proposed the use of typed assembly languages in certifying
compilation. A typed assembly language (or TAL) is an extension of the native assem-
bly language of a particular architecture. A typical TAL introduces a few macroin-
structions not found in the native assembly language and adds type annotations and
coercions to standard instructions. By choosing its type system and instructions care-
fully, it is possible to design a TAL that may be type-checked for safety using small
variations on well-known techniques applicable to higher level languages.

My work has focused on the TALx86 variant [MCG*99]. The implementation
handles a subset of the TAL supported by the first release of the TALC tools [MCG'03]
from Cornell. To simplify verification, | have ignored all of TALx86’s features for
modular verification, including kinds and abstract types. Prior foundational work on
TALs has not focused on such features, either. A straightforward linking process can
combine TAL sources that use these features into a single file that does not.

2.1.1 Basicblocks

The majority of a TALX86 program is a set of labeled basic blocks. Each block comes
with a precondition stating assumed types for a subset of the registers. These precondi-
tions are expressed as code types which may use universal quantification, as discussed
in more detail below.

For example, consider:

labl : Va.code{eax : word, ebx : a}
MOV ebx := eax
JUMP lab2

This block of code, named 1ab1, requires that register eax hold a value of type word
and ebx hold a value of some parameter type o whenever it is reached. The universally



quantified variable « is bound in the block’s body.

2.1.2 Types
Basic types
T = word

The most basic TALX86 type is word, the type of arbitrary machine words. These
are 32-bit integers that fit inside registers but are not subject to any other constraints.
In particular, 32-bit values that address memory will be given different types.

Stack types
T == ...|[] |7 72| stackptr(T)

In addition to types that describe values that fit into registers, stack-based TALs [MCGW98]
like TALxX86 also include types to describe entire stacks. The [] constructor describes
an empty stack, and 71 :: 75 describes a stack that is like 7 but has a value of type 7,
pushed onto its top. The type stackptr(7) describes a word-sized pointer to a stack of
type 7.

The full TALx86 uses a system of kinds to invalidate nonsensical types like word ::
word and stackptr(word), but it turns out that such types are safe to allow for whole-
program verification. It will simply be impossible to prove that any value has such a

type.

Code pointer types
T u= ...|code{ry:Ti,...,rn i T}

The type code{r; : 71, ..., 7, : 7} denotes a pointer to a segment of program code
that expects each register r; to contain a value of type r;. Such types will be sufficient
to describe functions with a wide variety of calling conventions. For instance, suppose
that we wish to type a function that takes a word argument in eax, performs some
computation that leaves its result in ecx, and returns to the calling address saved in ebx.
Using continuation-passing style, we can give that function the type:

code{eax : word, ebx : code{ecx : word}}

Universal types

a, B Type variables
T u= ...|Var
V.7 is analogous to the types assigned to parametrically polymorphic functions in

high level languages like ML. By definition, any value of this type also has type [ /a]T
for any type 7/, where the preceding notation denotes the result of substituting 7’ for



every free occurrence of « in 7. The full TALx86 annotates each universal type with a
kind requirement on its bound variable, but this again turns out to be unnecessary for
whole-program verification. Since TALx86 only permits universal quantifiers around
code types, it is safe to allow any instantiations, since the worst that can happen is that
a value is proved to have a code type with a nonsensical condition on register types that
cannot possibly be met.

Besides being useful in compilation of source languages with parametric polymor-
phism, universal types are also critical in encoding calling conventions. TALx86 uses
them to encode both the stack discipline and the preservation of callee-save registers
for the standard x86 C calling conventions. For example, this type describes a proce-
dure of no arguments and no return value that treats ecx as a callee-save register and
returns with the stack in the same state as when the procedure was called:

Va.VB.code{ecx : o, esp : stackptr(code{ecx : «, esp : stackptr(3)} :: §)}

« stands for an arbitrary type for the value of ecx on entry to the procedure. Like
in ML, the only valid operation on a value with a parametrically bound type is to
copy it from one place to another. This allows the procedure to use whatever method it
deems best for preserving the value of ecx across the call, including storing it in another
register, in the stack, or in the heap. However, the procedure can never “counterfeit”
the value; it is impossible to construct any new value and prove it has type a.

Similarly, 3 stands for the type of the “irrelevant” part of the stack that the proce-
dure will not need to read, but whose value it must nonetheless preserve. The procedure
expects esp to point on entry to a stack that begins with the return pointer, followed by
this unknown suffix 3. The return pointer uses the bound type variables to require that
ecx and the stack have the same values as when the procedure was called.

Product types
¢ == init | uninit
f ou= T
T o= | fiXxeo X fa

Product types denote mutable tuples with components of potentially heterogeneous
types. We assume that newly allocated product values contain useless junk values.
Initialization flags 4 indicate whether a field of a product has yet been assigned a useful
value. A field f describes a product field with its type and initialization flag.

For example, the following TAL code allocates and initializes a product. Note the
use of the macro-instruction MALLOC that is not found in the real x86 instruction set.
One of its parameters is a list of types for the fields of the new product.

MALLOC eax : word x word ; Allocate a new pair of words, storing its address in eax
MOV [eax] :=1 ; Initialize the first field
MOV [eax + 4] := 2 ; Initialize the second field



Recursivetypes

14 Type labels
T ou= |4

TALX86 programs may define sets of global, mutually recursive named types. La-
bels ¢ are used to refer to these types in instructions. The unroll and roll coercions
replace a label with its definition and vice versa, respectively.

Other types The implementation supports a few more of TALx86’s features, includ-
ing sum, array, and existential types and parametric recursive types. | will not describe
them in detail, as the types given so far are sufficient to present the results of this work.

2.2 Proof-carrying code

Necula and Lee’s original proof-carrying code formulation [Nec97] was based on the
idea of a trusted verification condition generator (VCGen). The VCGen takes a native
program as input and constructs a formula that implies the safety of that program with
respect to some safety policy. The code consumer calls an untrusted proof-generating
theorem prover to prove this verification condition. If a trusted proof checker says that
the proof is a valid proof of the verification condition, then the code consumer believes
that the program is safe.

Naturally, it is impractical to expect any algorithm to generate safety proofs for
arbitrary safe machine code. Instead, PCC is used with a subset of possible programs,
those generated by custom certifying compilers [NL98]. Certifying compilers preserve
enough information throughout the compilation process to be able to package addi-
tional annotations with their final machine code. These annotations provide hints that
can be used by the code consumer to make safety checking more efficient.

