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Abstract

We propose a mechanism for semi-automated proving of theorems, using a tactic for the Coq proof assistant
that consults a proof-generating Nelson-Oppen-style automated prover. Instead of simply proving or failing
to prove a goal, our tactic decides on relevant case splits using theory-specific axioms, proves some of
the resulting cases, and returns the remainder to the Coq user as subgoals. These subgoals can then be
proved using inductions and lemma instantiations that are beyond the capabilities of the automated prover.
We show that the Coq tactic language provides an excellent way to script this process to an extent not
supported by current Nelson-Oppen provers. Like with any Coq proof, a separately checkable proof term in
a core calculus is produced at the end of any successful proving session where our method is used, and we
take advantage of the “proof by reflection” technique to translate the specialized first-order proofs of the
automated prover into compact Coq representations.

Keywords: integration of interactive and automatic theorem proving, proof by reflection

1 Introduction

When proving properties of software or hardware systems, one is faced with a mix
of proof obligations that typically includes many shallow facts drawn from a small
number of decidable theories, such as the theories of equality, linear arithmetic, or
uninterpreted functions; along with deep facts that require high-level proof tech-
niques, such as induction, universal quantifier instantiation, or even higher-order
reasoning. A recent study [11] suggests that to deal with such a mix of proof
obligations one would need to combine the strengths of automated proving, such
as Nelson-Oppen-based theorem provers; with those of interactive proof assistants,
such as Coq.

The Nelson-Oppen architecture for cooperating decision procedures [18] supports
the effective combination of separately-authored decision procedures for first-order
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theories. Well-engineered Nelson-Oppen provers can discharge most of the shallow
proof obligations very efficiently, with no user intervention. Examples of tools that
take advantage of this technique include program verifiers in the style of Extended
Static Checking [10,12] and counterexample-guided software model checkers [14].

A serious weakness of Nelson-Oppen provers is that the user must take care to
model the system being verified in such a way that the resulting proof obligations
are sufficiently simple. Furthermore, the automation of Nelson-Oppen provers is
also their weakness. The only recourse one has when the Nelson-Oppen prover is
unable to complete the task is to change the theorems that need to be proved, by
changing the system being verified, its modeling, or its specification. This is often
a very frustrating trial-and-error process.

The Extended Static Checking (ESC) family of program verification tools exem-
plifies one pattern of human input to automated theorem provers. The source code
of a program to be verified is marked up with loop invariants and function pre- and
postconditions, in the form of special comments. Some of these annotations make
up the specification that the user wants to be sure that the program obeys, but
most of them can be viewed as suggesting a proof strategy. The user chooses the
strategy through a process of trial and error, incrementally modifying these special
comments and re-running the verification tool. Choosing the inductive structure of
proofs is one of the most challenging tasks an automated prover faces, so it is no
surprise that this is where an ESC user is called on to provide advice.

An alternative interaction model is associated with interactive proof assistants,
such as Coq [8], Isabelle/HOL [21], and PVS [22]. These systems provide a great deal
of freedom in the choice of the logical ingredients used for modeling and specifying
systems. They also provide elaborate interaction models in which the user can
direct the proof search. Most of these systems also provide extensive mechanisms
to automate proof tasks by means of tactics, but in most cases the extent of the
resulting automation is smaller than what can be obtained with Nelson-Oppen
provers. It’s also true that effective use of an interactive proof assistant requires
considerably more training than is needed for a Nelson-Oppen prover, so it is quite
beneficial to minimize the portion of a proving task that must be performed in
traditional interactive style.

1.1 Our Contribution

In this paper, we will argue that automated theorem proving (ATP) and interac-
tive theorem proving (ITP) can be combined synergistically. In particular, we will
describe a prototype system for interfacing the proof assistant Coq with Kettle, a
proof-generating Nelson-Oppen prover that we have developed and used previously
for such applications as proof-carrying code. Our prototype allows for bidirectional
interaction between ATP and ITP provers, in contrast to the first-order logic tactics
that are available for many proof assistants.

