adamc@83
|
1 (* Copyright (c) 2008, Adam Chlipala
|
adamc@83
|
2 *
|
adamc@83
|
3 * This work is licensed under a
|
adamc@83
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@83
|
5 * Unported License.
|
adamc@83
|
6 * The license text is available at:
|
adamc@83
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@83
|
8 *)
|
adamc@83
|
9
|
adamc@83
|
10 (* begin hide *)
|
adamc@85
|
11 Require Import Arith Bool List.
|
adamc@83
|
12
|
adamc@86
|
13 Require Import Tactics MoreSpecif.
|
adamc@83
|
14
|
adamc@83
|
15 Set Implicit Arguments.
|
adamc@83
|
16 (* end hide *)
|
adamc@83
|
17
|
adamc@83
|
18
|
adamc@83
|
19 (** %\chapter{More Dependent Types}% *)
|
adamc@83
|
20
|
adamc@83
|
21 (** Subset types and their relatives help us integrate verification with programming. Though they reorganize the certified programmer's workflow, they tend not to have deep effects on proofs. We write largely the same proofs as we would for classical verification, with some of the structure moved into the programs themselves. It turns out that, when we use dependent types to their full potential, we warp the development and proving process even more than that, picking up "free theorems" to the extent that often a certified program is hardly more complex than its uncertified counterpart in Haskell or ML.
|
adamc@83
|
22
|
adamc@83
|
23 In particular, we have only scratched the tip of the iceberg that is Coq's inductive definition mechanism. The inductive types we have seen so far have their counterparts in the other proof assistants that we surveyed in Chapter 1. This chapter explores the strange new world of dependent inductive datatypes (that is, dependent inductive types outside [Prop]), a possibility which sets Coq apart from all of the competition not based on type theory. *)
|
adamc@83
|
24
|
adamc@84
|
25
|
adamc@84
|
26 (** * Length-Indexed Lists *)
|
adamc@84
|
27
|
adamc@84
|
28 (** Many introductions to dependent types start out by showing how to use them to eliminate array bounds checks. When the type of an array tells you how many elements it has, your compiler can detect out-of-bounds dereferences statically. Since we are working in a pure functional language, the next best thing is length-indexed lists, which the following code defines. *)
|
adamc@84
|
29
|
adamc@84
|
30 Section ilist.
|
adamc@84
|
31 Variable A : Set.
|
adamc@84
|
32
|
adamc@84
|
33 Inductive ilist : nat -> Set :=
|
adamc@84
|
34 | Nil : ilist O
|
adamc@84
|
35 | Cons : forall n, A -> ilist n -> ilist (S n).
|
adamc@84
|
36
|
adamc@84
|
37 (** We see that, within its section, [ilist] is given type [nat -> Set]. Previously, every inductive type we have seen has either had plain [Set] as its type or has been a predicate with some type ending in [Prop]. The full generality of inductive definitions lets us integrate the expressivity of predicates directly into our normal programming.
|
adamc@84
|
38
|
adamc@84
|
39 The [nat] argument to [ilist] tells us the length of the list. The types of [ilist]'s constructors tell us that a [Nil] list has length [O] and that a [Cons] list has length one greater than the length of its sublist. We may apply [ilist] to any natural number, even natural numbers that are only known at runtime. It is this breaking of the %\textit{%#<i>#phase distinction#</i>#%}% that characterizes [ilist] as %\textit{%#<i>#dependently typed#</i>#%}%.
|
adamc@84
|
40
|
adamc@84
|
41 In expositions of list types, we usually see the length function defined first, but here that would not be a very productive function to code. Instead, let us implement list concatenation.
|
adamc@84
|
42
|
adamc@84
|
43 [[
|
adamc@84
|
44 Fixpoint app n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) {struct ls1} : ilist (n1 + n2) :=
|
adamc@84
|
45 match ls1 with
|
adamc@84
|
46 | Nil => ls2
|
adamc@84
|
47 | Cons _ x ls1' => Cons x (app ls1' ls2)
|
adamc@84
|
48 end.
|
adamc@84
|
49
|
adamc@84
|
50 Coq is not happy with this definition:
|
adamc@84
|
51
|
adamc@84
|
52 [[
|
adamc@84
|
53 The term "ls2" has type "ilist n2" while it is expected to have type
|
adamc@84
|
54 "ilist (?14 + n2)"
|
adamc@84
|
55 ]]
|
adamc@84
|
56
|
adamc@84
|
57 We see the return of a problem we have considered before. Without explicit annotations, Coq does not enrich our typing assumptions in the branches of a [match] expression. It is clear that the unification variable [?14] should be resolved to 0 in this context, so that we have [0 + n2] reducing to [n2], but Coq does not realize that. We cannot fix the problem using just the simple [return] clauses we applied in the last chapter. We need to combine a [return] clause with a new kind of annotation, an [in] clause. *)
|
adamc@84
|
58
|
adamc@84
|
59 Fixpoint app n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) {struct ls1} : ilist (n1 + n2) :=
|
adamc@84
|
60 match ls1 in (ilist n1) return (ilist (n1 + n2)) with
|
adamc@84
|
61 | Nil => ls2
|
adamc@84
|
62 | Cons _ x ls1' => Cons x (app ls1' ls2)
|
adamc@84
|
63 end.
|
adamc@84
|
64
|
adamc@84
|
65 (** This version of [app] passes the type checker. Using [return] alone allowed us to express a dependency of the [match] result type on the %\textit{%#<i>#value#</i>#%}% of the discriminee. What [in] adds to our arsenal is a way of expressing a dependency on the %\textit{%#<i>#type#</i>#%}% of the discriminee. Specifically, the [n1] in the [in] clause above is a %\textit{%#<i>#binding occurrence#</i>#%}% whose scope is the [return] clause.