For example, the original PCC implementation involved a certifying compiler that
determined logical invariants for all loops and included them with its output. Providing
these invariants is analogous to giving away the induction hypotheses in a proof by in-
duction; the remaining deduction is often routine. Indeed, armed with these invariants,
the theorem prover is able to fill in the remaining details with good efficiency.

Traditional PCC requires the code consumer to trust in the soundness of a logical
development of significant size. For instance, the standard certifying compiler derives
its annotations from typing derivations for the safe source language it compiles. The
first PCC systems asserted without proof the truth of a large number of non-trivial
lemmas about these type systems. The type system and compilation strategy in general
were hard-coded into many parts of the trusted system. For example, the verification
condition generator of the Touchstone compiler [CLNT00] incorporated knowledge
of how a particular Java compiler implemented exceptions. One might expect that it
is unlikely that such a large theory could be formalized soundly without mechanical
checking. Indeed, League [LSTO03] discovered such a soundness bug in this early PCC
implementation.

More recent PCC research has focused on reducing the size of the trusted comput-
ing base (TCB) to reduce the chance that such flaws will go undetected. Along these



lines, Appel and Felty [AF00] proposed foundational proof carrying code (FPCC). In
an FPCC system, the trusted computing base consists only of a model of machine se-
mantics and the safety policy, along with a trusted proof checker. The unwieldy VCGen
and all facts specific to a safe compilation strategy have been removed.

FPCC work has focused on certifying compilers that emit a variety of TALs. Appel
et al. chose to use a “semantic” approach in modeling TAL type systems. Although
in all cases they only wanted to check code using specific, fixed type systems, they
opted to use a more general notion encompassing all possible type systems. They
defined a type as a predicate on machine states and values that satisfies a set of well-
formedness conditions. While this approach is very expressive, it introduces many
complications and can lead to very large proofs. To handle both recursive types and
mutable references, Appel and McAllester [AMO1] were forced to propagate the notion
of an index through most of their judgments. Intuitively, a judgment indexed by natural
number 4 states that a certain property is true for at least i more steps of execution.
Strangely, this idea is not familiar from standard descriptions of type-checking, and it
had no analogue in traditional PCC.

Hamid et al. [HST™02] proposed an alternate approach called syntactic FPCC.
They reason about code safety relative to a fixed set of possible types, defined syntac-
tically as in a compiler. Both varieties of FPCC are based around a notion of progress
and preservation theorems, lifted from standard techniques for formalizing high-level
languages. They define notions of abstract machine states, similar to those maintained
in traditional TAL type-checkers; and define global invariant predicates that give well-
formedness conditions on those states. The safety policy is modeled by defining an
abstract operational semantics that disallows unsafe instruction executions.

A progress theorem shows that a safe transition is possible from any valid state.
A preservation theorem shows that any transition from a valid state leads to another
valid state. To construct a foundational safety proof, a typing derivation is constructed
for the program in question. The typing rules cannot be arbitrary; they are proved,
assuming only the facts about the native machine and the safety policy that are included
in the trusted computing base. With a typing derivation, the progress and preservation
theorems show the safety of the program with the abstract semantics. A final key
theorem connects the abstract and concrete semantics to derive foundational safety.

Because they use a more restricted model, Hamid et al. are able to avoid much
of the complexity of Appel’s approach. Like in standard deductive systems for high-
level type systems, their judgments depend on a context that assigns types to memory
locations. This “breaks the cycles” that motivate Appel’s use of indexed judgments.
Since a particular memory location may be declared to contain a value of a particular
recursive type, there is no need for complicated judgments based only on the “shape”
of a portion of memory. This style can be called intensional, in contrast to Appel’s
extensional style.

Though these approaches succeed in removing facts about particular type systems
from the TCB, in practice, their presentations have been based around typed assembly
or machine languages that are meant to be good targets for multiple source languages.
These low-level languages are often much more expressive than the JVM and CIL
bytecode languages, but none is an ideal compilation target for all source languages.



TALs often make it awkward to encode language features not previously considered,
as evidenced by an attempt to compile Java to the standard TAL of a syntactic FPCC
system [LST02]. Very general systems like the typed machine language of Appel et
al. [CWAFO03] require the use of the complicated logical machinery of semantic FPCC,
even when it might be easier to construct a customized first-order logic formalization
from scratch.

In general, FPCC research has not focused on the feasibility of constructing com-
plete verification systems for different source languages and compilation strategies.
As previously mentioned, targeting one low-level format from many source languages
can be tedious and awkward. If it becomes awkward enough to be infeasible from a
development or performance standpoint, the compiler writer faces the daunting task
of redoing a great deal of work. He must rebuild an alternate version of the formal
development associated with the unsuitable target language.

We can simplify this process a great deal by extracting parts of a formalization
that we expect to be useful in many other cases. The Open Verifier project starts with
this idea and works towards the goal of providing an infrastructure that simplifies the
construction of new foundational verifiers as much as possible.

2.3 The Open Verifier

The Open Verifier [CCNSO05] is an architecture providing a means for untrusted code
producers to guide the verification of their code. A code consumer fixes a safety pol-
icy of interest without specifying how the property should be enforced or proved for
individual programs. Providing the enforcement mechanism is the responsibility of the
code producer, who includes with his code an executable extension that provides hints
on how to verify the code.

The basic idea behind the architecture is that past verification schemes for safety
properties can be viewed as using one general strategy. On a given verification run,
each scheme produces a set £ of completely local invariants, which are predicates on
execution states at particular program points. To prove that a safety policy is respected,
one of these schemes proceeds to show three things:

e Every allowable initial state for the program satisfies some member of £.

e Every execution step possible from any state satisfying a member of £ avoids
violating the safety policy.

e Every such execution step leads to a state also satisfying some member of £.

During verification, the trusted core of the Open Verifier queries the extension about
how to proceed in constructing £. The extension may begin by specifying an arbitrary
initial set of invariants £y. This set could be one that already has the properties listed
above, but it is more common to provide a smaller set and construct the final £ in an on-
line manner. For instance, the TALx86 extension chooses the set of all function entry
points. The extension uses a special language of scripts to show that some concrete
initial invariant implies that some member of & is true. Scripts allow the use of a set



of sound actions that transform an invariant into another that is logically weaker or
equivalent. Some of the actions require formal proofs of properties that guarantee their
soundness.

Once &, is specified, the trusted core of the Open Verifier can perform a standard
abstract interpretation. If the interpretation reaches a fixed point £ with the proper-
ties above, then we know that the program in question is safe. The Open Verifier
determines a transition relation on invariants using a trusted instruction decoder and
strongest postcondition generator. This transition relation is dictated by the precise ex-
ecution semantics of the underlying machine, which means that it will maintain much
more information than any practical verification strategy requires. For most programs,
infinitely many states are reachable from & via the concrete transition relation.

