adamc@190
|
1 (* Copyright (c) 2008, Adam Chlipala
|
adamc@190
|
2 *
|
adamc@190
|
3 * This work is licensed under a
|
adamc@190
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@190
|
5 * Unported License.
|
adamc@190
|
6 * The license text is available at:
|
adamc@190
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@190
|
8 *)
|
adamc@190
|
9
|
adamc@190
|
10 (* begin hide *)
|
adamc@190
|
11 Require Import Arith List Omega.
|
adamc@190
|
12
|
adamc@190
|
13 Require Import Axioms Tactics.
|
adamc@190
|
14
|
adamc@190
|
15 Set Implicit Arguments.
|
adamc@190
|
16 (* end hide *)
|
adamc@190
|
17
|
adamc@190
|
18
|
adamc@190
|
19 (** %\chapter{Modeling Impure Languages}% *)
|
adamc@190
|
20
|
adamc@190
|
21 (** TODO: Prose for this chapter *)
|
adamc@190
|
22
|
adamc@190
|
23 Section var.
|
adamc@190
|
24 Variable var : Type.
|
adamc@190
|
25
|
adamc@190
|
26 Inductive term : Type :=
|
adamc@190
|
27 | Var : var -> term
|
adamc@190
|
28 | App : term -> term -> term
|
adamc@190
|
29 | Abs : (var -> term) -> term
|
adamc@190
|
30 | Unit : term.
|
adamc@190
|
31 End var.
|
adamc@190
|
32
|
adamc@190
|
33 Implicit Arguments Unit [var].
|
adamc@190
|
34
|
adamc@190
|
35 Notation "# v" := (Var v) (at level 70).
|
adamc@190
|
36 Notation "()" := Unit.
|
adamc@190
|
37
|
adamc@190
|
38 Infix "@" := App (left associativity, at level 72).
|
adamc@190
|
39 Notation "\ x , e" := (Abs (fun x => e)) (at level 73).
|
adamc@190
|
40 Notation "\ ? , e" := (Abs (fun _ => e)) (at level 73).
|
adamc@190
|
41
|
adamc@190
|
42
|
adamc@190
|
43 Module predicative.
|
adamc@190
|
44
|
adamc@190
|
45 Inductive val : Type :=
|
adamc@190
|
46 | Func : nat -> val
|
adamc@190
|
47 | VUnit.
|
adamc@190
|
48
|
adamc@190
|
49 Inductive computation : Type :=
|
adamc@190
|
50 | Return : val -> computation
|
adamc@190
|
51 | Bind : computation -> (val -> computation) -> computation
|
adamc@190
|
52 | CAbs : (val -> computation) -> computation
|
adamc@190
|
53 | CApp : val -> val -> computation.
|
adamc@190
|
54
|
adamc@190
|
55 Definition func := val -> computation.
|
adamc@190
|
56
|
adamc@190
|
57 Fixpoint get (n : nat) (ls : list func) {struct ls} : option func :=
|
adamc@190
|
58 match ls with
|
adamc@190
|
59 | nil => None
|
adamc@190
|
60 | x :: ls' =>
|
adamc@190
|
61 if eq_nat_dec n (length ls')
|
adamc@190
|
62 then Some x
|
adamc@190
|
63 else get n ls'
|
adamc@190
|
64 end.
|
adamc@190
|
65
|
adamc@190
|
66 Inductive eval : list func -> computation -> list func -> val -> Prop :=
|
adamc@190
|
67 | EvalReturn : forall ds d,
|
adamc@190
|
68 eval ds (Return d) ds d
|
adamc@190
|
69 | EvalBind : forall ds c1 c2 ds' d1 ds'' d2,
|
adamc@190
|
70 eval ds c1 ds' d1
|
adamc@190
|
71 -> eval ds' (c2 d1) ds'' d2
|
adamc@190
|
72 -> eval ds (Bind c1 c2) ds'' d2
|
adamc@190
|
73 | EvalCAbs : forall ds f,
|
adamc@190
|
74 eval ds (CAbs f) (f :: ds) (Func (length ds))
|
adamc@190
|
75 | EvalCApp : forall ds i d2 f ds' d3,
|
adamc@190
|
76 get i ds = Some f
|
adamc@190
|
77 -> eval ds (f d2) ds' d3
|
adamc@190
|
78 -> eval ds (CApp (Func i) d2) ds' d3.
|
adamc@190
|
79
|
adamc@190
|
80 Fixpoint termDenote (e : term val) : computation :=
|
adamc@190
|
81 match e with
|
adamc@190
|
82 | Var v => Return v
|
adamc@190
|
83 | App e1 e2 => Bind (termDenote e1) (fun f =>
|
adamc@190
|
84 Bind (termDenote e2) (fun x =>
|
adamc@190
|
85 CApp f x))
|
adamc@190
|
86 | Abs e' => CAbs (fun x => termDenote (e' x))
|
adamc@190
|
87
|
adamc@190
|
88 | Unit => Return VUnit
|
adamc@190
|
89 end.