|
adamc@84
|
66
|
adamc@84
|
67 We may use [in] clauses only to bind names for the arguments of an inductive type family. That is, each [in] clause must be an inductive type family name applied to a sequence of underscores and variable names of the proper length. The positions for %\textit{%#<i>#parameters#</i>#%}% to the type family must all be underscores. Parameters are those arguments declared with section variables or with entries to the left of the first colon in an inductive definition. They cannot vary depending on which constructor was used to build the discriminee, so Coq prohibits pointless matches on them. It is those arguments defined in the type to the right of the colon that we may name with [in] clauses.
|
adamc@84
|
68
|
adamc@84
|
69 Our [app] function could be typed in so-called %\textit{%#<i>#stratified#</i>#%}% type systems, which avoid true dependency. We could consider the length indices to lists to live in a separate, compile-time-only universe from the lists themselves. Our next example would be harder to implement in a stratified system. We write an injection function from regular lists to length-indexed lists. A stratified implementation would need to duplicate the definition of lists across compile-time and run-time versions, and the run-time versions would need to be indexed by the compile-time versions. *)
|
adamc@84
|
70
|
adamc@84
|
71 Fixpoint inject (ls : list A) : ilist (length ls) :=
|
adamc@84
|
72 match ls return (ilist (length ls)) with
|
adamc@84
|
73 | nil => Nil
|
adamc@84
|
74 | h :: t => Cons h (inject t)
|
adamc@84
|
75 end.
|
adamc@84
|
76
|
adamc@84
|
77 (** We can define an inverse conversion and prove that it really is an inverse. *)
|
adamc@84
|
78
|
adamc@84
|
79 Fixpoint unject n (ls : ilist n) {struct ls} : list A :=
|
adamc@84
|
80 match ls with
|
adamc@84
|
81 | Nil => nil
|
adamc@84
|
82 | Cons _ h t => h :: unject t
|
adamc@84
|
83 end.
|
adamc@84
|
84
|
adamc@84
|
85 Theorem inject_inverse : forall ls, unject (inject ls) = ls.
|
adamc@84
|
86 induction ls; crush.
|
adamc@84
|
87 Qed.
|
adamc@84
|
88
|
adamc@84
|
89 (** Now let us attempt a function that is surprisingly tricky to write. In ML, the list head function raises an exception when passed an empty list. With length-indexed lists, we can rule out such invalid calls statically, and here is a first attempt at doing so.
|
adamc@84
|
90
|
adamc@84
|
91 [[
|
adamc@84
|
92 Definition hd n (ls : ilist (S n)) : A :=
|
adamc@84
|
93 match ls with
|
adamc@84
|
94 | Nil => ???
|
adamc@84
|
95 | Cons _ h _ => h
|
adamc@84
|
96 end.
|
adamc@84
|
97
|
adamc@84
|
98 It is not clear what to write for the [Nil] case, so we are stuck before we even turn our function over to the type checker. We could try omitting the [Nil] case:
|
adamc@84
|
99
|
adamc@84
|
100 [[
|
adamc@84
|
101 Definition hd n (ls : ilist (S n)) : A :=
|
adamc@84
|
102 match ls with
|
adamc@84
|
103 | Cons _ h _ => h
|
adamc@84
|
104 end.
|
adamc@84
|
105
|
adamc@84
|
106 [[
|
adamc@84
|
107 Error: Non exhaustive pattern-matching: no clause found for pattern Nil
|
adamc@84
|
108 ]]
|
adamc@84
|
109
|
adamc@84
|
110 Unlike in ML, we cannot use inexhaustive pattern matching, becuase there is no conception of a %\texttt{%#<tt>#Match#</tt>#%}% exception to be thrown. We might try using an [in] clause somehow.
|
adamc@84
|
111
|
adamc@84
|
112 [[
|
adamc@84
|
113 Definition hd n (ls : ilist (S n)) : A :=
|
adamc@84
|
114 match ls in (ilist (S n)) with
|
adamc@84
|
115 | Cons _ h _ => h
|
adamc@84
|
116 end.
|
adamc@84
|
117
|
adamc@84
|
118 [[
|
adamc@84
|
119 Error: The reference n was not found in the current environment
|
adamc@84
|
120 ]]
|
adamc@84
|
121
|
adamc@84
|
122 In this and other cases, we feel like we want [in] clauses with type family arguments that are not variables. Unfortunately, Coq only supports variables in those positions. A completely general mechanism could only be supported with a solution to the problem of higher-order unification, which is undecidable. There %\textit{%#<i>#are#</i>#%}% useful heuristics for handling non-variable indices which are gradually making their way into Coq, but we will spend some time in this and the next few chapters on effective pattern matching on dependent types using only the primitive [match] annotations.
|
adamc@84
|
123
|
adamc@84
|
124 Our final, working attempt at [hd] uses an auxiliary function and a surprising [return] annotation. *)
|
adamc@84
|
125
|
adamc@84
|
126 Definition hd' n (ls : ilist n) :=
|
adamc@84
|
127 match ls in (ilist n) return (match n with O => unit | S _ => A end) with
|
adamc@84
|
128 | Nil => tt
|
adamc@84
|
129 | Cons _ h _ => h
|
adamc@84
|
130 end.
|
adamc@84
|
131
|
adamc@84
|
132 Definition hd n (ls : ilist (S n)) : A := hd' ls.
|
adamc@84
|
133
|
adamc@84
|
134 (** We annotate our main [match] with a type that is itself a [match]. We write that the function [hd'] returns [unit] when the list is empty and returns the carried type [A] in all other cases. In the definition of [hd], we just call [hd']. Because the index of [ls] is known to be nonzero, the type checker reduces the [match] in the type of [hd'] to [A]. *)
|
adamc@84
|
135
|
adamc@84
|
136 End ilist.
|
adamc@85
|
137
|
adamc@85
|
138
|
adamc@85
|
139 (** * A Tagless Interpreter *)
|
adamc@85
|
140
|
adamc@85
|
141 (** A favorite example for motivating the power of functional programming is implementation of a simple expression language interpreter. In ML and Haskell, such interpreters are often implemented using an algebraic datatype of values, where at many points it is checked that a value was built with the right constructor of the value type. With dependent types, we can implement a %\textit{%#<i>#tagless#</i>#%}% interpreter that both removes this source of runtime ineffiency and gives us more confidence that our implementation is correct. *)
|
adamc@85
|
142
|
adamc@85
|
143 Inductive type : Set :=
|
adamc@85
|
144 | Nat : type
|
adamc@85
|
145 | Bool : type
|
adamc@85
|
146 | Prod : type -> type -> type.