Our approach improves the state of the art of first-order ATP for program ver-
ification. The main challenge in this area is choosing the right instantiations for
quantified axioms; in particular, it is difficult to find the right balance between
completeness and efficiency/termination. We suggest that instantiations that can-
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not possibly lead to non-termination should be made automatically, and ITPs can
be used to let a human suggest other necessary instantiations and possibly continue
the process by invoking the ATP recursively.

We also suggest a new automation idiom of interest to the interactive and higher-
order theorem proving communities. Proof assistants often contain “all or nothing”
tactics for proving first-order goals. We propose that it can be advantageous to
allow such tactics to return sets of simpler subgoals, representing cases that they
weren’t able to handle, where the ATP is responsible for choosing effective case
splits that may not be syntactically apparent in the original goal. Traditional au-
tomated provers rely on very general types of reasoning heuristics, and the tactic
languages of proof assistants like Coq provide an excellent complement, allowing for
the rapid coding of specialized heuristics. Allowing the use of customized tactics
inside of first-order proof searches allows simpler production of proof scripts than
with monolithic calls to first-order tactics.

In the next section, we briefly overview related work and highlight the differences
from our approach. Then, in Section 3, we review and contrast the important
properties of Nelson-Oppen provers and the Coq proof assistant. In Section 4, we
present an example that demonstrates our approach to semi-automatic program
verification. Section 5 outlines the algorithmic aspects of our approach, and Section
6 describes how we encode Kettle-generated proofs as Coq proofs compactly using
proof by reflection. Section 7 summarizes our implementation and case studies.

2 Related Work

The PVS proof assistant [22] comes with strategies that make use of various deci-
sion procedures to make simplifications, with an effect similar to what our Kettle
tactic provides. However, we’re not aware of any support for using matching rules
to trigger case analyses, prove some cases, and ask the user to prove the others.
PVS also doesn’t generate proof terms in a small core calculus that admits simple
checking, while the generation of such proofs is a main benefit of our technique.

Many proof-generating automated deduction tools have some support for au-
tomating proofs of purely first-order goals, including recent work on resolution
proving for Coq [4] and Isabelle [16]. Resolution proving has also been integrated
with a Martin-Löf-style logical framework [1]. As for automatic proofs of first-order
goals relying on non-trivial ground theories, past projects have investigated the use
of Nelson-Oppen proving with HOL [5] and HOL Light [15], generating higher-
order logic proofs with the SVC decision procedure [23], reflection-based encoding
of automatically-generated first-order proofs in Coq [7], an Isabelle/HOL interface
to a Satisfiability Modulo Theories prover based on boolean satisfiability check-
ing [13], and effective use of trusted external decision procedures by Coq [2]. None
of these projects provides an interactive mode like ours or generates proofs that are
as compact as our reflective proofs for goals involving arithmetic.

Nguyen et al. [19] have explored integrating a proof-generating rewriting tool
with Coq. Their approach is complementary to ours, since rewriting and Nelson-
Oppen-style proving are effective in different problem domains.

3



Chlipala and Necula

Boutin [6] provides a more general description of proof by reflection. Techniques
very similar to those that we present in Section 6 are used in some tactics pack-
aged with Coq, including a reflective version of the Omega decision procedure for
Presburger arithmetic.

3 Preliminaries

3.1 Nelson-Oppen Provers

Nelson-Oppen provers are based on an architecture for cooperating satisfiability pro-
cedures. There are three main aspects of the construction of procedures for different
first-order theories: handling of atomic formulas, case splitting, and instantiation
of quantified axioms.

At the most fundamental level, Nelson-Oppen provers provide an effective way
to obtain a satisfiability procedure for conjunctions of literals belonging to several
logical theories, by combining satisfiability procedures for the individual theories.
Several important theories (e.g., linear arithmetic over rationals and uninterpreted
functions) can be combined in this fashion.