|
adamc@190
|
90
|
adamc@190
|
91 Definition Term := forall var, term var.
|
adamc@190
|
92 Definition TermDenote (E : Term) := termDenote (E _).
|
adamc@190
|
93
|
adamc@190
|
94 Definition ident : Term := fun _ => \x, #x.
|
adamc@190
|
95 Eval compute in TermDenote ident.
|
adamc@190
|
96
|
adamc@190
|
97 Definition unite : Term := fun _ => ().
|
adamc@190
|
98 Eval compute in TermDenote unite.
|
adamc@190
|
99
|
adamc@190
|
100 Definition ident_self : Term := fun _ => ident _ @ ident _.
|
adamc@190
|
101 Eval compute in TermDenote ident_self.
|
adamc@190
|
102
|
adamc@190
|
103 Definition ident_unit : Term := fun _ => ident _ @ unite _.
|
adamc@190
|
104 Eval compute in TermDenote ident_unit.
|
adamc@190
|
105
|
adamc@190
|
106 Theorem eval_ident_unit : exists ds, eval nil (TermDenote ident_unit) ds VUnit.
|
adamc@190
|
107 compute.
|
adamc@190
|
108 repeat econstructor.
|
adamc@190
|
109 simpl.
|
adamc@190
|
110 rewrite (eta Return).
|
adamc@190
|
111 reflexivity.
|
adamc@190
|
112 Qed.
|
adamc@190
|
113
|
adamc@190
|
114 Hint Constructors eval.
|
adamc@190
|
115
|
adamc@190
|
116 Lemma app_nil_start : forall A (ls : list A),
|
adamc@190
|
117 ls = nil ++ ls.
|
adamc@190
|
118 reflexivity.
|
adamc@190
|
119 Qed.
|
adamc@190
|
120
|
adamc@190
|
121 Lemma app_cons : forall A (x : A) (ls : list A),
|
adamc@190
|
122 x :: ls = (x :: nil) ++ ls.
|
adamc@190
|
123 reflexivity.
|
adamc@190
|
124 Qed.
|
adamc@190
|
125
|
adamc@190
|
126 Theorem eval_monotone : forall ds c ds' d,
|
adamc@190
|
127 eval ds c ds' d
|
adamc@190
|
128 -> exists ds'', ds' = ds'' ++ ds.
|
adamc@190
|
129 Hint Resolve app_nil_start app_ass app_cons.
|
adamc@190
|
130
|
adamc@190
|
131 induction 1; firstorder; subst; eauto.
|
adamc@190
|
132 Qed.
|
adamc@190
|
133
|
adamc@190
|
134 Lemma length_app : forall A (ds2 ds1 : list A),
|
adamc@190
|
135 length (ds1 ++ ds2) = length ds1 + length ds2.
|
adamc@190
|
136 induction ds1; simpl; intuition.
|
adamc@190
|
137 Qed.
|
adamc@190
|
138
|
adamc@190
|
139 Lemma get_app : forall ds2 d ds1,
|
adamc@190
|
140 get (length ds2) (ds1 ++ d :: ds2) = Some d.
|
adamc@190
|
141 Hint Rewrite length_app : cpdt.
|
adamc@190
|
142
|
adamc@190
|
143 induction ds1; crush;
|
adamc@190
|
144 match goal with
|
adamc@190
|
145 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@190
|
146 end; crush.
|
adamc@190
|
147 Qed.
|
adamc@190
|
148
|
adamc@190
|
149 Theorem invert_ident : forall (E : Term) ds ds' d,
|
adamc@190
|
150 eval ds (TermDenote (fun _ => ident _ @ E _)) ds' d
|
adamc@190
|
151 -> eval ((fun x => Return x) :: ds) (TermDenote E) ds' d.
|
adamc@190
|
152 inversion 1; subst.
|
adamc@190
|
153 clear H.
|
adamc@190
|
154 inversion H3; clear H3; subst.
|
adamc@190
|
155 inversion H6; clear H6; subst.
|
adamc@190
|
156 generalize (eval_monotone H2); crush.
|
adamc@190
|
157 inversion H5; clear H5; subst.
|
adamc@190
|
158 rewrite get_app in H3.
|
adamc@190
|
159 inversion H3; clear H3; subst.
|
adamc@190
|
160 inversion H7; clear H7; subst.
|
adamc@190
|
161 assumption.
|
adamc@190
|
162 Qed.
|
adamc@190
|
163
|
adamc@190
|
164 End predicative.
|