|
adamc@85
|
147
|
adamc@85
|
148 Inductive exp : type -> Set :=
|
adamc@85
|
149 | NConst : nat -> exp Nat
|
adamc@85
|
150 | Plus : exp Nat -> exp Nat -> exp Nat
|
adamc@85
|
151 | Eq : exp Nat -> exp Nat -> exp Bool
|
adamc@85
|
152
|
adamc@85
|
153 | BConst : bool -> exp Bool
|
adamc@85
|
154 | And : exp Bool -> exp Bool -> exp Bool
|
adamc@85
|
155 | If : forall t, exp Bool -> exp t -> exp t -> exp t
|
adamc@85
|
156
|
adamc@85
|
157 | Pair : forall t1 t2, exp t1 -> exp t2 -> exp (Prod t1 t2)
|
adamc@85
|
158 | Fst : forall t1 t2, exp (Prod t1 t2) -> exp t1
|
adamc@85
|
159 | Snd : forall t1 t2, exp (Prod t1 t2) -> exp t2.
|
adamc@85
|
160
|
adamc@85
|
161 (** We have a standard algebraic datatype [type], defining a type language of naturals, booleans, and product (pair) types. Then we have the indexed inductive type [exp], where the argument to [exp] tells us the encoded type of an expression. In effect, we are defining the typing rules for expressions simultaneously with the syntax.
|
adamc@85
|
162
|
adamc@85
|
163 We can give types and expressions semantics in a new style, based critically on the chance for %\textit{%#<i>#type-level computation#</i>#%}%. *)
|
adamc@85
|
164
|
adamc@85
|
165 Fixpoint typeDenote (t : type) : Set :=
|
adamc@85
|
166 match t with
|
adamc@85
|
167 | Nat => nat
|
adamc@85
|
168 | Bool => bool
|
adamc@85
|
169 | Prod t1 t2 => typeDenote t1 * typeDenote t2
|
adamc@85
|
170 end%type.
|
adamc@85
|
171
|
adamc@85
|
172 (** [typeDenote] compiles types of our object language into "native" Coq types. It is deceptively easy to implement. The only new thing we see is the [%type] annotation, which tells Coq to parse the [match] expression using the notations associated with types. Without this annotation, the [*] would be interpreted as multiplication on naturals, rather than as the product type constructor. [type] is one example of an identifer bound to a %\textit{%#<i>#notation scope#</i>#%}%. We will deal more explicitly with notations and notation scopes in later chapters.
|
adamc@85
|
173
|
adamc@85
|
174 We can define a function [expDenote] that is typed in terms of [typeDenote]. *)
|
adamc@85
|
175
|
adamc@85
|
176 Fixpoint expDenote t (e : exp t) {struct e} : typeDenote t :=
|
adamc@85
|
177 match e in (exp t) return (typeDenote t) with
|
adamc@85
|
178 | NConst n => n
|
adamc@85
|
179 | Plus e1 e2 => expDenote e1 + expDenote e2
|
adamc@85
|
180 | Eq e1 e2 => if eq_nat_dec (expDenote e1) (expDenote e2) then true else false
|
adamc@85
|
181
|
adamc@85
|
182 | BConst b => b
|
adamc@85
|
183 | And e1 e2 => expDenote e1 && expDenote e2
|
adamc@85
|
184 | If _ e' e1 e2 => if expDenote e' then expDenote e1 else expDenote e2
|
adamc@85
|
185
|
adamc@85
|
186 | Pair _ _ e1 e2 => (expDenote e1, expDenote e2)
|
adamc@85
|
187 | Fst _ _ e' => fst (expDenote e')
|
adamc@85
|
188 | Snd _ _ e' => snd (expDenote e')
|
adamc@85
|
189 end.
|
adamc@85
|
190
|
adamc@85
|
191 (** Again we find that an [in] annotation is essential for type-checking a function. Besides that, the definition is routine. In fact, it is less complicated than what we would write in ML or Haskell 98, since we do not need to worry about pushing final values in and out of an algebraic datatype. The only unusual thing is the use of an expression of the form [if E then true else false] in the [Eq] case. Remember that [eq_nat_dec] has a rich dependent type, rather than a simple boolean type. Coq's native [if] is overloaded to work on a test of any two-constructor type, so we can use [if] to build a simple boolean from the [sumbool] that [eq_nat_dec] returns.
|
adamc@85
|
192
|
adamc@85
|
193 We can implement our old favorite, a constant folding function, and prove it correct. It will be useful to write a function [pairOut] that checks if an [exp] of [Prod] type is a pair, returning its two components if so. Unsurprisingly, a first attempt leads to a type error.
|
adamc@85
|
194
|
adamc@85
|
195 [[
|
adamc@85
|
196 Definition pairOut t1 t2 (e : exp (Prod t1 t2)) : option (exp t1 * exp t2) :=
|
adamc@85
|
197 match e in (exp (Prod t1 t2)) return option (exp t1 * exp t2) with
|
adamc@85
|
198 | Pair _ _ e1 e2 => Some (e1, e2)
|
adamc@85
|
199 | _ => None
|
adamc@85
|
200 end.