The Open Verifier copes with this by computing transitions in a two-step process.
To compute the logical successor states of a particular state, the concrete transition
is first applied, using the strongest postcondition operation. Next, the extension is
queried about which information it would like to forget in each of these successors.
This “forgetting” can be viewed as a logical weakening of invariants.

An extension answers queries in a special language of scripts. Scripts allow such
sound weakening actions as abstracting a value using existential quantification, forget-
ting a particular logical fact, and replacing the value of a register with a provably equal
value. There are also facilities for case analysis, registering reached states by name,
and asserting that a transition needn’t be followed because it leads to a particular reg-
istered state. | will present the specifics of scripts by example as they come up in later
sections.

One of our goals in the Open Verifier project is to simplify the effort required to
create new foundational verifiers. To this end, we have tried to keep simple the logical
formalisms that are exposed to the end user. Ideally, a good fraction of industrial soft-
ware engineers should be able to use a polished version of our framework to construct
verifiers for the outputs of their companies’ compilers. One way that we aid this is
through building into our system the skeleton of a verifier, as described above. To our
knowledge, all previous foundational verification strategies fit within this framework.
However, we also introduce two additional simplifications: a restricted language of
invariants and a restricted language of weakening proofs.

We restrict every invariant to be a predicate of the form:

dxy T, e Ty Tn./\ri =¢e; A Api(@il, veey Qi)
i i

The body of the predicate has two main parts. First, an expression e; is specified as
the value of every register r;. Second, a set of ground predicates is given, where each
is a constant predicate symbol applied to a sequence of argument expressions. These
predicates occur inside a sequence of existential quantifiers binding typed existential
variables. The ground predicates may not refer to the machine registers directly. In-
stead, an existential variable may both be given as the value of a register and appear in
a ground predicate.

For example, a TAL register file typing has a straightforward encoding as an Open
Verifier invariant. An existential variable is used to stand for the value of each register,



and we use one ground predicate stating “the current value of register r has type 7 for
each register r and the type 7 assigned to it by the register file. I will return to the issue
of encoding TAL states in more detail in Section 3.

We could have chosen to allow extensions to give unrestricted natural deduction
proofs in weakening the invariants produced by the strongest postcondition generator.
Instead, we introduce a special scripting language. In keeping with our goal of acces-
sibility for this framework, we designed the script language to look a lot like code you
might expect to find in a conventional program verifier, like the Java Bytecode Vferi-
fier or the TALX86 type checker. In this way, an engineer who understands how these
systems work can transfer much of that knowledge directly to the Open Verifier.

The script language has two main differences from this ideal state. First, instead
of using custom data structures to keep track of state, Open Verifier extensions must
encode all safety-critical state as predicates inside of invariants. It is still safe to use
custom structures for any state or metadata that serve only as “hints” to guide proof
search and improve verification performance. It is fairly straightforward to transform
traditional verifier code to meet this form. Once this is done, what remains is to pro-
vide adequacy proofs along with some state transformation operations that were as-
sumed sound in the standard verifier. For instance, adding a new ground predicate to
an invariant ought to require giving a proof that it really holds.

Naturally, it is not obvious that it is tractable to use the Open Verifier to develop
verifiers with sufficient flexibility and efficiency. Part of the motivation for my work
on the TAL extension is to discover how suitable our abstractions are for constructing a
realistic extension. It seems that a working TAL extension would show that our system
is at least as practical for real use as existing FPCC systems, since to date all have
focused primarily on verifying TAL code.

3 The TAL Extension

I built the TAL extension around the first release of the TALC tools [MCG" 03] from
Cornell University. TALC includes a type-checker for TALx86 code, as well as com-
pilers to TALx86 from Popcorn (a safe C dialect) and mini-Scheme.

I wrote a straightforward translator that compiles TALx86 code into native x86
assembly code, removing type annotations and expanding macro-instructions. It is ac-
tually these translated files that the Open Verifier checks, with the original TAL source
as meta-data.

In this section, | will build up a picture of how the standard TALx86 type checker
works. In parallel, I will show the evolution of my first-order logic formalization.

3.1 TALXS86 states

The original formal presentation of TALs [MWCG99] divides the state used in type-
checking into three components:

e A heap type ¥ that maps locations in the assembly code to types. For instance,
¥ provides a type for every function label of the program.
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e A type environment A, a set of type variables.
o A register file I' that maps x86 registers to TALx86 types.

Of these components, W is constant throughout verification, while A and T" will
vary. ¥ does not change to reflect dynamic memory allocation. Dynamically allocated
objects are reachable only through registers, so the register file provides enough typing
information to check any accesses to them.

The original presentation defines TAL type checking using a traditional typing re-
lation, in the style common in formalizations of languages like ML. Here | will use a
single-step, operational style static semantics, to make the connection to future devel-
opments clearer. Among other benefits, this choice makes the flow-sensitive aspects of
TAL type checking more apparent.

For example, say that we want to type check one instruction of a TAL program. Let
pc be the address of a TALX86 instruction MOV eax := 0. We can describe how this
instruction should be type checked with:

program(pc) = MOV r :=n

(AT, pc) = (A, T[r — word], pe + 1)

This means that, in this abstract semantics of program execution, the effect of the
instruction MOV eax := 0 is to advance the program counter to the next location and
assign a value of type word to eax.

For example, fix some W containing the fixed type information for the program
under analysis. Assume that the instruction occurs in a context with no bound type
variables, so A = (; that pc points to an instruction MOV eax := 0; and that nothing
interesting is known about any of the other register values, so I" maps every register to

word. We get (), T, pc) 2 (0,7, pc+1).

Previous efforts to foundationalize TALs have taken a relation like this as a starting
point. They prove safety theorems about the semantics defined by the relation, and
then they prove that this relation abstracts concrete machine semantics in a suitably
conservative way. One of my goals was to explore an alternate approach.

The Open Verifier has a built-in notion of states. The trusted core handles many
kinds of reasoning about register values, state-specific logical assertions, and finding
fixed points of abstract interpretations. Previous TAL formalizations handle these tasks
using customized methods. In the work | present here, | have tried to take advantage
of what the Open Verifier provides, in part to evaluate what engineering benefits its
architecture may bring.