Nelson-Oppen theorem provers can be extended easily with handling of disjunc-
tive facts, by using case analysis and backtracking. This expands their applicability
to include theories like the theory of arrays, whose usual formulation involves dis-
junctive reasoning. Nelson-Oppen provers have also been extended with a limited
handling of quantifiers based on heuristics that decide when to instantiate quan-
tifiers [9]. We will provide more detail in Section 5, where we present a standard
Nelson-Oppen algorithm as one piece of our implementation.

Without lots of cleverness in the design of heuristics, instantiation along with
case analysis can quickly blow up to the level where reasonably sized goals are
intractable to prove. A major point of the new work we present here is that this
kind of blow-up can be ameliorated in practice by getting the user of an interactive
proof assistant involved in the selection of instantiations.

3.2 The Coq Proof Assistant

The most important properties of the Coq proof assistant for our work are that
it produces proof terms in a small core calculus and that it features an expressive
tactic definition language.

Every successful Coq proving interaction produces a proof term in a small
dependently-typed lambda calculus. Every tactic for Coq, including our tactic
that interfaces with our Nelson-Oppen prover, must produce proofs in that formal
language. Our prover Kettle produces proofs in a specialized language that includes
many “high level” proof rules that involve running specialized algorithms. Any use
of one of these rules has a straightforward translation into Coq proofs, but the
obvious strategies can lead to asymptotic blow-ups in proof size. In Section 6, we
discuss how we’re able to implement these high-level rules in Coq in a way that
gives us constant-overhead translation of applications of them.

Coq also features an untyped tactic language for building proof strategies com-
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Fig. 1. Swapping pointers between two linked lists

positionally. We observe that, modulo use of reasoning in the theory of equality, this
language is a strict superset of the rules used for instantiation triggers in Nelson-
Oppen provers. It allows the implementation of many much more complicated and
clever instantiation strategies, not to mention proof strategies based on higher-order
logic programming, rewriting, and more. We will take advantage of this in our sup-
port for two-way interaction between Coq and Kettle.

4 A Motivating Example

We begin by illustrating the use of our approach for program verification with a
simple example. Consider the simple operation on linked lists demonstrated by
Figure 1. We begin with two acyclic and disjoint singly-linked lists, along with
a designated element of each list. Then we swap the “next” pointers of these
designated elements, producing two new lists.

One property of this operation that we might like to verify is that the two
lists remain acyclic after the swap. Indeed, we expect that the above diagram has
convinced the reader of this fact instantly. Nonetheless, proving this fact formally
can be a painstaking task. It is precisely for “obvious” properties like this that we
can hope to gain the most by applying the kind of semi-automated techniques that
we propose. This example is particularly interesting here because its most natural
solution involves the undecidable theory of transitive closure, for which we can’t
hope to build a complete ATP tool.

We will now step through the process of proving a representative lemma used
in the proof of this theorem. We need to know that any intermediate node of an
acyclic list can also be viewed as the head of an acyclic list:

Lemma acyclic_reach : forall next head mid,
acyclic_list next head
-> (head -- next --> mid)
-> acyclic_list next mid.

Here, next is a functional memory value, represented as a map from a list node
pointer to its “next” field. The notation p -- next --> q indicates that pointer q
is reachable from pointer p by following “next” pointers in memory next. -> is the
Coq notation for implication.

We use a simple definition of list acyclicity in terms of the existence of a path
to the null pointer, ignoring the case of infinite lists with no repeating elements:

Definition acyclic_list next head := head -- next --> null.
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The informal proof of the lemma is simple. The acyclicity of the list rooted at
head is witnessed by a path to null. We know that head also has a path to mid,
and, by basic properties of these paths, the path to mid must be a prefix of the path
to null. The portion of the longer path that comes after this prefix shows precisely
that the list rooted at mid is acyclic.