|
adamc@85
|
201
|
adamc@85
|
202 [[
|
adamc@85
|
203 Error: The reference t2 was not found in the current environment
|
adamc@85
|
204 ]]
|
adamc@85
|
205
|
adamc@85
|
206 We run again into the problem of not being able to specify non-variable arguments in [in] clauses. The problem would just be hopeless without a use of an [in] clause, though, since the result type of the [match] depends on an argument to [exp]. Our solution will be to use a more general type, as we did for [hd]. First, we define a type-valued function to use in assigning a type to [pairOut]. *)
|
adamc@85
|
207
|
adamc@85
|
208 Definition pairOutType (t : type) :=
|
adamc@85
|
209 match t with
|
adamc@85
|
210 | Prod t1 t2 => option (exp t1 * exp t2)
|
adamc@85
|
211 | _ => unit
|
adamc@85
|
212 end.
|
adamc@85
|
213
|
adamc@85
|
214 (** When passed a type that is a product, [pairOutType] returns our final desired type. On any other input type, [pairOutType] returns [unit], since we do not care about extracting components of non-pairs. Now we can write another helper function to provide the default behavior of [pairOut], which we will apply for inputs that are not literal pairs. *)
|
adamc@85
|
215
|
adamc@85
|
216 Definition pairOutDefault (t : type) :=
|
adamc@85
|
217 match t return (pairOutType t) with
|
adamc@85
|
218 | Prod _ _ => None
|
adamc@85
|
219 | _ => tt
|
adamc@85
|
220 end.
|
adamc@85
|
221
|
adamc@85
|
222 (** Now [pairOut] is deceptively easy to write. *)
|
adamc@85
|
223
|
adamc@85
|
224 Definition pairOut t (e : exp t) :=
|
adamc@85
|
225 match e in (exp t) return (pairOutType t) with
|
adamc@85
|
226 | Pair _ _ e1 e2 => Some (e1, e2)
|
adamc@85
|
227 | _ => pairOutDefault _
|
adamc@85
|
228 end.
|
adamc@85
|
229
|
adamc@85
|
230 (** There is one important subtlety in this definition. Coq allows us to use convenient ML-style pattern matching notation, but, internally and in proofs, we see that patterns are expanded out completely, matching one level of inductive structure at a time. Thus, the default case in the [match] above expands out to one case for each constructor of [exp] besides [Pair], and the underscore in [pairOutDefault _] is resolved differently in each case. From an ML or Haskell programmer's perspective, what we have here is type inference determining which code is run (returning either [None] or [tt]), which goes beyond what is possible with type inference guiding parametric polymorphism in Hindley-Milner languages, but is similar to what goes on with Haskell type classes.
|
adamc@85
|
231
|
adamc@85
|
232 With [pairOut] available, we can write [cfold] in a straightforward way. There are really no surprises beyond that Coq verifies that this code has such an expressive type, given the small annotation burden. *)
|
adamc@85
|
233
|
adamc@85
|
234 Fixpoint cfold t (e : exp t) {struct e} : exp t :=
|
adamc@85
|
235 match e in (exp t) return (exp t) with
|
adamc@85
|
236 | NConst n => NConst n
|
adamc@85
|
237 | Plus e1 e2 =>
|
adamc@85
|
238 let e1' := cfold e1 in
|
adamc@85
|
239 let e2' := cfold e2 in
|
adamc@85
|
240 match e1', e2' with
|
adamc@85
|
241 | NConst n1, NConst n2 => NConst (n1 + n2)
|
adamc@85
|
242 | _, _ => Plus e1' e2'
|
adamc@85
|
243 end
|
adamc@85
|
244 | Eq e1 e2 =>
|
adamc@85
|
245 let e1' := cfold e1 in
|
adamc@85
|
246 let e2' := cfold e2 in
|
adamc@85
|
247 match e1', e2' with
|
adamc@85
|
248 | NConst n1, NConst n2 => BConst (if eq_nat_dec n1 n2 then true else false)
|
adamc@85
|
249 | _, _ => Eq e1' e2'
|
adamc@85
|
250 end
|
adamc@85
|
251
|
adamc@85
|
252 | BConst b => BConst b
|
adamc@85
|
253 | And e1 e2 =>
|
adamc@85
|
254 let e1' := cfold e1 in
|
adamc@85
|
255 let e2' := cfold e2 in
|
adamc@85
|
256 match e1', e2' with
|
adamc@85
|
257 | BConst b1, BConst b2 => BConst (b1 && b2)
|
adamc@85
|
258 | _, _ => And e1' e2'
|
adamc@85
|
259 end
|
adamc@85
|
260 | If _ e e1 e2 =>
|
adamc@85
|
261 let e' := cfold e in
|
adamc@85
|
262 match e' with
|
adamc@85
|
263 | BConst true => cfold e1
|
adamc@85
|
264 | BConst false => cfold e2
|
adamc@85
|
265 | _ => If e' (cfold e1) (cfold e2)
|
adamc@85
|
266 end
|
adamc@85
|
267
|
adamc@85
|
268 | Pair _ _ e1 e2 => Pair (cfold e1) (cfold e2)
|
adamc@85
|
269 | Fst _ _ e =>
|
adamc@85
|
270 let e' := cfold e in
|
adamc@85
|
271 match pairOut e' with
|
adamc@85
|
272 | Some p => fst p
|
adamc@85
|
273 | None => Fst e'
|
adamc@85
|
274 end
|
adamc@85
|
275 | Snd _ _ e =>
|
adamc@85
|
276 let e' := cfold e in
|
adamc@85
|
277 match pairOut e' with
|
adamc@85
|
278 | Some p => snd p
|
adamc@85
|
279 | None => Snd e'
|
adamc@85
|
280 end
|
adamc@85
|
281 end.
|
adamc@85
|
282
|
adamc@85
|
283 (** The correctness theorem for [cfold] turns out to be easy to prove, once we get over one serious hurdle. *)
|
adamc@85
|
284
|
adamc@85
|
285 Theorem cfold_correct : forall t (e : exp t), expDenote e = expDenote (cfold e).
|
adamc@85
|
286 induction e; crush.
