adamc@105
|
1 (* Copyright (c) 2008, Adam Chlipala
|
adamc@105
|
2 *
|
adamc@105
|
3 * This work is licensed under a
|
adamc@105
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@105
|
5 * Unported License.
|
adamc@105
|
6 * The license text is available at:
|
adamc@105
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@105
|
8 *)
|
adamc@105
|
9
|
adamc@105
|
10 (* begin hide *)
|
adamc@105
|
11 Require Import List.
|
adamc@105
|
12
|
adamc@105
|
13 Require Import Tactics.
|
adamc@105
|
14
|
adamc@105
|
15 Set Implicit Arguments.
|
adamc@105
|
16 (* end hide *)
|
adamc@105
|
17
|
adamc@105
|
18
|
adamc@105
|
19 (** %\chapter{Dependent Data Structures}% *)
|
adamc@105
|
20
|
adamc@106
|
21 (** Our red-black tree example from the last chapter illustrated how dependent types enable static enforcement of data structure invariants. To find interesting uses of dependent data structures, however, we need not look to the favorite examples of data structures and algorithms textbooks. More basic examples like length-indexed and heterogeneous lists come up again and again as the building blocks of dependent programs. There is a surprisingly large design space for this class of data structure, and we will spend this chapter exploring it. *)
|
adamc@105
|
22
|
adamc@105
|
23
|
adamc@106
|
24 (** * More Length-Indexed Lists *)
|
adamc@106
|
25
|
adamc@106
|
26 (** We begin with a deeper look at the length-indexed lists that began the last chapter. *)
|
adamc@105
|
27
|
adamc@105
|
28 Section ilist.
|
adamc@105
|
29 Variable A : Set.
|
adamc@105
|
30
|
adamc@105
|
31 Inductive ilist : nat -> Set :=
|
adamc@105
|
32 | Nil : ilist O
|
adamc@105
|
33 | Cons : forall n, A -> ilist n -> ilist (S n).
|
adamc@105
|
34
|
adamc@106
|
35 (** We might like to have a certified function for selecting an element of an [ilist] by position. We could do this using subset types and explicit manipulation of proofs, but dependent types let us do it more directly. It is helpful to define a type family [index], where [index n] is isomorphic to [{m : nat | m < n}]. Such a type family is also often called [Fin] or similar, standing for "finite." *)
|
adamc@106
|
36
|
adamc@105
|
37 Inductive index : nat -> Set :=
|
adamc@105
|
38 | First : forall n, index (S n)
|
adamc@105
|
39 | Next : forall n, index n -> index (S n).
|
adamc@105
|
40
|
adamc@106
|
41 (** [index] essentially makes a more richly-typed copy of the natural numbers. Every element is a [First] iterated through applying [Next] a number of times that indicates which number is being selected.
|
adamc@106
|
42
|
adamc@106
|
43 Now it is easy to pick a [Prop]-free type for a selection function. As usual, our first implementation attempt will not convince the type checker, and we will attack the deficiencies one at a time.
|
adamc@106
|
44
|
adamc@106
|
45 [[
|
adamc@106
|
46 Fixpoint get n (ls : ilist n) {struct ls} : index n -> A :=
|
adamc@106
|
47 match ls in ilist n return index n -> A with
|
adamc@106
|
48 | Nil => fun idx => ?
|
adamc@106
|
49 | Cons _ x ls' => fun idx =>
|
adamc@106
|
50 match idx with
|
adamc@106
|
51 | First _ => x
|
adamc@106
|
52 | Next _ idx' => get ls' idx'
|
adamc@106
|
53 end
|
adamc@106
|
54 end.
|
adamc@106
|
55
|
adamc@106
|
56 We apply the usual wisdom of delaying arguments in [Fixpoint]s so that they may be included in [return] clauses. This still leaves us with a quandary in each of the [match] cases. First, we need to figure out how to take advantage of the contradiction in the [Nil] case. Every [index] has a type of the form [S n], which cannot unify with the [O] value that we learn for [n] in the [Nil] case. The solution we adopt is another case of [match]-within-[return].
|
adamc@106
|
57
|
adamc@106
|
58 [[
|
adamc@106
|
59 Fixpoint get n (ls : ilist n) {struct ls} : index n -> A :=
|
adamc@106
|
60 match ls in ilist n return index n -> A with
|
adamc@106
|
61 | Nil => fun idx =>
|
adamc@106
|
62 match idx in index n' return (match n' with
|
adamc@106
|
63 | O => A
|
adamc@106
|
64 | S _ => unit
|
adamc@106
|
65 end) with
|
adamc@106
|
66 | First _ => tt
|
adamc@106
|
67 | Next _ _ => tt
|
adamc@106
|
68 end
|
adamc@106
|
69 | Cons _ x ls' => fun idx =>
|
adamc@106
|
70 match idx with
|
adamc@106
|
71 | First _ => x
|
adamc@106
|
72 | Next _ idx' => get ls' idx'
|
adamc@106
|
73 end
|
adamc@106
|
74 end.
