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Abstract

I describe ongoing work on a new approach to foundational proof-carrying code. The key new idea
is to use certified program verifiers to embody customized program verification strategies, specialized to
particular safety policies, enforcement mechanisms, and source-level compilers. A certified verifier is an
executable program that has a full correctness proof.

The particular strategy that I’ve been following involves using the Coq computer proof assistant as an
environment for dependently typed programming, where types ensure total correctness. Elements of the
development are interesting for the general insight they provide into programming with specifications.

1 Introduction

This poster describes my work on implementing program verification tools that have formal soundness
proofs, using the Coq proof assistant [BC04].

The idea of certified program verifiers has important practical ramifications for foundational proof-
carrying code (FPCC) [App01]. Like traditional proof-carrying code (PCC), FPCC is primarily a technique
for allowing software consumers to obtain strong formal guarantees about programs before running them.
It differs in that its trusted base is independent of particular source languages and compilation strategies.
In this way, it gains both generality and higher assurance of soundness over the first PCC systems.

The germ of the project I’ll describe comes from past work on improving the runtime efficiency of
FPCC program checking. Perhaps the largest obstacle to practical use of FPCC stems from the delicate
trade-offs between generality on one hand and space and time efficiency of proofs and proof checkers on
the other. Program verifiers like the Java bytecode verifier have managed to creep into wide use almost
unnoticed by laypeople, but naive FPCC proofs are much larger than the metadata included with Java
class files and take much longer to check. It’s unlikely that this increased burden would be acceptable to
the average computer user.

Fundamentally, custom program verifiers with specialized algorithms and data structures have a leg
up on very general proof-based verifiers. In our initial work on certified program verifiers [CCN06], we
proposed getting the best of both worlds by moving up a level of abstraction: allow developers to ship
their software with specialized proof-carrying verifiers. These verifiers have the semantic functionality of
traditional program verifiers and model-checkers, but they also come with machine-checkable proofs of
soundness. Each such proof can be checked once when a certified verifier is installed. After the proof
checks out, the verifier can be applied to any number of similar programs. These later verifications
require no runtime generation or checking of uniform proof objects, which we found to be the major
bottleneck in previous experience with FPCC. Our paper presents performance results showing an order of

1



magnitude improvement over all published verification time figures for FPCC systems for Typed Assembly
Language [MWCG99] programs, by using a certified verifier. The verifier had a complete soundness proof,
so no formal guarantees were sacrificed to win this performance.

2 Implementing Certified Verifiers with Coq

The main problem that we encountered was in the engineering issues of proof construction. We used a more
or less traditional approach to program verification in proving the soundness of our verifiers, writing them
in a standard programming language and extracting verification conditions that imply their soundness.
Keeping the proof developments in sync with changes to verifier source code was quite a hassle. We also
found that the structure of the verifier program and its proof were often very closely related, leading to
what felt like duplicate work.

I decided to try investigating what could be gained by writing verifiers from the start in a language
expressive enough to encode verifier soundness in its type system. My upcoming paper [Chl06] describes
a case study using Coq to develop a complete memory safety verifier for x86 machine code programs that
use ML-style algebraic datatypes.

My approach combines explicit dependently-typed programming with interactive and automated the-
orem proving inside of Coq. By providing decision procedures and other verifier ingredients with types
that only admit sound implementations, it’s possible to avoid implicit dependencies between programs and
proofs about them. This style of programming is not new, but my results show that it can be seen through
to completion in a reasonable amount of time.

My implementation uses a number of Coq type families in the style of refinement types [FP91], including
some standard ones and some new ones that I define. Refinement types refine type systems by providing
types that describe, for instance, “every value of type τ that satisfies logical predicate P .” Standard refine-
ment types stick to predicates that facilitate effective type inference, while Coq provides the mechanisms
to use arbitrary logical predicates. Proper use of values of refinement types is validated through explicit
construction of proof terms in programs.

I use types like {{x : τ | P (x)}}, which (for an arbitrary logical predicate P ) is an option-like type
whose values are either special failure values or packages containing a value x of type τ and a proof that
P (x) holds. These type families can be treated as failure monads, leading to a style familiar from Haskell
programming. Computations can proceed with sequences of calls to potentially-failing subroutines, where
each successful call binds a return value and a proof of its correctness for use in later calls. Monadic syntax
makes the code as clear visually as solutions that use, e.g., exceptions.

Coq’s features for semi-automated proof construction and program extraction work very well with this
style. It’s possible to write programs with “proof holes” that are queued as goals for the user to prove
interactively, which is a whole lot nicer than writing out proof terms manually. Program extraction also
provides for a compilation from a finished Coq development into OCaml code, which can then be compiled
to speedy native code. Extraction erases all proof-related parts of the program, and the Coq type system
guarantees that this erasure is semantics-preserving for well-typed terms. Thus, total correctness theorems
about an original Coq verifier are guaranteed to hold about the compiled version that we actually run,
modulo bugs in Coq and OCaml.

The other essential technique is the use of Coq’s module system to build verifiers from reusable com-
ponents. Functors serve as a tool for translating a verifier at one level of abstraction into a verifier for
a lower level. In this way, my final implementation is based on a stack of 8 abstraction levels, from x86
machine code to a high-level, declarative type system description. Like at the level of individual functions,
dependent types make it relatively painless to glue components together, since there’s no need to stare

2



at the final product and devise a customized, global proof strategy. The module system ensures that the
proof parts of the different components work smoothly together.

3 Conclusion

In the history of both traditional and foundational PCC, research has started out focusing on expressivity
and the basic concepts. From there, the next steps involve techniques to improve algorithmic efficiency.
Especially for FPCC, there is a need for a third stage focusing on practical issues in the development
of new FPCC pieces. We shouldn’t rest satisfied as long as the difficulty of implementing support for a
new compiler within an FPCC framework is measured in PhD theses. I hope that the kinds of software
engineering techniques that I’ve mentioned here can provide some insight into the challenges of this third
stage.
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