|
adamc@85
|
287
|
adamc@85
|
288 (** The first remaining subgoal is:
|
adamc@85
|
289
|
adamc@85
|
290 [[
|
adamc@85
|
291
|
adamc@85
|
292 expDenote (cfold e1) + expDenote (cfold e2) =
|
adamc@85
|
293 expDenote
|
adamc@85
|
294 match cfold e1 with
|
adamc@85
|
295 | NConst n1 =>
|
adamc@85
|
296 match cfold e2 with
|
adamc@85
|
297 | NConst n2 => NConst (n1 + n2)
|
adamc@85
|
298 | Plus _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
299 | Eq _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
300 | BConst _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
301 | And _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
302 | If _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
303 | Pair _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
304 | Fst _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
305 | Snd _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
306 end
|
adamc@85
|
307 | Plus _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
308 | Eq _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
309 | BConst _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
310 | And _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
311 | If _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
312 | Pair _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
313 | Fst _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
314 | Snd _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
315 end
|
adamc@85
|
316 ]]
|
adamc@85
|
317
|
adamc@85
|
318 We would like to do a case analysis on [cfold e1], and we attempt that in the way that has worked so far.
|
adamc@85
|
319
|
adamc@85
|
320 [[
|
adamc@85
|
321 destruct (cfold e1).
|
adamc@85
|
322
|
adamc@85
|
323 [[
|
adamc@85
|
324 User error: e1 is used in hypothesis e
|
adamc@85
|
325 ]]
|
adamc@85
|
326
|
adamc@85
|
327 Coq gives us another cryptic error message. Like so many others, this one basically means that Coq is not able to build some proof about dependent types. It is hard to generate helpful and specific error messages for problems like this, since that would require some kind of understanding of the dependency structure of a piece of code. We will encounter many examples of case-specific tricks for recovering from errors like this one.
|
adamc@85
|
328
|
adamc@85
|
329 For our current proof, we can use a tactic [dep_destruct] defined in the book [Tactics] module. General elimination/inversion of dependently-typed hypotheses is undecidable, since it must be implemented with [match] expressions that have the restriction on [in] clauses that we have already discussed. [dep_destruct] makes a best effort to handle some common cases. In a future chapter, we will learn about the explicit manipulation of equality proofs that is behind [dep_destruct]'s implementation in Ltac, but for now, we treat it as a useful black box. *)
|
adamc@85
|
330
|
adamc@85
|
331 dep_destruct (cfold e1).
|
adamc@85
|
332
|
adamc@85
|
333 (** This successfully breaks the subgoal into 5 new subgoals, one for each constructor of [exp] that could produce an [exp Nat]. Note that [dep_destruct] is successful in ruling out the other cases automatically, in effect automating some of the work that we have done manually in implementing functions like [hd] and [pairOut].
|
adamc@85
|
334
|
adamc@85
|
335 This is the only new trick we need to learn to complete the proof. We can back up and give a short, automated proof. *)
|
adamc@85
|
336
|
adamc@85
|
337 Restart.
|
adamc@85
|
338
|
adamc@85
|
339 induction e; crush;
|
adamc@85
|
340 repeat (match goal with
|
adamc@85
|
341 | [ |- context[cfold ?E] ] => dep_destruct (cfold E)
|
adamc@85
|
342 | [ |- (if ?E then _ else _) = _ ] => destruct E
|
adamc@85
|
343 end; crush).
|
adamc@85
|
344 Qed.
|
adamc@86
|
345
|
adamc@86
|
346
|
adamc@86
|
347 (** * A Certified Regular Expression Matcher *)
|
adamc@86
|
348
|
adamc@86
|
349 Require Import Ascii String.
|
adamc@86
|
350 Open Scope string_scope.
|
adamc@86
|
351
|
adamc@91
|
352 Section star.
|
adamc@91
|
353 Variable P : string -> Prop.
|
adamc@91
|
354
|
adamc@91
|
355 Inductive star : string -> Prop :=
|
adamc@91
|
356 | Empty : star ""
|
adamc@91
|
357 | Iter : forall s1 s2,
|
adamc@91
|
358 P s1
|
adamc@91
|
359 -> star s2
|
adamc@91
|
360 -> star (s1 ++ s2).
|
adamc@91
|
361 End star.
|
adamc@91
|
362
|
adamc@89
|
363 Inductive regexp : (string -> Prop) -> Type :=
|
adamc@86
|
364 | Char : forall ch : ascii,
|
adamc@86
|
365 regexp (fun s => s = String ch "")
|
adamc@86
|
366 | Concat : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
|
adamc@87
|
367 regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2)
|
adamc@87
|
368 | Or : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
|
adamc@91
|
369 regexp (fun s => P1 s \/ P2 s)
|
adamc@91
|
370 | Star : forall P (r : regexp P),
|
adamc@91
|
371 regexp (star P).
|
adamc@86
|
372
|
adamc@86
|
373 Open Scope specif_scope.
|
adamc@86
|
374
|
adamc@86
|
375 Lemma length_emp : length "" <= 0.
|
adamc@86
|
376 crush.
|
adamc@86
|
377 Qed.
|
adamc@86
|
378
|
adamc@86
|
379 Lemma append_emp : forall s, s = "" ++ s.
|
adamc@86
|
380 crush.
|
adamc@86
|
381 Qed.
|
adamc@86
|
382
|
adamc@86
|
383 Ltac substring :=
|
adamc@86
|
384 crush;
|
adamc@86
|
385 repeat match goal with
|
adamc@86
|
386 | [ |- context[match ?N with O => _ | S _ => _ end] ] => destruct N; crush
|
adamc@86
|
387 end.
|
adamc@86
|
388
|
adamc@86
|
389 Lemma substring_le : forall s n m,
|
adamc@86
|
390 length (substring n m s) <= m.
|
adamc@86
|
391 induction s; substring.
|
adamc@86
|
392 Qed.
|
adamc@86
|
393
|
adamc@86
|
394 Lemma substring_all : forall s,
|
adamc@86
|
395 substring 0 (length s) s = s.
|
adamc@86
|
396 induction s; substring.