Recall that an Open Verifier invariant, or logical state, is a first-order logical pred-
icate of the form

dx1 i T, e, Ty T /\r; =e; N /\pi(ail, ...,aiki)
7 [

We see here that part of the reasoning about register files is already present. | will
exploit this in my logical encoding. For now, consider only the I" part of states. If
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r1,..., fn IS @an enumeration of the x86 registers and I'(r;) = 7; for each i, then the
following captures the meaning of I as an Open Verifier invariant:

dxq :val,...,x, :val. /\ n=ux; \ /\:cZ I T
i i

Since invariants of this form are very common, | will often use a shorthand notation
where a register name stands for a unique existential variable that stands for the value
of that register:

/\I’i T
i

Actual invariants label logical assertions with names, to make it easier to reference
them later. Taking this into account, | will define the form of TAL invariants to consist
of an assumption h,, for each register r;, declaring r; : 7; for some .

Now | consider how to translate the above transition rule into a form that the Open
Verifier understands. It must be expressed as a script describing how to transform an
invariant.

abstract 0 as eaz; in

set eax = eax; by Id in

assert heax : (eazy : word) by WordlIntro in
collect as t

Step-by-step, the effect of the script is to:

1. Declare a new existential variable eaz; to stand for the new value of eax. This is
not necessary for soundness; it would be possible to record that eax is exactly 0.
However, | have chosen to maintain that every register’s value is named uniquely
by an existential variable, since the TALX86 type-checker itself ignores register
values. It is logical weakenings like this that restrict the verification state space
to a tractable size.

2. eax is set to its new value. For this to be sound, we must prove that the new
value is equal to the old. The reflexivity proof rule Id suffices to show this, since
the proof is checked with the instantiations of any new existentials substituted
in. The instantiations are only used in checking this script; they will be forgotten
for later stages.

3. The assumption about eax’s type must be changed. A proof rule WordIntro,
which declares that any value has word type, is used.

4. The collect instruction registers a name ¢ for the new invariant and instructs the
Open Verifier to continue checking its successors. If verification ever reaches this
precise state again, the name ¢ may be used to declare that the state’s successors
have already been explored.

12



This script always translates an invariant of the form described above into another
of the same form. All of the scripts used by the TAL extension behave similarly, so
that they define an implicit abstract transition relation. However, in contrast to previous
work, the verifier described here relies on the reusable core of the Open Verifier to
handle the overall structure.

3.2 Bringing memory into the picture

We start to see problems with the simplistic encoding from the last section when deal-
ing with memory operations. For example, say that eax has type word™" x word™, a
pointer to a pair of words in the heap. Say that we reach the instruction

MOV ebx := [eax]
The abstract transition relation rule might be:

program(pc) = MOV ry := [ra]  A;T k= rp 1 ANt x 7init

<A7F7pc> ﬂ <A7F[r1 — Tl],pC + 1>

One first cut at an Open Verifier script could be:

abstract sel(mem, eax) as ebz; in

set ebx = ebxy by Id in

assert hepy : (ebzy : word) by PairElim1(heax) in
collect as ¢

This looks much like the script from the last section, with two differences. First,
instead of a constant, the new value of ebx is the result of reading the word at address
eax of the current memory. Second, the truth of the new typing assertion about ebx
is justified with a unary proof rule PairElim1, which depends on a proof that eax :
word™® x word™®. The old typing assumption about eax should be an appropriate
argument.

While this script looks workable, we run into problems when trying to formalize
the PairElim1 proof rule. We must prove something about the contents of a mem-
ory, despite the fact that we have no information on that memory. This highlights our
first fundamental difference from the standard TAL type checker. While a soundness
argument about that type checker must reason about memory contents, the actual im-
plementation leaves such information implicit.

This is quite sensible, since most interesting programs have infinitely many dif-
ferent reachable heap configurations. | do the same in the verification-time portion of
the TAL extension. | keep precise heap information in the logical model and rely on
existential quantification to hide the details at verification time. In this way, a state
with an existential variable standing for the heap can model an infinite number of more
concrete states. This is essentially a formalization of what the standard type checker
does.

I introduce a type context, whose values will describe the current memory state, as
well as other pieces of useful information that | will describe later. I revise the form of
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TAL invariants to be:

3% : context. Globallnv(X, mem) A A Sk ri: 7

The differences from the previous form are:

e Each invariantinvolves an existentially quantified context 3. Among other things,
3} can be thought of as a partial mapping from memory locations to types.

e A global invariant Globallnv connects 3 with the current memory. For instance,
whenever X maps a location a to a type 7, the value currently in cell « of memory
ought to have type 7.

e Y is added as a parameter of the main typing judgment, since the truth of some
judgments depends on the current state of memory.

Say that the global invariant assumption is always named h;,,,. This modification
of the earlier script now does the job:

abstract sel(mem, eax) as ebz; in

set ebx = ebx; by Id in

assert hepy : (X F ebxy : word) by PairElim1(hipy, heax) in
collect as t

Now that a proof of PairElim1l may assume that the memory agrees with 3, the
proofrule is indeed derivable, using suitable definitions of the predicates. | will provide
more detail on these definitions later.

3.3 Instructions that change the context

The last example shows one advantage of using the Open Verifier: the script needs
only to refer to aspects of the state that the current instruction changes. For instance,
the typing assertions for the registers besides eax and ebx are carried along unchanged.
Past foundational TAL verifiers have used custom congruence rules to express this idea
for their abstract machines.

However, using the Open Verifier doesn’t remove the need for “congruence rule”
style reasoning. For instance, in the TAL invariant format from the last section, every
typing assertion depends on the current context. If an instruction requires that the con-
text be modified, then we must reprove any typing assertions that we want to remember.

To take a concrete example, consider an instruction MALLOC eax : word x word.
This TALx86 macro-instruction allocates an integer pair in the heap, storing a pointer
to the new object in eax. A general rule could be:

program(pc) = MALLOC eax : 7

(AT, pe) 2 (AT rininit 5 s puninit] e 4 1)

The change to the heap allocation state is completely implicit. This works out fine
for the informal TALX86 type checker, but we need some account of MALLOC’s effect
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on the heap to foundationalize it. Since the TAL program probably makes use of eax’s
new type, we need to update the context to one in which we can make useful assertions
about eax. | define a function contextMalloc : context x type list — context that
transforms a context appropriately, by adding heap mappings for a new record with
components of the specified types.

The MALLOC instruction is compiled into a sequence of x86 instructions. For
all but the last one, the TAL extension can give an empty script, asking the Open
Verifier to use precise strongest postconditions to build successor states. Say that these
instructions involve incrementing a heap pointer by the appropriate amount to allocate
a new record and storing this new pointer in eax. Let HeapPointer be the statically
allocated address of a memory cell that serves as the heap pointer.