Constructing a formal proof in Coq requires a bit more work. Reachability
is defined inductively as the propositional function trans closure, standing for
transitive-reflexive closure, for which the arrow syntax shown earlier is a shorthand:

Inductive trans_closure (next : memory pointer)
: pointer -> pointer -> Prop :=

| TC_Eq : forall p, p -- next --> p
| TC_Step : forall p q, ((p # next) -- next --> q)

-> (p -- next --> q)
where "p1 -- m --> p2" := (trans_closure m p1 p2).

The infix operator “#” is used to access fields of objects via pointers.
This allows us to induct easily over reachability derivations, so we’ll begin our

proof by deciding to proceed by induction on the derivation of the first hypothesis.
We indicate this by requesting that a particular tactic be used. (We’ll indicate
tactic inputs by boxing them, as below.)

induction 1.

This produces two subgoals, for the base and inductive cases of the proof. The
base case is:

p = null -> p -- next --> mid -> acyclic_list next mid

We hope that Kettle, our Nelson-Oppen prover, is able to prove this simple goal:

kettle.

but, in this case, it isn’t. We undo this last tactic use and, after a bit of pondering,
we notice that the essential fact here is that only null pointers are reachable from
null. We separately prove this as a lemma with its own inductive proof:

Lemma reach_null : forall next p,
null -- next --> p
-> p = null.

Now, in our original proof, we can suggest that a particular instantiation of the
lemma will be useful 5 , and then call our Kettle tactic:

use (reach null next mid); kettle.

This time, the proof is completed automatically. That leaves us with a sequent

5 For clarity, we use the name use for Coq’s built-in generalize tactic.
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for the inductive case, which we abbreviate here:

H : p # next -- next --> null
IH : p # next -- next --> mid

-> acyclic_list next mid
=====================================
p -- next --> mid
-> acyclic_list next mid

We ask Kettle to prove this goal:

kettle.

In this case, it can’t prove the goal entirely, but it is able to deduce certain special
conditions under which it can finish the proof. It returns to us a set of subgoals that
together cover all of the cases it couldn’t handle. Here is an abbreviated version of
one of these sequents:

H : p -- next --> mid
GOAL : ~ mid -- next --> null

CASE_1 : p -- next --> null
CASE_2 : ~ p # next -- next --> mid
=================================================
False

The original goal appears negated as a hypothesis, and our new goal is False, in
the standard Nelson-Oppen style. We’ve also picked up two additional hypotheses
expressing a particular path through a case analysis tree that Kettle determined was
relevant. The set of CASE hypotheses tells us that the case tree considers whether
or not p reaches null and whether or not p # next reaches mid. One of the cases
for which Kettle wasn’t able to prove the lemma is the case where the first fact is
true and the second is false.

Examining the set of hypotheses, we determine that we need to proceed by cases
on the derivation of hypothesis H. We prove another lemma that will be helpful here:

Lemma trans_cases : forall next p q,
p -- next --> q
-> p = q \/ p # next -- next --> q.

Returning to the original proof, an instantiation of this lemma does the trick:

use (trans cases next p mid); kettle.

Why didn’t Kettle deduce the importance of this case analysis on its own? The
answer has to do with the black art of choosing narrow enough quantifier instan-
tiation heuristics to avoid infinite rule application sequences that keep triggering
themselves. If we performed a case analysis like this for every fact p -- next -->
q among our hypotheses, then each fact p # next -- next --> q added would
trigger another application of the same rule, and we would go on forever. There are
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heuristics for choosing when to apply rules, but it is inevitable that no terminating
heuristic will be complete, since the theory of transitive closure is undecidable. The
primary advantage of our approach is in making it convenient for a human to inject
insight into matching choices at points in the proof where automated techniques get
stuck.

At this point, another similar subgoal remains. We’re able to handle it in a
similar manner, finishing the proof.

4.1 Scripting Instantiations

We finish with a fairly short proof script, but it still has some undesirable properties.
We had to choose a case analysis to perform manually. Would it be possible to script
our strategy in choosing case analyses so that those parts of the proof could also be
automatic? In this case, our answer is yes. We can use Coq’s tactic language as a
language for coding matching strategies. This language is quite expressive, which is
important, since we will be using it to express custom solutions to a problem that
is undecidable in general.