|
adamc@86
|
397 Qed.
|
adamc@86
|
398
|
adamc@86
|
399 Lemma substring_none : forall s n,
|
adamc@86
|
400 substring n 0 s = EmptyString.
|
adamc@86
|
401 induction s; substring.
|
adamc@86
|
402 Qed.
|
adamc@86
|
403
|
adamc@86
|
404 Hint Rewrite substring_all substring_none : cpdt.
|
adamc@86
|
405
|
adamc@86
|
406 Lemma substring_split : forall s m,
|
adamc@86
|
407 substring 0 m s ++ substring m (length s - m) s = s.
|
adamc@86
|
408 induction s; substring.
|
adamc@86
|
409 Qed.
|
adamc@86
|
410
|
adamc@86
|
411 Lemma length_app1 : forall s1 s2,
|
adamc@86
|
412 length s1 <= length (s1 ++ s2).
|
adamc@86
|
413 induction s1; crush.
|
adamc@86
|
414 Qed.
|
adamc@86
|
415
|
adamc@86
|
416 Hint Resolve length_emp append_emp substring_le substring_split length_app1.
|
adamc@86
|
417
|
adamc@86
|
418 Lemma substring_app_fst : forall s2 s1 n,
|
adamc@86
|
419 length s1 = n
|
adamc@86
|
420 -> substring 0 n (s1 ++ s2) = s1.
|
adamc@86
|
421 induction s1; crush.
|
adamc@86
|
422 Qed.
|
adamc@86
|
423
|
adamc@86
|
424 Lemma substring_app_snd : forall s2 s1 n,
|
adamc@86
|
425 length s1 = n
|
adamc@86
|
426 -> substring n (length (s1 ++ s2) - n) (s1 ++ s2) = s2.
|
adamc@86
|
427 Hint Rewrite <- minus_n_O : cpdt.
|
adamc@86
|
428
|
adamc@86
|
429 induction s1; crush.
|
adamc@86
|
430 Qed.
|
adamc@86
|
431
|
adamc@91
|
432 Hint Rewrite substring_app_fst substring_app_snd using (trivial; fail) : cpdt.
|
adamc@86
|
433
|
adamc@86
|
434 Section split.
|
adamc@86
|
435 Variables P1 P2 : string -> Prop.
|
adamc@91
|
436 Variable P1_dec : forall s, {P1 s} + { ~P1 s}.
|
adamc@91
|
437 Variable P2_dec : forall s, {P2 s} + { ~P2 s}.
|
adamc@86
|
438
|
adamc@86
|
439 Variable s : string.
|
adamc@86
|
440
|
adamc@86
|
441 Definition split' (n : nat) : n <= length s
|
adamc@86
|
442 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
|
adamc@86
|
443 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~P1 s1 \/ ~P2 s2}.
|
adamc@86
|
444 refine (fix F (n : nat) : n <= length s
|
adamc@86
|
445 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
|
adamc@86
|
446 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~P1 s1 \/ ~P2 s2} :=
|
adamc@86
|
447 match n return n <= length s
|
adamc@86
|
448 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
|
adamc@86
|
449 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~P1 s1 \/ ~P2 s2} with
|
adamc@86
|
450 | O => fun _ => Reduce (P1_dec "" && P2_dec s)
|
adamc@86
|
451 | S n' => fun _ => (P1_dec (substring 0 (S n') s) && P2_dec (substring (S n') (length s - S n') s))
|
adamc@86
|
452 || F n' _
|
adamc@86
|
453 end); clear F; crush; eauto 7;
|
adamc@86
|
454 match goal with
|
adamc@86
|
455 | [ _ : length ?S <= 0 |- _ ] => destruct S
|
adamc@86
|
456 | [ _ : length ?S' <= S ?N |- _ ] =>
|
adamc@86
|
457 generalize (eq_nat_dec (length S') (S N)); destruct 1
|
adamc@86
|
458 end; crush.
|
adamc@86
|
459 Defined.
|
adamc@86
|
460
|
adamc@86
|
461 Definition split : {exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2}
|
adamc@86
|
462 + {forall s1 s2, s = s1 ++ s2 -> ~P1 s1 \/ ~P2 s2}.
|
adamc@86
|
463 refine (Reduce (split' (n := length s) _)); crush; eauto.
|
adamc@86
|
464 Defined.
|
adamc@86
|
465 End split.
|
adamc@86
|
466
|
adamc@86
|
467 Implicit Arguments split [P1 P2].
|
adamc@86
|
468
|
adamc@91
|
469 Lemma app_empty_end : forall s, s ++ "" = s.
|
adamc@91
|
470 induction s; crush.
|
adamc@91
|
471 Qed.
|
adamc@91
|
472
|
adamc@91
|
473 Hint Rewrite app_empty_end : cpdt.
|
adamc@91
|
474
|
adamc@91
|
475 Lemma substring_self : forall s n,
|
adamc@91
|
476 n <= 0
|
adamc@91
|
477 -> substring n (length s - n) s = s.
|
adamc@91
|
478 induction s; substring.
|
adamc@91
|
479 Qed.
|
adamc@91
|
480
|
adamc@91
|
481 Lemma substring_empty : forall s n m,
|
adamc@91
|
482 m <= 0
|
adamc@91
|
483 -> substring n m s = "".
|
adamc@91
|
484 induction s; substring.
|
adamc@91
|
485 Qed.
|
adamc@91
|
486
|
adamc@91
|
487 Hint Rewrite substring_self substring_empty using omega : cpdt.
|
adamc@91
|
488
|
adamc@91
|
489 Lemma substring_split' : forall s n m,
|
adamc@91
|
490 substring n m s ++ substring (n + m) (length s - (n + m)) s
|
adamc@91
|
491 = substring n (length s - n) s.
|
adamc@91
|
492 Hint Rewrite substring_split : cpdt.
|
adamc@91
|
493
|
adamc@91
|
494 induction s; substring.