The following script transforms an invariant appropriately after a MALLOC op-
eration. memy is the existential variable that was the value of the memory before
beginning the allocation.

abstract sel(memg, HeapPointer) as eax; in

set eax = eax; by Id in

abstract contextMalloc(X, [word, word]) as ¥ in

assert h,, : (X F ry : 71) by HasTypeMalloc(hiny, by, ) in

assert h,, : (X F r, : 7,) by HasTypeMalloc(hipny, by, ) in

assert heay : (X eax : word"™™ x word""™*) by NewMalloc(hin, ) in
assert hip, : (Globallnv(X, mem)) by GloballnvMalloc(h;y,, ) in
collect as t

The script starts by abstracting the new value of eax, which is the starting value of
the heap pointer; and the new context, which is built from the old with contextMalloc.
Following that, every register typing assertion is re-proved for the new context, using
the following proof rule:

Globallnv(X,mem) X Fe:o

contextMalloc(X,7) Fe: o

HasTypeMalloc

Next, eax is asserted to be a pointer to a new record of the expected type, using:

Globallnv(X, mem) NewMall
ewMalloc

contextMalloc(X, 7) F sel(mem, HeapPointer) : 7MiMt x ... x guninit

Finally, the script asserts that the new context and the new memory are compatible.
The new memory is the old memory with the heap pointer incremented to reflect the
allocation.

Globallnv(X, mem)

Globallnv(contextMalloc(%, 7),
mem[HeapPointer «— sel(mem, HeapPointer) + 4 x length(T))

GloballnvMalloc
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3.4 Control flow

The last major type of code to be handled is that dealing with control flow. TAL pro-
grams are sets of basic blocks that end with jump instructions. | have already shown
how the non-jump instructions are handled with a transition relation. The jump instruc-
tions are handled differently, using a kind of assume-guarantee reasoning familiar from
program verification. When a jump is encountered, execution is assumed to proceed
safely as long as the jump target has a code type with a precondition that the current
state satisfies. An informal soundness argument for this technique is based on two
ideas:

e The TAL type checker is built always to check every basic block.

e For whole program verification, the type system is defined so that basic block
entry points are the only values of code pointer type.

With these in mind, we can construct a simple inductive argument on the number of
steps of execution of a TAL program that shows that it never executes an unsafe in-
struction.

The following rule captures this idea operationally:

program(pc) = JUMP e A;TFe:code{l'} AFT T’
(AT, pc) safe”

It says that a jump is safe if it is to a value with type code{T"'} and if the current
register file I" is a kind of subtype of the precondition I”. What this means is that, for
each register assigned a type 7 by I/, I must assign that register a subtype of 7.

The TAL extension uses almost the same strategy in the foundational setting. How-
ever, in comparison to previous formalizations, mine takes advantage of the Open Ver-
ifier architecture to avoid a good amount of boilerplate code. Past projects prove new
theorems about how their abstract machines admit assume-guarantee reasoning. Since
the Open Verifier has such reasoning built in, | am able to deal only with the interesting,
TAL-specific parts.

Point number 2 from the beginning of this subsection is imported easily. Ignoring
polymorphism for the moment, consider some code type code{T"'}. There is a known
subset /4, ..., £,, of basic block labels assigned this type. Thus, | define:

Y Fe:code{l'} = \/e:&-
i=1

It is straightforward to define this relationship as a function of an arbitrary code type,
as well as to take polymorphism into account.

It is not much harder to model point 1, which is the critical hypothesis for the
assume-guarantee reasoning. Recall from the introduction that an extension is allowed
to specify a set &, of verification root invariants. The trusted core of the Open Verifier
uses these as the basis for an exhaustive state space exploration, guided by the abstrac-
tions that the extension requests. Since the trusted core “promises” to check the safety
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of every root invariant, it is sound to cut off state space exploration whenever one of
these invariants is encountered as a successor state.

For example, say that a TAL program contains a function identity, whose entry
label is given the type 7 = code{eax : word, ebx : code{eax : word}}. This type
could describe a calling convention where the function expects an argument in eax and
a return pointer in ebx, and where the return value will be stored in eax. The extension
would declare this as a verification root with the following invariant, named identity:

3% : context. Globallnv(X, mem) A ¥ F eax : word A X I ebx : code{eax : word}

Now consider that an instruction JUMP e is reached where e has type 7. Using a
definition of having code type in the style sketched above, we will be able to derive a
result like ¥ - e : 7 & e = identity V \/, e = ¢; for zero or more other labels ¢; with
compatible types. Let disj be some proof of this fact. The following Open Verifier
script proves this instruction execution safe:

cases disj of

| Nidentity : (e = identity) =
set pc = identity by higentity in
match identity

| hey s (e=41) = ...

| he, s (e=4£p) = ...

The script considers the possible cases for e’s identity, one for each disjunct in the
proposition proved by disj. Each case binds a proof of the corresponding disjunct to
a local hypothesis name. In the case of identity, the set directive is used to rewrite
the program counter from e to the now provably equal identity. After this change, the
current invariant should match the root identity declared at the start of the verification.
The match instruction declares this fact, notifying the trusted core that it need not
explore the successor states in this case. The cases for the other compatible labels ¢;
would use analogous scripts.

Considering polymorphism, the outline of this technique remains the same, but
the details become quite a bit more involved. It is necessary to create a new context
with instantiations of the target label’s type variables, and then to prove that the typing
precondition holds in this new context. This requires changing the definition of having
code type. “e has code type 7" is changed from meaning “e is one of the labels assigned
type 77 to “e is a label assigned type Vo, ..., a,. o, where some substitution for the
type variables in o is equal to 7.” Now a critical component in handling jumps is an
inversion lemma that proves disjunctions of this kind for particular code types.

This technique works in a logical formalization, but it has some undesirable proper-
ties at verification time. The disjunction at every function call site can add a quadratic
factor to verification time, when we would hope to verify TAL programs in almost lin-
ear time. The standard TAL type checker has no such problem. It considers a jump safe
whenever the jump satisfies the premises of the rule given earlier. This is safe because
the checker maintains the invariant that every code pointer points to a basic block that
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will be verified eventually. To obtain similar performance from the TAL extension, |
encode this assumption explicitly.

The Open Verifier architecture is designed to remove any need for explicit reason-
ing about safety of states. Instead, the notion of invariants is taken as a starting point,
with built-in machinery for constructing safety proofs. One consequence of this is that
it may not be clear how to formalize a particular argument about safety. In the case
of this safe jump property, | was able to use a feature of the Open Verifier called an
indirect invariant. While standard invariants apply to particular program locations, in-
direct invariants remove this restriction, making them general predicates about program
states. The Open Verifier allows any named indirect invariant to be declared safe at any
time, as long as it is accompanied with a script that proves its safety by appealing to
existing invariants.