|
adamc@106
|
75
|
adamc@106
|
76 Now the first [match] case type-checks, and we see that the problem with the [Cons] case is that the pattern-bound variable [idx'] does not have an apparent type compatible with [ls']. We need to use [match] annotations to make the relationship explicit. Unfortunately, the usual trick of postponing argument binding will not help us here. We need to match on both [ls] and [idx]; one or the other must be matched first. To get around this, we apply a trick that we will call "the convoy pattern," introducing a new function and applying it immediately, to satisfy the type checker.
|
adamc@106
|
77
|
adamc@106
|
78 [[
|
adamc@106
|
79 Fixpoint get n (ls : ilist n) {struct ls} : index n -> A :=
|
adamc@106
|
80 match ls in ilist n return index n -> A with
|
adamc@106
|
81 | Nil => fun idx =>
|
adamc@106
|
82 match idx in index n' return (match n' with
|
adamc@106
|
83 | O => A
|
adamc@106
|
84 | S _ => unit
|
adamc@106
|
85 end) with
|
adamc@106
|
86 | First _ => tt
|
adamc@106
|
87 | Next _ _ => tt
|
adamc@106
|
88 end
|
adamc@106
|
89 | Cons _ x ls' => fun idx =>
|
adamc@106
|
90 match idx in index n' return ilist (pred n') -> A with
|
adamc@106
|
91 | First _ => fun _ => x
|
adamc@106
|
92 | Next _ idx' => fun ls' => get ls' idx'
|
adamc@106
|
93 end ls'
|
adamc@106
|
94 end.
|
adamc@106
|
95
|
adamc@106
|
96 There is just one problem left with this implementation. Though we know that the local [ls'] in the [Next] case is equal to the original [ls'], the type-checker is not satisfied that the recursive call to [get] does not introduce non-termination. We solve the problem by convoy-binding the partial application of [get] to [ls'], rather than [ls'] by itself. *)
|
adamc@106
|
97
|
adamc@105
|
98 Fixpoint get n (ls : ilist n) {struct ls} : index n -> A :=
|
adamc@105
|
99 match ls in ilist n return index n -> A with
|
adamc@105
|
100 | Nil => fun idx =>
|
adamc@105
|
101 match idx in index n' return (match n' with
|
adamc@105
|
102 | O => A
|
adamc@105
|
103 | S _ => unit
|
adamc@105
|
104 end) with
|
adamc@105
|
105 | First _ => tt
|
adamc@105
|
106 | Next _ _ => tt
|
adamc@105
|
107 end
|
adamc@105
|
108 | Cons _ x ls' => fun idx =>
|
adamc@105
|
109 match idx in index n' return (index (pred n') -> A) -> A with
|
adamc@105
|
110 | First _ => fun _ => x
|
adamc@105
|
111 | Next _ idx' => fun get_ls' => get_ls' idx'
|
adamc@105
|
112 end (get ls')
|
adamc@105
|
113 end.
|
adamc@105
|
114 End ilist.
|
adamc@105
|
115
|
adamc@105
|
116 Implicit Arguments Nil [A].
|
adamc@108
|
117 Implicit Arguments First [n].
|
adamc@105
|
118
|
adamc@108
|
119 (** A few examples show how to make use of these definitions. *)
|
adamc@108
|
120
|
adamc@108
|
121 Check Cons 0 (Cons 1 (Cons 2 Nil)).
|
adamc@108
|
122 (** [[
|
adamc@108
|
123
|
adamc@108
|
124 Cons 0 (Cons 1 (Cons 2 Nil))
|
adamc@108
|
125 : ilist nat 3
|
adamc@108
|
126 ]] *)
|
adamc@108
|
127 Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.
|
adamc@108
|
128 (** [[
|
adamc@108
|
129
|
adamc@108
|
130 = 0
|
adamc@108
|
131 : nat
|
adamc@108
|
132 ]] *)
|
adamc@108
|
133 Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).
|
adamc@108
|
134 (** [[
|
adamc@108
|
135
|
adamc@108
|
136 = 1
|
adamc@108
|
137 : nat
|
adamc@108
|
138 ]] *)
|
adamc@108
|
139 Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)).
|
adamc@108
|
140 (** [[
|
adamc@108
|
141
|
adamc@108
|
142 = 2
|
adamc@108
|
143 : nat
|
adamc@108
|
144 ]] *)
|
adamc@108
|
145
|
adamc@108
|
146 (** Our [get] function is also quite easy to reason about. We show how with a short example about an analogue to the list [map] function. *)
|
adamc@107
|
147
|
adamc@105
|
148 Section ilist_map.
|
adamc@105
|
149 Variables A B : Set.
|
adamc@105
|
150 Variable f : A -> B.
|
adamc@105
|
151
|
adamc@105
|
152 Fixpoint imap n (ls : ilist A n) {struct ls} : ilist B n :=
|
adamc@105
|
153 match ls in ilist _ n return ilist B n with
|
adamc@105
|
154 | Nil => Nil
|
adamc@105
|
155 | Cons _ x ls' => Cons (f x) (imap ls')
|
adamc@105
|
156 end.