In this case, we observe that our proofs, and many others like them that we can
imagine, fit a particular heuristic pattern. We start by calling kettle to discharge
as many cases as possible using only Kettle’s automatic heuristics for choosing case
analyses. In each remaining case, we use at most one case analysis directly on
any single reachability hypothesis. Kettle doesn’t attempt such instantiations in
general, because they can lead to infinite chains of cascading lemma instantiations.
However, we know that Kettle will be able to finish the proof in every remaining case
after a single instantiation of this kind, though it may be a different instantiation
for each case. In general, by allowing specialized case analysis choices in different
cases, we can improve Kettle’s proof search efficiency exponentially.

We can script a tactic bounded kettle that follows this strategy with the fol-
lowing code:

Ltac trans_then_kettle :=
match goal with
| [ H : ?P -- ?NEXT --> ?Q |- _ ] =>
use (trans_cases NEXT P Q); kettle; fail

end.
Ltac bounded_kettle := kettle; try trans_then_kettle.

bounded kettle first calls normal kettle to handle the “easy” cases. After
that, it attempts to use another tactic trans then kettle to solve the remaining
cases. The try keyword indicates that when trans then kettle fails to solve one
of these goals, that subgoal should be left for the user instead of signaling an overall
failure.

The trans then kettle tactic begins by pattern matching on the current se-
quent, looking for a hypothesis that makes a reachability statement. If it finds one, it
triggers a case analysis on the derivation of that hypothesis (using trans cases) and
calls Kettle. If Kettle succeeds in proving the goal completely, then trans then kettle
has succeeded. If any subgoals remain, then we reach the fail tactic, which de-
clares the proving effort a failure. The semantics of pattern matching is based on
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back-tracking search, so a failure with one choice of H will lead us to move on to the
next hypothesis matching the given pattern. If we are unable to prove the goal with
any of the hypotheses, then the overall trans then kettle invocation fails, which
causes control to reach the try and leave this subgoal for the user.

Using bounded kettle, we are able to prove acyclic reach with a succinct
one-line proof script:

intros until mid; use (reach null next mid);

induction 2; bounded kettle.

5 Algorithm Outline

We now give a high level outline of our algorithm, structured as two cooperating
subroutines representing Kettle and Coq, shown as Algorithms 1 and 2. This pre-
sentation doesn’t follow the structure of the real implementation; rather, we chose
it to express the main aspects of interaction and automated proving. One notable
omission is explicit translations between Kettle and Coq formula and proof formats.
We discuss proof encoding issues in the next section.

Here’s the main idea: The Kettle subroutine attempts to prove falsehood from
a particular set of hypothesis formulas. Besides the context Γ of these hypothe-
ses, it tracks an E-graph G. E-graphs [10] are compact structures for representing
equality relationships in the theory of equality and uninterpreted functions. Like in
Nelson-Oppen provers in general, we use them to avoid redundant instantiations of
quantifiers with syntactically different terms that we know to be equal. The Kettle
procedure tries to solve a goal through an iterating process of making new quan-
tifier instantiations, trying ground decision procedures that use only those context
formulas that are conjunctions of literals, and performing case splits from disjunc-
tive hypotheses. The instantiation procedure is parameterized on a set of rules R,
which are quantified formulas together with syntactic triggers specifying patterns
that must be matched in the E-graph before they are used. When none of these
methods works, Kettle returns a proof hole to be dealt with by the Coq user in-
stead of failing. Note that Kettle invokes itself recursively, so these holes can appear
sprinkled throughout the final proof tree.

The Coq subroutine is the normal Coq interactive proving loop, with the pseu-
docode for our Kettle tactic included inline. The main thing to note here is that
the cooperative interaction between Kettle and Coq comes from the ability for the
user to call the kettle tactic interactively while several levels deep in recursive calls
to Coq, each of which may have called Kettle before moving to the next level of
recursion.