|
adamc@91
|
495 Qed.
|
adamc@91
|
496
|
adamc@91
|
497 Lemma substring_stack : forall s n2 m1 m2,
|
adamc@91
|
498 m1 <= m2
|
adamc@91
|
499 -> substring 0 m1 (substring n2 m2 s)
|
adamc@91
|
500 = substring n2 m1 s.
|
adamc@91
|
501 induction s; substring.
|
adamc@91
|
502 Qed.
|
adamc@91
|
503
|
adamc@91
|
504 Ltac substring' :=
|
adamc@91
|
505 crush;
|
adamc@91
|
506 repeat match goal with
|
adamc@91
|
507 | [ |- context[match ?N with O => _ | S _ => _ end] ] => case_eq N; crush
|
adamc@91
|
508 end.
|
adamc@91
|
509
|
adamc@91
|
510 Lemma substring_stack' : forall s n1 n2 m1 m2,
|
adamc@91
|
511 n1 + m1 <= m2
|
adamc@91
|
512 -> substring n1 m1 (substring n2 m2 s)
|
adamc@91
|
513 = substring (n1 + n2) m1 s.
|
adamc@91
|
514 induction s; substring';
|
adamc@91
|
515 match goal with
|
adamc@91
|
516 | [ |- substring ?N1 _ _ = substring ?N2 _ _ ] =>
|
adamc@91
|
517 replace N1 with N2; crush
|
adamc@91
|
518 end.
|
adamc@91
|
519 Qed.
|
adamc@91
|
520
|
adamc@91
|
521 Lemma substring_suffix : forall s n,
|
adamc@91
|
522 n <= length s
|
adamc@91
|
523 -> length (substring n (length s - n) s) = length s - n.
|
adamc@91
|
524 induction s; substring.
|
adamc@91
|
525 Qed.
|
adamc@91
|
526
|
adamc@91
|
527 Lemma substring_suffix_emp' : forall s n m,
|
adamc@91
|
528 substring n (S m) s = ""
|
adamc@91
|
529 -> n >= length s.
|
adamc@91
|
530 induction s; crush;
|
adamc@91
|
531 match goal with
|
adamc@91
|
532 | [ |- ?N >= _ ] => destruct N; crush
|
adamc@91
|
533 end;
|
adamc@91
|
534 match goal with
|
adamc@91
|
535 [ |- S ?N >= S ?E ] => assert (N >= E); [ eauto | omega ]
|
adamc@91
|
536 end.
|
adamc@91
|
537 Qed.
|
adamc@91
|
538
|
adamc@91
|
539 Lemma substring_suffix_emp : forall s n m,
|
adamc@91
|
540 m > 0
|
adamc@91
|
541 -> substring n m s = ""
|
adamc@91
|
542 -> n >= length s.
|
adamc@91
|
543 destruct m as [| m]; [crush | intros; apply substring_suffix_emp' with m; assumption].
|
adamc@91
|
544 Qed.
|
adamc@91
|
545
|
adamc@91
|
546 Hint Rewrite substring_stack substring_stack' substring_suffix
|
adamc@91
|
547 using omega : cpdt.
|
adamc@91
|
548
|
adamc@91
|
549 Lemma minus_minus : forall n m1 m2,
|
adamc@91
|
550 m1 + m2 <= n
|
adamc@91
|
551 -> n - m1 - m2 = n - (m1 + m2).
|
adamc@91
|
552 intros; omega.
|
adamc@91
|
553 Qed.
|
adamc@91
|
554
|
adamc@91
|
555 Lemma plus_n_Sm' : forall n m : nat, S (n + m) = m + S n.
|
adamc@91
|
556 intros; omega.
|
adamc@91
|
557 Qed.
|
adamc@91
|
558
|
adamc@91
|
559 Hint Rewrite minus_minus using omega : cpdt.
|
adamc@91
|
560
|
adamc@91
|
561 Section dec_star.
|
adamc@91
|
562 Variable P : string -> Prop.
|
adamc@91
|
563 Variable P_dec : forall s, {P s} + { ~P s}.
|
adamc@91
|
564
|
adamc@91
|
565 Hint Constructors star.
|
adamc@91
|
566
|
adamc@91
|
567 Lemma star_empty : forall s,
|
adamc@91
|
568 length s = 0
|
adamc@91
|
569 -> star P s.
|
adamc@91
|
570 destruct s; crush.
|
adamc@91
|
571 Qed.
|
adamc@91
|
572
|
adamc@91
|
573 Lemma star_singleton : forall s, P s -> star P s.
|
adamc@91
|
574 intros; rewrite <- (app_empty_end s); auto.
|
adamc@91
|
575 Qed.
|
adamc@91
|
576
|
adamc@91
|
577 Lemma star_app : forall s n m,
|
adamc@91
|
578 P (substring n m s)
|
adamc@91
|
579 -> star P (substring (n + m) (length s - (n + m)) s)
|
adamc@91
|
580 -> star P (substring n (length s - n) s).
|
adamc@91
|
581 induction n; substring;
|
adamc@91
|
582 match goal with
|
adamc@91
|
583 | [ H : P (substring ?N ?M ?S) |- _ ] =>
|
adamc@91
|
584 solve [ rewrite <- (substring_split S M); auto
|
adamc@91
|
585 | rewrite <- (substring_split' S N M); auto ]
|
adamc@91
|
586 end.
|
adamc@91
|
587 Qed.
|
adamc@91
|
588
|
adamc@91
|
589 Hint Resolve star_empty star_singleton star_app.
|
adamc@91
|
590
|
adamc@91
|
591 Variable s : string.
|
adamc@91
|
592
|
adamc@91
|
593 Lemma star_inv : forall s,
|
adamc@91
|
594 star P s
|
adamc@91
|
595 -> s = ""
|
adamc@91
|
596 \/ exists i, i < length s
|
adamc@91
|
597 /\ P (substring 0 (S i) s)
|
adamc@91
|
598 /\ star P (substring (S i) (length s - S i) s).