|
adamc@105
|
157
|
adamc@107
|
158 (** It is easy to prove that [get] "distributes over" [imap] calls. The only tricky bit is remembering to use the [dep_destruct] tactic in place of plain [destruct] when faced with a baffling tactic error message. *)
|
adamc@107
|
159
|
adamc@107
|
160 Theorem get_imap : forall n (idx : index n) (ls : ilist A n),
|
adamc@105
|
161 get (imap ls) idx = f (get ls idx).
|
adamc@107
|
162 induction ls; dep_destruct idx; crush.
|
adamc@105
|
163 Qed.
|
adamc@105
|
164 End ilist_map.
|
adamc@107
|
165
|
adamc@107
|
166
|
adamc@107
|
167 (** * Heterogeneous Lists *)
|
adamc@107
|
168
|
adamc@107
|
169 (** Programmers who move to statically-typed functional languages from "scripting languages" often complain about the requirement that every element of a list have the same type. With fancy type systems, we can partially lift this requirement. We can index a list type with a "type-level" list that explains what type each element of the list should have. This has been done in a variety of ways in Haskell using type classes, and it we can do it much more cleanly and directly in Coq. *)
|
adamc@107
|
170
|
adamc@107
|
171 Section hlist.
|
adamc@107
|
172 Variable A : Type.
|
adamc@107
|
173 Variable B : A -> Type.
|
adamc@107
|
174
|
adamc@107
|
175 (** We parameterize our heterogeneous lists by a type [A] and an [A]-indexed type [B]. *)
|
adamc@107
|
176
|
adamc@107
|
177 Inductive hlist : list A -> Type :=
|
adamc@107
|
178 | MNil : hlist nil
|
adamc@107
|
179 | MCons : forall (x : A) (ls : list A), B x -> hlist ls -> hlist (x :: ls).
|
adamc@107
|
180
|
adamc@107
|
181 (** We can implement a variant of the last section's [get] function for [hlist]s. To get the dependent typing to work out, we will need to index our element selectors by the types of data that they point to. *)
|
adamc@107
|
182
|
adamc@107
|
183 Variable elm : A.
|
adamc@107
|
184
|
adamc@107
|
185 Inductive member : list A -> Type :=
|
adamc@107
|
186 | MFirst : forall ls, member (elm :: ls)
|
adamc@107
|
187 | MNext : forall x ls, member ls -> member (x :: ls).
|
adamc@107
|
188
|
adamc@107
|
189 (** Because the element [elm] that we are "searching for" in a list does not change across the constructors of [member], we simplify our definitions by making [elm] a local variable. In the definition of [member], we say that [elm] is found in any list that begins with [elm], and, if removing the first element of a list leaves [elm] present, then [elm] is present in the original list, too. The form looks much like a predicate for list membership, but we purposely define [member] in [Type] so that we may decompose its values to guide computations.
|
adamc@107
|
190
|
adamc@107
|
191 We can use [member] to adapt our definition of [get] to [hlists]. The same basic [match] tricks apply. In the [MCons] case, we form a two-element convoy, passing both the data element [x] and the recursor for the sublist [mls'] to the result of the inner [match]. We did not need to do that in [get]'s definition because the types of list elements were not dependent there. *)
|
adamc@107
|
192
|
adamc@107
|
193 Fixpoint hget ls (mls : hlist ls) {struct mls} : member ls -> B elm :=
|
adamc@107
|
194 match mls in hlist ls return member ls -> B elm with
|
adamc@107
|
195 | MNil => fun mem =>
|
adamc@107
|
196 match mem in member ls' return (match ls' with
|
adamc@107
|
197 | nil => B elm
|
adamc@107
|
198 | _ :: _ => unit
|
adamc@107
|
199 end) with
|
adamc@107
|
200 | MFirst _ => tt
|
adamc@107
|
201 | MNext _ _ _ => tt
|
adamc@107
|
202 end
|
adamc@107
|
203 | MCons _ _ x mls' => fun mem =>
|
adamc@107
|
204 match mem in member ls' return (match ls' with
|
adamc@107
|
205 | nil => Empty_set
|
adamc@107
|
206 | x' :: ls'' =>
|
adamc@107
|
207 B x' -> (member ls'' -> B elm) -> B elm
|
adamc@107
|
208 end) with
|
adamc@107
|
209 | MFirst _ => fun x _ => x
|
adamc@107
|
210 | MNext _ _ mem' => fun _ get_mls' => get_mls' mem'
|
adamc@107
|
211 end x (hget mls')
|
adamc@107
|
212 end.