We give simplified algorithms that omit many optimizations from our real imple-
mentation, including extensive support in Kettle for an approach based on in-place
updates and explicit snapshot and undo. Kettle also uses some smart heuristics for
minimizing the number of case splits it performs, based on ideas pioneered in SAT
solving [20,3].

We have not explored more subtle interaction models between Kettle and Coq
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Algorithm 1 Kettle(context Γ, egraph G)
if (proof ← groundTheories(Γ)) 6= failure then

return proof

else if there is (φ1 ∨ φ2) ∈ Γ such that φ1 6∈ Γ and φ2 6∈ Γ then
return orElimination(φ1, φ2,Kettle(Γ ∪ {φ1}, G),Kettle(Γ ∪ {φ2}, G)

else if ∃ matching rule R whose pattern matches G, where the tuple t of pattern
variable instantiations is not equal to any tuple matched previously for R in the
current call stack, modulo the congruence induced by G then

Γ′ ← Γ ∪ {instantiation of R with t}
G′ ← expansion of G to include new terms present in the instantiation
return Kettle(Γ′, G′)

else
return proofHole

end if

Algorithm 2 Coq(context Γ, goal formula φ)
tactic← result of querying the user
if tactic = kettle then

Γ′ ← Γ ∪ {¬φ}
proof ← Kettle(Γ′, buildEgraph(Γ′))
for all proof holes in proof do

Call Coq recursively on the goal of that proof hole, with Γ expanded appro-
priately to consider hypothetical judgments.
Substitute the resulting proof for this hole.

end for
return notElimination(φ, proof)

else
...standard handling of other Coq tactics...

end if

where one sees the other as something besides a black box. This means that, at
present, Kettle isn’t able to work incrementally and take advantage of similarities
across queries from Coq. However, Kettle was designed to be used in just this way,
with its snapshot and undo features, so we expect that a little engineering work can
remove this inefficiency.

6 Producing Proofs

The structure of Nelson-Oppen provers is well-suited to the generation of proof
terms. Kettle uses a proof language that witnesses sequences of choices made by
the cooperating decision procedures, with the ultimate goal to ensure that proof
checking does not involve search and is therefore both faster and simpler than prov-
ing. However, Kettle’s proofs are not built from basic axioms alone. For example,
all linear arithmetic proofs in Kettle are ultimately based on a proof rule that in-
volves linear arithmetic simplification. Because they use such “domain-specific”
proof rules, Kettle’s proofs are small and easy to generate [17].

Here is a sample of the definition of the OCaml datatype for Kettle proofs:
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type kettle_proof =
Hyp of hypName

| Andi of kettle_proof * kettle_proof
| Ore of kettle_proof * (hypName * kettle_proof)

* (hypName * kettle_proof)
| Alle of kettle_proof * kettle_exp
| FromDNF of kettle_pred * kettle_proof
| Hole of kettle_pred
| ...

The first four cases are standard natural deduction proof rules. For instance,
Ore is a standard ∨-elimination rule that introduces named hypothetical judgments
in two of its subproofs. Then we have FromDNF, a high-level rule that we will discuss
shortly.

Finally, there is the Hole proof constructor. In normal operation, Kettle does
its best to determine effective case analyses and prove the goal under every choice
of cases. In our use of it as a Coq tactic, we want to allow more than just complete
success or complete failure; the user must be able to take over in cases that Kettle
wasn’t able to discharge. The simple extension of Kettle’s proof language with the
Hole constructor allows for this; when our modified Kettle isn’t able to prove a goal
predicate p in a given case, it generates a proof Hole(p). The Kettle tactic detects
these holes and requests that the user prove each hole’s predicate interactively.