What is needed is an indirect invariant like:

3% : context, I : regFile, vy :val,... v, :val.rp =vi AL AT =y,
A Globallnv(X, mem) AX Fpc:code{T} AZ F{rH=v1,...;m=v,}:T

The last conjunct uses a new judgment, which says that a value assignment to the
registers is compatible with a given register file typing. The overall meaning of the
invariant can be phrased as a description of a set of states. This invariant describes all
states such that

e The current memory is compatible with some context 3.
e In X, the program counter has a code type with precondition T".

e The current register values satisfy that precondition in .

Now any well-typed jump can be proved safe in constant time through an appeal
to this indirect invariant. Most of the components should already be present in a valid
local invariant. It only remains to prove that the program counter has a code type and
that the current register values satisfy the corresponding precondition, which is easily
done if this is the case.

The last part of the approach left to explain is how to justify the safety of the
indirect invariant. This is actually straightforward, following the method described
earlier for proving jumps safe. The difference is that we must consider all possible
jump targets, not just those compatible with a given code type. The script is a case
analysis over the possibilities, like before. In each case, the sub-script must transform
the invariant into the entry invariant for a particular basic block, given the knowledge
that the program counter points to that entry point. All of the existential variables
match up with those that are expected, and the assumption about the global invariant
is already in the right form. All that remains are the register type assumptions, which
can be proved straightforwardly from the fact that the register values satisfy that basic
block’s precondition.

3.5 Some details of local invariants

The preceding subsections have demonstrated the basic ideas behind my approach. In
the remainder of this section, | will sketch some of the finer details.
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The format for local invariants in the implementation is actually more complicated
than | have presented so far. In particular:

e | use values of a type program to represent all program-specific information, like
types of code labels and definitions of named types. Every invariant contains an
assertion that the context X is associated with the proper program.

e Every invariant lists explicitly which type variables are bound in the current con-
text. This is important to know for situations where new type variables are in-
troduced. If an old variable were re-used, some typing relations could be invali-
dated.

e There is an unfortunately large effort associated with keeping track of the stack.
The TAL typing relation has the desirable property that it is monotonic, meaning
that old typing relationships on values are never invalidated in the course of a
program. This is a useful abstraction to have in the presence of such things as
heap allocation, where we expect a garbage collector to be careful to maintain
this property. The exception is the stack, where popping values can be thought
of as invalidating old typing relationships. TAL handles this by treating stackptr
types as giving no information on anything but the length of a stack that they
point to, to prevent them from becoming invalidated. The current type of the
stack is tracked separately, using a separate typing notion. This type is changed
whenever a push or pop occurs. Therefore, each TAL extension invariant also
carries an assumption about a stack type.

3.6 Contexts

The precise definition of contexts 33 in my formalization is as records containing:

e A program value, which contains a partial mapping from program labels to types
and from type names to definitions.

e A mapping from bound type variables to instantiations.

e A memory, a partial map from memory addresses to fields. Making this a map
to types wouldn’t work using the standard TAL type system, which relies on
the idea of a field to deal with issues of aliasing. Recall that a field provides
both a type and an initialization flag. When a memory location is assigned an
uninitialized field of type , it is acceptable to write a value of type 7 to it, but
not to write a value of any other type. When a record is first allocated, all of its
fields are uninitialized, but their eventual types are locked in. Because of the way
fields are handled, it is safe to pass this record handle around; there is no danger
that, say, two functions with pointers to the record will be able to write values of
incompatible types into the same slot.

e Beginning, end, and current allocation pointers for the heap.

e Beginning, end, and current allocation pointers for the stack.
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3.7

The global invariant

Globallnv(X, mem) asserts a number of facts. Here | will sketch what these facts are,
and I will try to give an informal idea of why each is needed.
First, the context’s program must satisfy two conditions:

1.

2.

The definition of every named type must not have any free type variables. Since
the named types exist on a per-program level, it would not make sense to allow
them to refer to type variables, which are bound only in local contexts.

The type of every code block must be similarly closed.

It is easy to come up with other program well-formedness conditions, such as
that no undefined named type should be referenced or that recursive type definitions
should meet well-definedness conditions similar to those imposed in languages like
ML. However, | have not found it necessary to impose these conditions in order to
be able to prove memory safety of TAL programs. For example, when a named type
is defined with ill-founded recursion, the typing rules will never allow a (necessarily
finite) derivation assigning that type to any value. Allowing a type whose values are
impossible to construct has no ill effect on memory safety.

The global invariant also places requirements on the parts of a context that vary
during verification:

1.

Every type variable instantiation is closed. There are sensible formalizations that
would allow type variables to refer to others in their definitions, but this makes it
harder to deal with jumps to other code blocks, where some old type variables’
definitions may mention out-of-scope variables and cease to make sense.

The boundaries of the heap and stack make sense: They are all word-aligned, the

heap and stack defined have positive size, and there is sufficient space between
the two regions for a “guard page” of at least a word. This is critical for proving

the soundness of allocation. It must be known that the heap and stack may be

grown upward and downward, respectively, by a program that takes care not to

skip past the guard page that divides them. Without this condition, one of the

heap or stack might overflow into the other.

Every address between the heap start and stack end is known to be valid for
reading or writing, since TAL programs will assume that all of these addresses
are fair game for allocation.

The stack pointer and heap allocation pointer denote valid addresses within the
boundaries of their respective regions. This provides a connection between these
run-time values and the information about memory region layout.

Every address in the area between the heap and stack regions is in the guard
page, so that accesses to it will safely abort execution.
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6. The heap allocation pointer is stored in the first cell of the heap, and no heap ad-
dress after the heap allocation pointer has yet been assigned a type. The first con-
dition provides a run-time method for determining the heap allocation pointer.
(Unfortunately, since TALx86 allows user programs to use all of the x86°s small
set of registers, it does not seem possible to use a register to store this informa-
tion.) The second condition prevents “double allocation” of the same memory
region to two conceptually different objects of incompatible type.

7. Finally, we need to know that the memory mem respects >’s type assignments
to memory regions. More formally, whenever the memory maps an address a
to 7", ¥ I sel(mem, a) : 7. This is the obvious property relating a context’s
allocation information with the real state of a memory.

The choice of this set of properties is crucial for the global invariant to be useful.
There is no need to expend too much effort in minimizing their complexity. Since the
extension will only reason about the global invariant using a set of well-chosen Horn
logic lemmas, the precise definition will be hidden at verification time and will not
contribute to time or space inefficiency.