|
adamc@107
|
213 End hlist.
|
adamc@108
|
214
|
adamc@108
|
215 Implicit Arguments MNil [A B].
|
adamc@108
|
216 Implicit Arguments MCons [A B x ls].
|
adamc@108
|
217
|
adamc@108
|
218 Implicit Arguments MFirst [A elm ls].
|
adamc@108
|
219 Implicit Arguments MNext [A elm x ls].
|
adamc@108
|
220
|
adamc@108
|
221 (** By putting the parameters [A] and [B] in [Type], we allow some very higher-order uses. For instance, one use of [hlist] is for the simple heterogeneous lists that we referred to earlier. *)
|
adamc@108
|
222
|
adamc@108
|
223 Definition someTypes : list Set := nat :: bool :: nil.
|
adamc@108
|
224
|
adamc@108
|
225 Example someValues : hlist (fun T : Set => T) someTypes :=
|
adamc@108
|
226 MCons 5 (MCons true MNil).
|
adamc@108
|
227
|
adamc@108
|
228 Eval simpl in hget someValues MFirst.
|
adamc@108
|
229 (** [[
|
adamc@108
|
230
|
adamc@108
|
231 = 5
|
adamc@108
|
232 : (fun T : Set => T) nat
|
adamc@108
|
233 ]] *)
|
adamc@108
|
234 Eval simpl in hget someValues (MNext MFirst).
|
adamc@108
|
235 (** [[
|
adamc@108
|
236
|
adamc@108
|
237 = true
|
adamc@108
|
238 : (fun T : Set => T) bool
|
adamc@108
|
239 ]] *)
|
adamc@108
|
240
|
adamc@108
|
241 (** We can also build indexed lists of pairs in this way. *)
|
adamc@108
|
242
|
adamc@108
|
243 Example somePairs : hlist (fun T : Set => T * T)%type someTypes :=
|
adamc@108
|
244 MCons (1, 2) (MCons (true, false) MNil).
|
adamc@108
|
245
|
adamc@108
|
246 (** ** A Lambda Calculus Interpreter *)
|
adamc@108
|
247
|
adamc@108
|
248 (** Heterogeneous lists are very useful in implementing interpreters for functional programming languages. Using the types and operations we have already defined, it is trivial to write an interpreter for simply-typed lambda calculus. Our interpreter can alternatively be thought of as a denotational semantics.
|
adamc@108
|
249
|
adamc@108
|
250 We start with an algebraic datatype for types. *)
|
adamc@108
|
251
|
adamc@108
|
252 Inductive type : Set :=
|
adamc@108
|
253 | Unit : type
|
adamc@108
|
254 | Arrow : type -> type -> type.
|
adamc@108
|
255
|
adamc@108
|
256 (** Now we can define a type family for expressions. An [exp ts t] will stand for an expression that has type [t] and whose free variables have types in the list [ts]. We effectively use the de Bruijn variable representation, which we will discuss in more detail in later chapters. Variables are represented as [member] values; that is, a variable is more or less a constructive proof that a particular type is found in the type environment. *)
|
adamc@108
|
257
|
adamc@108
|
258 Inductive exp : list type -> type -> Set :=
|
adamc@108
|
259 | Const : forall ts, exp ts Unit
|
adamc@108
|
260
|
adamc@108
|
261 | Var : forall ts t, member t ts -> exp ts t
|
adamc@108
|
262 | App : forall ts dom ran, exp ts (Arrow dom ran) -> exp ts dom -> exp ts ran
|
adamc@108
|
263 | Abs : forall ts dom ran, exp (dom :: ts) ran -> exp ts (Arrow dom ran).
|
adamc@108
|
264
|
adamc@108
|
265 Implicit Arguments Const [ts].
|
adamc@108
|
266
|
adamc@108
|
267 (** We write a simple recursive function to translate [type]s into [Set]s. *)
|
adamc@108
|
268
|
adamc@108
|
269 Fixpoint typeDenote (t : type) : Set :=
|
adamc@108
|
270 match t with
|
adamc@108
|
271 | Unit => unit
|
adamc@108
|
272 | Arrow t1 t2 => typeDenote t1 -> typeDenote t2
|
adamc@108
|
273 end.
|
adamc@108
|
274
|
adamc@108
|
275 (** Now it is straightforward to write an expression interpreter. The type of the function, [expDenote], tells us that we translate expressions into functions from properly-typed environments to final values. An environment for a free variable list [ts] is simply a [hlist typeDenote ts]. That is, for each free variable, the heterogeneous list that is the environment must have a value of the variable's associated type. We use [hget] to implement the [Var] case, and we use [MCons] to extend the environment in the [Abs] case. *)
|
adamc@108
|
276
|
adamc@108
|
277 Fixpoint expDenote ts t (e : exp ts t) {struct e} : hlist typeDenote ts -> typeDenote t :=
|
adamc@108
|
278 match e in exp ts t return hlist typeDenote ts -> typeDenote t with
|
adamc@108
|
279 | Const _ => fun _ => tt
|
adamc@108
|
280
|
adamc@108
|
281 | Var _ _ mem => fun s => hget s mem
|
adamc@108
|
282 | App _ _ _ e1 e2 => fun s => (expDenote e1 s) (expDenote e2 s)
|
adamc@108
|
283 | Abs _ _ _ e' => fun s => fun x => expDenote e' (MCons x s)
|
adamc@108
|
284 end.