Here is a sample of the structure of our main function to translate Kettle proofs
to Coq proof terms. For clarity, we show it in terms of a simpler ML interface to
Coq than is really provided, with more automatic type inference.

let rec translate_pf = function
Hyp s -> Variable s

| Andi (pf1, pf2) -> Apply (andi, [translate_pf pf1;
translate_pf pf2])

| Ore (pf, (h1, pf1), (h2, pf2)) ->
Apply (ore, [translate_pf pf; Lambda (h1, translate_pf pf1);

Lambda (h2, translate_pf pf2)])
| Alle (pf, e) -> Apply (translate_pf pf, [translate_exp e])
| Hole p -> ProveWithSubgoal (translate_pred p)
| FromDNF (p, pf) ->
Apply (prove_from_dnf, [symbolic_prop p; translate_pf pf])

| ...

The reader can see that the standard natural deduction proof rules have simple
translations. The most interesting differences have to do with the translation of im-
plication, universal quantification, and functions. These can be handled uniformly
with dependent products on the Coq side, while they involve distinct constructs
in Kettle. The ProveWithSubgoal function that is used for the translation of the
Hole uses standard Coq mechanisms for recording a subgoal to be proved later. We
discuss next the translation of the FromDNF Kettle proof constructor.
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6.1 Normalizing Propositions

The FromDNF case is an interesting one. This is one of Kettle’s high level proof rules
that triggers the use of an algorithm that doesn’t require search. FromDNF is used
at a point in the proof where Kettle determines that it is helpful to convert the goal
to disjunctive normal form before proceeding. The proof rule deduces the original
form of the goal from a proof of its disjunctive normal form:

p
DNF−→ p′ p′

p fromDNF

As suggested in the above proof rule, checking such a proof in Kettle requires a
function for conversion of formulas to their disjunctive normal forms. It is possible
to use a straightforward translation of FromDNF uses into Coq proof terms: there
is always a tedious, unenlightening translation into a tree of applications of basic
Coq lemmas about propositional logic. However, these proof trees will contain
intermediate terms repeated at multiple levels, leading to significant increases in
proof size. We can do better by using a proof idiom called proof by reflection.

We start by defining in Coq a new type of abstract syntax trees for propositions,
whose partial definition we show below.

Inductive symbolic_prop : Type :=
| P_Prop : Prop -> symbolic_prop
| P_And : list symbolic_prop -> symbolic_prop
| P_All : forall (T : Set), (T -> symbolic_prop)

-> symbolic_prop
| ...

The first thing to notice about the inductive type symbolic prop is that it is
complete for the set of possible Coq propositions, which are represented by the
built-in sort Prop. Any proposition P is representable trivially as P Prop(P ). The
additional structure is necessary to expose possibilities for syntactic rewriting.

Next we define interpretation functions for propositions, along with a translation
from arbitrary propositions into DNF and its soundness theorem.

Definition interp_prop : symbolic_prop -> Prop := ....
Definition to_dnf : symbolic_prop -> symbolic_prop := ....

Theorem prove_from_dnf : forall (p : symbolic_prop),
interp_prop (to_dnf p) -> interp_prop p.

Since Coq includes a basic functional programming language as a subset of its
logic, it is straightforward to implement these functions and prove their soundness.
The Coq function to dnf mirrors the functionality of the corresponding function
in the OCaml implementation of Kettle. While it would be an onerous task with
little benefit to make this OCaml function proof-generating, Coq’s dependent type
system and interactive proving support make implementing this algorithm with a
soundness proof easy.

Now suppose that a given Kettle execution at some point translates ¬(P ∧ Q)
into its disjunctive normal form ¬P ∨ ¬Q before proceeding. Let pf be a proof
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of the normalized proposition, translated into a Coq proof term. A proof of the
original goal is:

prove from dnf (P Not (P And (P Prop P ) (P Prop Q))) pf

Why does Coq accept this proof? The answer is that the Coq proof checker
identifies terms up to equivalence via standard lambda calculus rewriting rules,
such as beta reduction. A series of beta reductions and other rewritings transforms

interp prop (to dnf (P Not (P And (P Prop P ) (P Prop Q))))