4 Generalizing the control-flow approach

The TAL extension’s control flow strategy can be adapted to work in a variety of other
contexts. Here | present a re-formulation that is parameterized so as to be generally
useful.

The formulation imposes the following restrictions on extensions:

1. A notion of abstract states is defined. Each invariant is created by translating the
abstract state to a concrete state. For example, register typings I" are the TAL
extension’s reified abstract states.

2. The possible jump targets in any program to be verified are known in advance.
Each is pre-labelled with a precondition describing the allowable abstract states
on entry to it.

3. Checking whether an abstract state satisfies a precondition may be prohibitively
expensive. However, for every abstract state satisfying a given precondition,
there should be a witness that indicates this in an easily checkable way. For
the TAL extension, preconditions are the types of basic blocks, which may use
universal quantification. Witnesses are substitutions for type variables, which
explain how to instantiate those quantifiers.

To begin, | define the machine-specific notion of a concrete state.
concState : Type
To use this approach, we must first come up with a notion of abstract machine

states that describe the information of interest in verification. This may look like a
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step away from one of the goals of this work; | have tried to take as much advantage

as possible of the Open Verifier infrastructure, which has meant avoiding defining an
explicit notion of abstract states. However, this abstract state is only conceptual. The

extension developer uses it implicitly, remaining free to take advantage of what the

Open Verifier provides.

absState : Type

An extension based on this formalism must maintain an abstract state associated
with each invariant, and the extension must ensure that the abstract state corresponds
with the family of satisfying concrete states in an appropriate way. | formalize this
correspondence with the idea of a denotation function:

invariantOf : absState — (concState — Prop)

The invariantOf function makes explicit the strategy that the extension uses to con-
struct invariants. | represent invariants in the more general form of predicates on states,
though the Open Verifier implementation uses a more restricted form.

Now we need the set of allowable jump targets:

targets : P(Z)

For the TAL extension, targets is the set of basic block labels. Each target must
have an associated precondition. For example, preconditions for TAL can be computed
from basic block types and type variable substitutions in the way | have shown infor-
mally in previous sections. | model the general notion as a predicate on existential
witnesses and abstract states:

witness : Type
precondition = witness — absState — Prop
preconditionOf :  targets — precondition

I also need a notion of a “point of view switch” that determines what abstract state
corresponds to a jump target entered with a particular witness. For the TAL extension,
this operation is responsible for instantiating the target basic block’s type variables.
The witness (a type variable substitution) provides exactly the information needed to
do this.

enter : targets — witness — absState

Now | can state concisely the key property that these relations should have. An
extension implementor must prove this for his specific choices of definitions.

(invariantOf abs conc) e € targets (preconditionOf e wit abs)

(invariantOf (enter e wit) conc)

This lemma provides a way to deduce that a particular concrete state conc satisfies
the invariant of a jump target e. We assume that an abstract state abs corresponding to
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conc is known. It should be the case that if abs satisfies e’s precondition using some
witness wit, then conc satisfies the local invariant associated with e, as evidenced by
the witness wit.

The verification root invariant for every jump target must be chosen such that every
valid enter output involving that target satisfies it. In the case of the TAL extension, we
have the entry invariant for every basic block in a standard form, asserting the existence
of a context X for which assertions about the global invariant and register types hold.
Each block’s precondition is of the form described in Section 3.4, which implies all of
the needed facts.

5 Results

5.1 The logical formalization

I used the proof assistant Coq [Coq02] to formalize the logical development that I’ve
outlined here. My implementation is about 19,000 lines long. It includes both defini-
tions and proofs of lemmas about them. | was learning how to use Coq while devel-
oping this formalization, so | expect that | could produce a considerably more concise
version if | started again from scratch. Nonetheless, | did encounter a few fundamental
issues that are worth noting.

The biggest such issue was the unexpectedly large amount of work required to deal
with type variables. The majority of the formalization is related to these, including
definitions of notions of when a type has no free variables and proofs of lemmas about
substitution.

Past efforts that use the logical framework Twelf [CWAF03, Cra03] get around this
problem by encoding variable bindings using higher order syntax. Instead of defin-
ing types in a purely first-order form, where a type variable is just another syntactic
element, they use the meta-language’s function construct. A type can be viewed as a
function from its free variables to a closed type.

Coqg doesn’t admit this strategy, since its well-formedness condition on inductive
type definitions doesn’t allow the type being defined to appear in a function argument
position in its own definition. | don’t view this as a conclusive reason to choose Twelf
for future work, though. It seems likely that past projects that made that decision have
paid a price in the amount of time it takes to build a complete formalization. Coq’s
support for human-assisted proof automation was a huge help for me in this work, and
I think that the restrictions imposed on the language make this kind of automation more
tractable.

5.2 The extension

The TAL extension successfully verifies memory safety for all of the test cases included
with the TALC 1.0 distribution. The TAL code for the examples is produced by sample
compilers from source code in Popcorn (a safe C dialect) and mini-Scheme.

There are a few provisos to this statement. First, as mentioned earlier, the TAL ex-
tension currently only supports whole program verification. Examples that span multi-
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Compiler | Test Time (seconds) | Slowdown | Instructions
Popcorn | fact 0.240 - 252
fact2 0.230 23 254
fib 0.270 27 273
list 1.110 27.75 1079
queue 0.270 - 338
test3 1.300 325 1149
Scheme | fact 0.350 175 473
foo 4.580 30.533 5324
mergesort 1.650 23.571 2210
print-int 1.230 24.6 1680
printit 3.530 29.416 4195
test 0.340 17 438
test0 0.170 17 170
testl 0.300 15 399
test2 0.430 215 536
test20 6.610 30.045 7203
test3 0.390 19.5 497
test4 0.140 14 122

Table 1: Statistics on tests run on a 1.7 GHz Pentium 4

ple source files cannot currently be handled directly. A straightforward linking process
that combines these TAL sources into a single file allows them to be verified.

Secondly, my simple compiler from TAL into real assembly code uses a trivial
and unrealistic runtime system. Allocation is handled by incrementing a pointer into
the heap, and no garbage collection is performed. Also, none of the standard runtime
functions are supported. The extension can verify foundationally any programs that
don’t call any of these functions, but, of course, such programs are of only limited
use, though they can exercise all of the interesting aspects of TAL. Checking programs
that link in untrusted runtime systems, including garbage collectors, remains for future
work. The current extension checks realistic programs by allowing them to assume that
runtime system functions are safe.