|
adamc@108
|
285
|
adamc@108
|
286 (** Like for previous examples, our interpreter is easy to run with [simpl]. *)
|
adamc@108
|
287
|
adamc@108
|
288 Eval simpl in expDenote Const MNil.
|
adamc@108
|
289 (** [[
|
adamc@108
|
290
|
adamc@108
|
291 = tt
|
adamc@108
|
292 : typeDenote Unit
|
adamc@108
|
293 ]] *)
|
adamc@108
|
294 Eval simpl in expDenote (Abs (dom := Unit) (Var MFirst)) MNil.
|
adamc@108
|
295 (** [[
|
adamc@108
|
296
|
adamc@108
|
297 = fun x : unit => x
|
adamc@108
|
298 : typeDenote (Arrow Unit Unit)
|
adamc@108
|
299 ]] *)
|
adamc@108
|
300 Eval simpl in expDenote (Abs (dom := Unit)
|
adamc@108
|
301 (Abs (dom := Unit) (Var (MNext MFirst)))) MNil.
|
adamc@108
|
302 (** [[
|
adamc@108
|
303
|
adamc@108
|
304 = fun x _ : unit => x
|
adamc@108
|
305 : typeDenote (Arrow Unit (Arrow Unit Unit))
|
adamc@108
|
306 ]] *)
|
adamc@108
|
307 Eval simpl in expDenote (Abs (dom := Unit) (Abs (dom := Unit) (Var MFirst))) MNil.
|
adamc@108
|
308 (** [[
|
adamc@108
|
309
|
adamc@108
|
310 = fun _ x0 : unit => x0
|
adamc@108
|
311 : typeDenote (Arrow Unit (Arrow Unit Unit))
|
adamc@108
|
312 ]] *)
|
adamc@108
|
313 Eval simpl in expDenote (App (Abs (Var MFirst)) Const) MNil.
|
adamc@108
|
314 (** [[
|
adamc@108
|
315
|
adamc@108
|
316 = tt
|
adamc@108
|
317 : typeDenote Unit
|
adamc@108
|
318 ]] *)
|
adamc@108
|
319
|
adamc@108
|
320 (** We are starting to develop the tools behind dependent typing's amazing advantage over alternative approaches in several important areas. Here, we have implemented complete syntax, typing rules, and evaluation semantics for simply-typed lambda calculus without even needing to define a syntactic substitution operation. We did it all without a single line of proof, and our implementation is manifestly executable. In a later chapter, we will meet other, more common approaches to language formalization. Such approaches often state and prove explicit theorems about type safety of languages. In the above example, we got type safety, termination, and other meta-theorems for free, by reduction to CIC, which we know has those properties. *)
|
adamc@108
|
321
|
adamc@108
|
322
|
adamc@109
|
323 (** * Recursive Type Definitions *)
|
adamc@109
|
324
|
adamc@109
|
325 (** There is another style of datatype definition that leads to much simpler definitions of the [get] and [hget] definitions above. Because Coq supports "type-level computation," we can redo our inductive definitions as %\textit{%#<i>#recursive#</i>#%}% definitions. *)
|
adamc@109
|
326
|
adamc@109
|
327 Section filist.
|
adamc@109
|
328 Variable A : Set.
|
adamc@109
|
329
|
adamc@109
|
330 Fixpoint filist (n : nat) : Set :=
|
adamc@109
|
331 match n with
|
adamc@109
|
332 | O => unit
|
adamc@109
|
333 | S n' => A * filist n'
|
adamc@109
|
334 end%type.
|
adamc@109
|
335
|
adamc@109
|
336 (** We say that a list of length 0 has no contents, and a list of length [S n'] is a pair of a data value and a list of length [n']. *)
|
adamc@109
|
337
|
adamc@109
|
338 Fixpoint findex (n : nat) : Set :=
|
adamc@109
|
339 match n with
|
adamc@109
|
340 | O => Empty_set
|
adamc@109
|
341 | S n' => option (findex n')
|
adamc@109
|
342 end.
|
adamc@109
|
343
|
adamc@109
|
344 (** We express that there are no index values when [n = O], by defining such indices as type [Empty_set]; and we express that, at [n = S n'], there is a choice between picking the first element of the list (represented as [None]) or choosing a later element (represented by [Some idx], where [idx] is an index into the list tail). *)
|
adamc@109
|
345
|
adamc@109
|
346 Fixpoint fget (n : nat) : filist n -> findex n -> A :=
|
adamc@109
|
347 match n return filist n -> findex n -> A with
|
adamc@109
|
348 | O => fun _ idx => match idx with end
|
adamc@109
|
349 | S n' => fun ls idx =>
|
adamc@109
|
350 match idx with
|
adamc@109
|
351 | None => fst ls
|
adamc@109
|
352 | Some idx' => fget n' (snd ls) idx'
|
adamc@109
|
353 end
|
adamc@109
|
354 end.