into ¬P ∨ ¬Q, which is exactly what pf proves.
Even though translations of arbitrary formulas to DNF must sometimes increase

formula size significantly, we have managed to keep the sizes of our DNF translation
proofs relatively small in all cases. That is, we generate small proofs, while the DNF
translation of formulas has the usual size characteristics. Besides the size of the
proof pf , which we can’t avoid, the only other non-constant component of proof size
comes from one linear-size restatement of the goal in a different form. In a more
traditional proof based on, e.g., a balanced proof tree successively applying simpli-
fication lemmas, each atomic formula would be mentioned a logarithmic number of
times, which requires an asymptotically longer representation than we provide.

6.2 Proofs for Linear Arithmetic

Another class of interesting high-level rules deals with arithmetic simplifications
used by decision procedures for linear arithmetic. For instance, we have the following
rule to encode compactly the proof of equality of two arithmetic expressions:

n 6= 0,
∧

i(ei = e′
i), n(e− e′)−

∑
i fi(ei − e′

i) ; 0

e = e′ aritheq

The arrow ; denotes a syntactic simplification algorithm to be run as part of
proof checking. The rule is used to conclude the equality of two integer expressions
e and e′. It takes as additional inputs a constant factor n and k triples 〈ei, e

′
i, fi〉.

We show e = e′ by showing ne +
∑

i fiei = ne′ +
∑

i fie
′
i, given proofs that ei = e′

i

for each i.
As in the case of proposition normalization, we can’t perform syntactic analy-

sis directly on arbitrary integer-valued expressions in Coq. Instead, we introduce
another type of abstract syntax trees:

Inductive linear_Z : Set :=
| LZ_Const : Z -> linear_Z
| LZ_Var : var -> linear_Z
| LZ_Plus : linear_Z -> linear_Z -> linear_Z
| LZ_Minus : linear_Z -> linear_Z -> linear_Z
| LZ_Mult : Z -> linear_Z -> linear_Z.

We can then implement the simplification algorithm in Coq, prove its soundness,
and use it in the Coq versions of rules like aritheq. Again, the strategy is to
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implement in Coq both the machinery that Kettle uses to check uses of its high-
level proof constructors and the proof of its soundness.

7 Implementation and Preliminary Case Studies

We have implemented our Kettle tactic in OCaml. Along with a library version
of the Kettle code originally developed for a standalone prover, it is linked into a
custom Coq binary. We have used our tactic in a few case studies to validate the
utility of our approach. None of these studies is large enough to provide hard data
on how much more effective a user of our tool can be than he would be without
it, but they served to test the robustness of our implementation and allow us to
present some preliminary figures.

The largest study so far involved constructing a complete proof of the main
theorem presented for our motivating example in Section 4. Compared to an earlier
manual attempt, we used our new tactic to reduce the number of proof script lines
for problem-specific theorems from 37 to 16. The resulting scripts are also less
brittle; they involve fewer specific references to the structure of a goal, so that it’s
easier to re-use them after small changes to the problem statement.

We also tried using our tactic with a number of the tutorial examples for the
Caduceus [11] verification condition generator for C programs. The results were
promising; we were able to prove most of the obligations with single Kettle invoca-
tions, and prove almost all through at most an explicit induction and instantiation
of the inductive hypothesis. We hope to explore this source of examples further so
as to be able to present more concrete results.

8 Conclusion

We have described an implementation of a tactic for the Coq proof assistant that
uses a Nelson-Oppen theorem prover. Our tactic produces compact proofs in Coq’s
higher-order logic. Instead of serving as a straight decision procedure, it will auto-
matically detect opportunities for case analysis, prove some cases, and return the
rest to the Coq user as subgoals. The user can then use Coq’s rich tactic language
to program customized strategies for proceeding, where these strategies could be
too expensive for the automated prover to use. The synergy we enable between
these two types of proving tools allows many theorems to be proven more efficiently
and succinctly than with either approach alone.
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