Thoughts on
Programming with Proof
Assistants

Adam Chlipala
University of California, Berkeley
PLPV Workshop

Not Ready for Prime Time?

= . Orarethey?

Proof assistants like Coq are C
useful for doing math, but el
they're far too inconvenient for

serious dependently typed * No imperativity, general recursion, or

programming! exceptions
K / * Very primitive dependent pattern
: ; matching
Just usina “refinement
Pros

Need to span many

oo o levels of abstraction, so , _ ,
good modularization is e Easy to combine programming with

key to feasibility tactic-based proving
gererar. * A mature set of tools for proof
organization and automation

This Talk: Capsule summary of my experiences implementing

Proof-Carrying Code-style program verifiers in Coq using
dependent types to guarantee total correctness.

I Mixing Programming with

Tactics

Definition isEven : forall n, [eveg(n)].
refine (fix is7ven (n : nat) C
: [even(n)

| The type of an
0 -> Ye- yp

| optional proof
S O =-> ot o mranaaitian
| S (S n @ o~ - of,zz:etzircz:‘sof the
proof Generate a ' '
@ ~

-~ proof obligation

YeS) i O

I Missing?

Imperativity? Pure functional data structures worked

well for all of the situations | encountered.
Non-termination The kinds of program analysis algorithms
and general | needed were naturally primitive recursive.
recursion?

Exceptions? Failure monads provide a cleaner
alternative to “exceptional” uses of
exceptions.

Fancy dependent Sticking to refinement types, vanilla
pattern matching? pattern matching is good enough.

Reflective Proofs

Theorem check : forall (p : program),
verify p = true
-> safe p.

o

check p (refl equal (ve

= safe p

Typecheck

— =

Computational reduction

verify p = verify p | viadefinitional equality verify p = true
|

I Other Benefits

* Module system
I Lots of pre-written proof-generating

decision procedures

» Expressive tactical language

« Extensible goal-directed proof search
mechanism

« Extraction to OCaml (and from there to
fast native code)

I Conclusion

» Consider using Coqg for your next
I dependently typed program if large
non-syntax-directed proofs are a large

part of It.

It seems worthwhile to keep in mind
potential overlaps between
programming environments and proof
assistants in developing new PLPV
tools.

For more info: See my talk at ICFP next month!