|
adamc@109
|
355
|
adamc@109
|
356 (** Our new [get] implementation needs only one dependent [match], which just copies the stated return type of the function. Our choices of data structure implementations lead to just the right typing behavior for this new definition to work out. *)
|
adamc@109
|
357 End filist.
|
adamc@109
|
358
|
adamc@109
|
359 (** Heterogeneous lists are a little trickier to define with recursion, but we then reap similar benefits in simplicity of use. *)
|
adamc@109
|
360
|
adamc@109
|
361 Section fhlist.
|
adamc@109
|
362 Variable A : Type.
|
adamc@109
|
363 Variable B : A -> Type.
|
adamc@109
|
364
|
adamc@109
|
365 Fixpoint fhlist (ls : list A) : Type :=
|
adamc@109
|
366 match ls with
|
adamc@109
|
367 | nil => unit
|
adamc@109
|
368 | x :: ls' => B x * fhlist ls'
|
adamc@109
|
369 end%type.
|
adamc@109
|
370
|
adamc@109
|
371 (** The definition of [fhlist] follows the definition of [filist], with the added wrinkle of dependently-typed data elements. *)
|
adamc@109
|
372
|
adamc@109
|
373 Variable elm : A.
|
adamc@109
|
374
|
adamc@109
|
375 Fixpoint fmember (ls : list A) : Type :=
|
adamc@109
|
376 match ls with
|
adamc@109
|
377 | nil => Empty_set
|
adamc@109
|
378 | x :: ls' => (x = elm) + fmember ls'
|
adamc@109
|
379 end%type.
|
adamc@109
|
380
|
adamc@109
|
381 (** The definition of [fmember] follows the definition of [findex]. Empty lists have no members, and member types for nonempty lists are built by adding one new option to the type of members of the list tail. While for [index] we needed no new information associated with the option that we add, here we need to know that the head of the list equals the element we are searching for. We express that with a sum type whose left branch is the appropriate equality proposition. Since we define [fmember] to live in [Type], we can insert [Prop] types as needed, because [Prop] is a subtype of [Type].
|
adamc@109
|
382
|
adamc@109
|
383 We know all of the tricks needed to write a first attempt at a [get] function for [fhlist]s.
|
adamc@109
|
384
|
adamc@109
|
385 [[
|
adamc@109
|
386
|
adamc@109
|
387 Fixpoint fhget (ls : list A) : fhlist ls -> fmember ls -> B elm :=
|
adamc@109
|
388 match ls return fhlist ls -> fmember ls -> B elm with
|
adamc@109
|
389 | nil => fun _ idx => match idx with end
|
adamc@109
|
390 | _ :: ls' => fun mls idx =>
|
adamc@109
|
391 match idx with
|
adamc@109
|
392 | inl _ => fst mls
|
adamc@109
|
393 | inr idx' => fhget ls' (snd mls) idx'
|
adamc@109
|
394 end
|
adamc@109
|
395 end.
|
adamc@109
|
396
|
adamc@109
|
397 Only one problem remains. The expression [fst mls] is not known to have the proper type. To demonstrate that it does, we need to use the proof available in the [inl] case of the inner [match]. *)
|
adamc@109
|
398
|
adamc@109
|
399 Fixpoint fhget (ls : list A) : fhlist ls -> fmember ls -> B elm :=
|
adamc@109
|
400 match ls return fhlist ls -> fmember ls -> B elm with
|
adamc@109
|
401 | nil => fun _ idx => match idx with end
|
adamc@109
|
402 | _ :: ls' => fun mls idx =>
|
adamc@109
|
403 match idx with
|
adamc@109
|
404 | inl pf => match pf with
|
adamc@109
|
405 | refl_equal => fst mls
|
adamc@109
|
406 end
|
adamc@109
|
407 | inr idx' => fhget ls' (snd mls) idx'
|
adamc@109
|
408 end
|
adamc@109
|
409 end.
|
adamc@109
|
410
|
adamc@109
|
411 (** By pattern-matching on the equality proof [pf], we make that equality known to the type-checker. Exactly why this works can be seen by studying the definition of equality. *)
|
adamc@109
|
412
|
adamc@109
|
413 Print eq.
|
adamc@109
|
414 (** [[
|
adamc@109
|
415
|
adamc@109
|
416 Inductive eq (A : Type) (x : A) : A -> Prop := refl_equal : x = x
|
adamc@109
|
417 ]]
|
adamc@109
|
418
|
adamc@109
|
419 In a proposition [x = y], we see that [x] is a parameter and [y] is a regular argument. The type of the constructor [refl_equal] shows that [y] can only ever be instantiated to [x]. Thus, within a pattern-match with [refl_equal], occurrences of [y] can be replaced with occurrences of [x] for typing purposes. All examples of similar dependent pattern matching that we have seen before require explicit annotations, but Coq implements a special case of annotation inference for matches on equality proofs. *)
|
adamc@109
|
420 End fhlist.
|
adamc@110
|
421
|
adamc@110
|
422
|
adamc@110
|
423 (** * Data Structures as Index Functions *)
|
adamc@110
|
424
|
adamc@110
|
425 (** Indexed lists can be useful in defining other inductive types with constructors that take variable numbers of arguments. In this section, we consider parameterized trees with arbitrary branching factor. *)
|
adamc@110
|
426
|
adamc@110
|
427 Section tree.
|
adamc@110
|
428 Variable A : Set.
|
adamc@110
|
429
|
adamc@110
|
430 Inductive tree : Set :=
|
adamc@110
|
431 | Leaf : A -> tree
|
adamc@110
|
432 | Node : forall n, ilist tree n -> tree.