Table 1 presents results on using the TAL extension to verify these tests. The “Slow-
down” column gives the ratio of the running time of the foundational verifier versus the
conventional verifier, which is a thin wrapper around the type checker distributed with
TALC 1.0. “-” entries in that column denote cases where the conventional verifier fin-
ished more quickly than the resolution of the timer, so the ratio is not well-defined.
The “Instructions” column gives the number of assembly instructions in the program
to be verified. These are not x86 instructions, but rather instructions in a simplified
assembly language to which the input assembly program is translated before beginning
verification. This inflates the instruction count by a small constant factor.
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It is clear from these results that we have a long way to go to make the TAL exten-
sion practical. One would expect that a realistic foundational framework would allow
verifiers running with only a small constant factor more time than conventional ver-
ifiers. These numbers are not really cause for pessimism, though, since performance
has not been our primary concern so far. | summarize at the end of the conclusion some
promising strategies for achieving small constant factor slowdowns.

6 Comparison

The TAL extension demonstrates a number of benefits of using the Open Verifier com-
pared to previous approaches.

First, we have some comparatively minor savings that result from the larger TCB
of the Open Verifier. Its trusted core handles reasoning about registers and machine
instruction effects. There is no need for a logical development to handle the details of
decoding a machine’s instruction format, for example. When a state’s successor can be
constructed using the built-in strongest postcondition operation, an extension requires
very little “boilerplate” code to do so. This kind of engineering convenience can ease
the extension writer’s burden noticeably.

There are also more fundamental differences. Previous formalizations [AppO01,
HST™02, Cra03] have followed the standard technique of reasoning about an abstract
operational semantics during verification. The abstract semantics is connected to the
machine’s concrete semantics via a bisimulation in a way sufficient for proving mem-
ory safety.

In the Open Verifier, the core infrastructure handles these details. The TAL exten-
sion’s formalization includes no notion of abstract machine states or an abstract seman-
tics. Instead, it uses direct statements about the concrete machine state, parameterized
by a context.

One benefit of this approach is that instructions that have only local effects can be
handled using very local reasoning. In the register setting example of Section 3.1, for
instance, there was no use of reasoning with the flavor of a “congruence rule” to com-
bine the unchanged portions of the state with the changes. This reduces the conceptual
complexity of the verification scheme, as well as the effort required to formalize it.

Allowing local reasoning also simplifies compositional construction of verifiers.
For instance, the TAL extension could be combined with an extension for verifying
another high-level language to produce an extension for verifying hybrid programs.
Alternatively, we can view interaction between TAL code and a C runtime system in
the same way. By reasoning in a way that abstracts irrelevant assumptions, we get some
compositionality “for free.” The extensions in charge of TAL code and the runtime
system could maintain their own separate assumptions throughout verification, with a
comparatively small effort in maintaining assumptions that connect the two worlds.

Of course, purely local reasoning can make things harder in some cases. For ex-
ample, later versions of TALx86 have a type for “unique pointers” known to reside
nowhere in a machine state but a single register, at most. The Open Verifier saves the
extension from having to reason about whole machine states, but the most straightfor-
ward handling of unique pointers seems to require bringing more of the state back into
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the picture. There are other ways of modeling this, but preserving the same semantics
seems unduly hard. The TALx86 1.0 system that | use in the TAL extension doesn’t
lead to this problem, because it uses subtyping and the idea of uninitialized record
fields to achieve the same effect.

Previous work on verification of language interoperation by Hamid and Shao [HS04]
suggested a somewhat asymmetric approach where low-level routines have precondi-
tions parameterized on arbitrary state predicates. These predicates encode aspects of
the interaction specific to a particular high-level language that could call the routines.
The Open Verifier uses a simpler and more general system that requires no more than
first-order reasoning. Hamid and Shao also do not suggest general methods to use in
allowing the two aspects of verification to maintain their own state across several inter-
actions; they only present a mechanism to prevent the runtime system from breaking
TAL invariants.

In fact, their method involves assigning invariants like ours to each program point.
They do some work to map their old bisimulation-based formalism onto this system.
The Open Verifier can be viewed as skipping this extra step and using the more basic
approach as the starting point.

7 Conclusion

To my knowledge, my implementation is the first foundational verifier in the literature
to handle a complete, practical typed assembly language. It also appears to be the first
such verifier to work with existing source-level compilers developed years ago by a
different group of authors. The success of the project provides evidence that the Open
Verifier succeeds in meeting one of its primary goals: simplifying the engineering effort
involved in creating new foundational verifiers.

The Open Verifier forces verifier extensions to work within a very specific regime.
It is not at all obvious what practical effect this has on expressiveness. | have shown
that our framework does allow natural construction of a verifier for the “gold standard”
of the FPCC community, a realistic typed assembly language. This is by no means a
“completeness” result. It is quite clear that the general FPCC idea admits strategies
that the Open Verifier does not. However, this experiment suggests that we likely do
include enough mechanisms for handling of strategies that would be chosen in practice.

This work also lead to the development of the method I have described for handling
control flow. Previous work on the Open Verifier [Sch04] relied on a complicated
mechanism built into the trusted system. It allowed the use of nested invariants, and a
proof of its soundness required an argument about indexed predicates. My approach
allows the trusted computing base to be reduced while at the same time reducing the
complexity of developing an extension. By using no “higher order” reasoning but that
present in soundness proofs for the Open Verifier’s trusted fixed point module, | make
a strong case that simple logical mechanisms really are sufficient and natural for the
construction of practical foundational verifiers.

A final contribution of this work comes from the insights it provides into a new way
of thinking about and proving the soundness of typed assembly languages. Instead of
starting from an abstract semantics and arguing that it corresponds with the concrete

26



machine’s semantics, | reason with direct propositions about machine states. This pro-
vides a natural kind of modularity that insulates some parts of the abstract state from
the effects of changes to others. As a result, the formal results that must be proved
decompose more naturally, and less verification-time proof effort is required for in-
structions whose effects can be formalized in a suitably incremental way. It is too early
to make any strong statements about advantages of this viewpoint over the traditional
one, but the new formalization is valuable in any case as an example of a novel way to
use existing formalisms.

There must be considerable engineering effort before these techniques are feasible
for wide use. Our current performance figures for different Open Verifier extensions
are unacceptably slow. Efficiency of verification has yet to become a focus in the FPCC
community, but we believe that we can make serious improvements. We hope to reap
large benefits from applying proof representation and checking optimizations like those
used in the original PCC work [NL97]. We have also concentrated to date on logical
formalizations of the safety mechanisms of different extensions, relying on a generic
Prolog interpreter for proof generation. It is likely that using a custom, optimized proof
generator for each extension would also bring large savings. | am currently studying
the problem of constructing a domain-specific extension language and an optimizing
compiler for it that produces extension code of this type. Such a language brings the
added benefit of simplifying the development of extensions.
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