|
adamc@110
|
433 End tree.
|
adamc@110
|
434
|
adamc@110
|
435 (** Every [Node] of a [tree] has a natural number argument, which gives the number of child trees in the second argument, typed with [ilist]. We can define two operations on trees of naturals: summing their elements and incrementing their elements. It is useful to define a generic fold function on [ilist]s first. *)
|
adamc@110
|
436
|
adamc@110
|
437 Section ifoldr.
|
adamc@110
|
438 Variables A B : Set.
|
adamc@110
|
439 Variable f : A -> B -> B.
|
adamc@110
|
440 Variable i : B.
|
adamc@110
|
441
|
adamc@110
|
442 Fixpoint ifoldr n (ls : ilist A n) {struct ls} : B :=
|
adamc@110
|
443 match ls with
|
adamc@110
|
444 | Nil => i
|
adamc@110
|
445 | Cons _ x ls' => f x (ifoldr ls')
|
adamc@110
|
446 end.
|
adamc@110
|
447 End ifoldr.
|
adamc@110
|
448
|
adamc@110
|
449 Fixpoint sum (t : tree nat) : nat :=
|
adamc@110
|
450 match t with
|
adamc@110
|
451 | Leaf n => n
|
adamc@110
|
452 | Node _ ls => ifoldr (fun t' n => sum t' + n) O ls
|
adamc@110
|
453 end.
|
adamc@110
|
454
|
adamc@110
|
455 Fixpoint inc (t : tree nat) : tree nat :=
|
adamc@110
|
456 match t with
|
adamc@110
|
457 | Leaf n => Leaf (S n)
|
adamc@110
|
458 | Node _ ls => Node (imap inc ls)
|
adamc@110
|
459 end.
|
adamc@110
|
460
|
adamc@110
|
461 (** Now we might like to prove that [inc] does not decrease a tree's [sum]. *)
|
adamc@110
|
462
|
adamc@110
|
463 Theorem sum_inc : forall t, sum (inc t) >= sum t.
|
adamc@110
|
464 induction t; crush.
|
adamc@110
|
465 (** [[
|
adamc@110
|
466
|
adamc@110
|
467 n : nat
|
adamc@110
|
468 i : ilist (tree nat) n
|
adamc@110
|
469 ============================
|
adamc@110
|
470 ifoldr (fun (t' : tree nat) (n0 : nat) => sum t' + n0) 0 (imap inc i) >=
|
adamc@110
|
471 ifoldr (fun (t' : tree nat) (n0 : nat) => sum t' + n0) 0 i
|
adamc@110
|
472 ]]
|
adamc@110
|
473
|
adamc@110
|
474 We are left with a single subgoal which does not seem provable directly. This is the same problem that we met in Chapter 3 with other nested inductive types. *)
|
adamc@110
|
475
|
adamc@110
|
476 Check tree_ind.
|
adamc@110
|
477 (** [[
|
adamc@110
|
478
|
adamc@110
|
479 tree_ind
|
adamc@110
|
480 : forall (A : Set) (P : tree A -> Prop),
|
adamc@110
|
481 (forall a : A, P (Leaf a)) ->
|
adamc@110
|
482 (forall (n : nat) (i : ilist (tree A) n), P (Node i)) ->
|
adamc@110
|
483 forall t : tree A, P t
|
adamc@110
|
484 ]]
|
adamc@110
|
485
|
adamc@110
|
486 The automatically-generated induction principle is too weak. For the [Node] case, it gives us no inductive hypothesis. We could write our own induction principle, as we did in Chapter 3, but there is an easier way, if we are willing to alter the definition of [tree]. *)
|
adamc@110
|
487 Abort.
|
adamc@110
|
488
|
adamc@110
|
489 Reset tree.
|
adamc@110
|
490
|
adamc@110
|
491 (** First, let us try using our recursive definition of [ilist]s instead of the inductive version. *)
|
adamc@110
|
492
|
adamc@110
|
493 Section tree.
|
adamc@110
|
494 Variable A : Set.
|
adamc@110
|
495
|
adamc@110
|
496 (** [[
|
adamc@110
|
497
|
adamc@110
|
498 Inductive tree : Set :=
|
adamc@110
|
499 | Leaf : A -> tree
|
adamc@110
|
500 | Node : forall n, filist tree n -> tree.
|
adamc@110
|
501
|
adamc@110
|
502 [[
|
adamc@110
|
503
|
adamc@110
|
504 Error: Non strictly positive occurrence of "tree" in
|
adamc@110
|
505 "forall n : nat, filist tree n -> tree"
|
adamc@110
|
506 ]]
|
adamc@110
|
507
|
adamc@110
|
508 The special-case rule for nested datatypes only works with nested uses of other inductive types, which could be replaced with uses of new mutually-inductive types. We defined [filist] recursively, so it may not be used for nested recursion.
|
adamc@110
|
509
|
adamc@110
|
510 Our final solution uses yet another of the inductive definition techniques introduced in Chapter 3, reflexive types. Instead of merely using [index] to get elements out of [ilist], we can %\textit{%#<i>#define#</i>#%}% [ilist] in terms of [index]. For the reasons outlined above, it turns out to be easier to work with [findex] in place of [index]. *)
|
adamc@110
|
511
|
adamc@110
|
512 Inductive tree : Set :=
|
adamc@110
|
513 | Leaf : A -> tree
|
adamc@110
|
514 | Node : forall n, (findex n -> tree) -> tree.
|
adamc@110
|
515
|
adamc@110
|
516 (** A [Node] is indexed by a natural number [n], and the node's [n] children are represented as a function from [findex n] to trees, which is isomorphic to the [ilist]-based representation that we used above. *)
|
adamc@110
|
517 End tree.
|
adamc@110
|
518
|
adamc@110
|
519 Implicit Arguments Node [A n].
|
adamc@110
|
520
|
adamc@110
|
521 (** We can redefine [sum] and [inc] for our new [tree] type. Again, it is useful to define a generic fold function first. This time, it takes in a function whose range is some [findex] type, and it folds another function over the results of calling the first function at every possible [findex] value. *)
|
adamc@110
|
522
|
adamc@110
|
523 Section rifoldr.
|
adamc@110
|
524 Variables A B : Set.
|
adamc@110
|
525 Variable f : A -> B -> B.
|
adamc@110
|
526 Variable i : B.
|
adamc@110
|
527
|
adamc@110
|
528 Fixpoint rifoldr (n : nat) : (findex n -> A) -> B :=
|
adamc@110
|
529 match n return (findex n -> A) -> B with
|
adamc@110
|
530 | O => fun _ => i
|
adamc@110
|
531 | S n' => fun get => f (get None) (rifoldr n' (fun idx => get (Some idx)))
|
adamc@110
|
532 end.
|
adamc@110
|
533 End rifoldr.
|
adamc@110
|
534
|
adamc@110
|
535 Implicit Arguments rifoldr [A B n].
|
adamc@110
|
536
|
adamc@110
|
537 Fixpoint sum (t : tree nat) : nat :=
|
adamc@110
|
538 match t with
|
adamc@110
|
539 | Leaf n => n
|
adamc@110
|
540 | Node _ f => rifoldr plus O (fun idx => sum (f idx))
|
adamc@110
|
541 end.
|
adamc@110
|
542
|
adamc@110
|
543 Fixpoint inc (t : tree nat) : tree nat :=
|
adamc@110
|
544 match t with
|
adamc@110
|
545 | Leaf n => Leaf (S n)
|
adamc@110
|
546 | Node _ f => Node (fun idx => inc (f idx))
|
adamc@110
|
547 end.
|
adamc@110
|
548
|
adamc@110
|
549 (** Now we are ready to prove the theorem where we got stuck before. We will not need to define any new induction principle, but it %\textit{%#<i>#will#</i>#%}% be helpful to prove some lemmas. *)
|
adamc@110
|
550
|
adamc@110
|
551 Lemma plus_ge : forall x1 y1 x2 y2,
|
adamc@110
|
552 x1 >= x2
|
adamc@110
|
553 -> y1 >= y2
|
adamc@110
|
554 -> x1 + y1 >= x2 + y2.
|
adamc@110
|
555 crush.
|
adamc@110
|
556 Qed.
|
adamc@110
|
557
|
adamc@110
|
558 Lemma sum_inc' : forall n (f1 f2 : findex n -> nat),
|
adamc@110
|
559 (forall idx, f1 idx >= f2 idx)
|
adamc@110
|
560 -> rifoldr plus 0 f1 >= rifoldr plus 0 f2.
|
adamc@110
|
561 Hint Resolve plus_ge.
|
adamc@110
|
562
|
adamc@110
|
563 induction n; crush.
|
adamc@110
|
564 Qed.
|
adamc@110
|
565
|
adamc@110
|
566 Theorem sum_inc : forall t, sum (inc t) >= sum t.
|
adamc@110
|
567 Hint Resolve sum_inc'.
|
adamc@110
|
568
|
adamc@110
|
569 induction t; crush.
|
adamc@110
|
570 Qed.
|
adamc@110
|
571
|
adamc@110
|
572 (** Even if Coq would generate complete induction principles automatically for nested inductive definitions like the one we started with, there would still be advantages to using this style of reflexive encoding. We see one of those advantages in the definition of [inc], where we did not need to use any kind of auxiliary function. In general, reflexive encodings often admit direct implementations of operations that would require recursion if performed with more traditional inductive data structures. *)
|