|
adamc@91
|
599 Hint Extern 1 (exists i : nat, _) =>
|
adamc@91
|
600 match goal with
|
adamc@91
|
601 | [ H : P (String _ ?S) |- _ ] => exists (length S); crush
|
adamc@91
|
602 end.
|
adamc@91
|
603
|
adamc@91
|
604 induction 1; [
|
adamc@91
|
605 crush
|
adamc@91
|
606 | match goal with
|
adamc@91
|
607 | [ _ : P ?S |- _ ] => destruct S; crush
|
adamc@91
|
608 end
|
adamc@91
|
609 ].
|
adamc@91
|
610 Qed.
|
adamc@91
|
611
|
adamc@91
|
612 Lemma star_substring_inv : forall n,
|
adamc@91
|
613 n <= length s
|
adamc@91
|
614 -> star P (substring n (length s - n) s)
|
adamc@91
|
615 -> substring n (length s - n) s = ""
|
adamc@91
|
616 \/ exists l, l < length s - n
|
adamc@91
|
617 /\ P (substring n (S l) s)
|
adamc@91
|
618 /\ star P (substring (n + S l) (length s - (n + S l)) s).
|
adamc@91
|
619 Hint Rewrite plus_n_Sm' : cpdt.
|
adamc@91
|
620
|
adamc@91
|
621 intros;
|
adamc@91
|
622 match goal with
|
adamc@91
|
623 | [ H : star _ _ |- _ ] => generalize (star_inv H); do 3 crush; eauto
|
adamc@91
|
624 end.
|
adamc@91
|
625 Qed.
|
adamc@91
|
626
|
adamc@91
|
627 Section dec_star''.
|
adamc@91
|
628 Variable n : nat.
|
adamc@91
|
629
|
adamc@91
|
630 Variable P' : string -> Prop.
|
adamc@91
|
631 Variable P'_dec : forall n' : nat, n' > n
|
adamc@91
|
632 -> {P' (substring n' (length s - n') s)}
|
adamc@91
|
633 + { ~P' (substring n' (length s - n') s)}.
|
adamc@91
|
634
|
adamc@91
|
635 Definition dec_star'' (l : nat)
|
adamc@91
|
636 : {exists l', S l' <= l
|
adamc@91
|
637 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
|
adamc@91
|
638 + {forall l', S l' <= l
|
adamc@91
|
639 -> ~P (substring n (S l') s) \/ ~P' (substring (n + S l') (length s - (n + S l')) s)}.
|
adamc@91
|
640 refine (fix F (l : nat) : {exists l', S l' <= l
|
adamc@91
|
641 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
|
adamc@91
|
642 + {forall l', S l' <= l
|
adamc@91
|
643 -> ~P (substring n (S l') s) \/ ~P' (substring (n + S l') (length s - (n + S l')) s)} :=
|
adamc@91
|
644 match l return {exists l', S l' <= l
|
adamc@91
|
645 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
|
adamc@91
|
646 + {forall l', S l' <= l ->
|
adamc@91
|
647 ~P (substring n (S l') s) \/ ~P' (substring (n + S l') (length s - (n + S l')) s)} with
|
adamc@91
|
648 | O => _
|
adamc@91
|
649 | S l' =>
|
adamc@91
|
650 (P_dec (substring n (S l') s) && P'_dec (n' := n + S l') _)
|
adamc@91
|
651 || F l'
|
adamc@91
|
652 end); clear F; crush; eauto 7;
|
adamc@91
|
653 match goal with
|
adamc@91
|
654 | [ H : ?X <= S ?Y |- _ ] => destruct (eq_nat_dec X (S Y)); crush
|
adamc@91
|
655 end.
|
adamc@91
|
656 Defined.
|
adamc@91
|
657 End dec_star''.
|
adamc@91
|
658
|
adamc@91
|
659 Definition dec_star' (n n' : nat) : length s - n' <= n
|
adamc@91
|
660 -> {star P (substring n' (length s - n') s)}
|
adamc@91
|
661 + {~star P (substring n' (length s - n') s)}.
|
adamc@91
|
662 About dec_star''.
|
adamc@91
|
663
|
adamc@91
|
664 refine (fix F (n n' : nat) {struct n} : length s - n' <= n
|
adamc@91
|
665 -> {star P (substring n' (length s - n') s)}
|
adamc@91
|
666 + {~star P (substring n' (length s - n') s)} :=
|
adamc@91
|
667 match n return length s - n' <= n
|
adamc@91
|
668 -> {star P (substring n' (length s - n') s)}
|
adamc@91
|
669 + {~star P (substring n' (length s - n') s)} with
|
adamc@91
|
670 | O => fun _ => Yes
|
adamc@91
|
671 | S n'' => fun _ =>
|
adamc@91
|
672 le_gt_dec (length s) n'
|
adamc@91
|
673 || dec_star'' (n := n') (star P) (fun n0 _ => Reduce (F n'' n0 _)) (length s - n')
|
adamc@91
|
674 end); clear F; crush; eauto.
|
adamc@91
|
675
|
adamc@91
|
676 apply star_substring_inv in H; crush; eauto.
|
adamc@91
|
677
|
adamc@91
|
678 assert (n' >= length s); [ | omega].
|
adamc@91
|
679 apply substring_suffix_emp with (length s - n'); crush.
|
adamc@91
|
680
|
adamc@91
|
681 assert (S x <= length s - n'); [ omega | ].
|
adamc@91
|
682 apply _1 in H1.
|
adamc@91
|
683 tauto.
|
adamc@91
|
684 Defined.
|
adamc@91
|
685
|
adamc@91
|
686 Definition dec_star : {star P s} + { ~star P s}.
|
adamc@91
|
687 refine (match s with
|
adamc@91
|
688 | "" => Reduce (dec_star' (n := length s) 0 _)
|
adamc@91
|
689 | _ => Reduce (dec_star' (n := length s) 0 _)
|
adamc@91
|
690 end); crush.
|
adamc@91
|
691 Defined.
|
adamc@91
|
692 End dec_star.
|
adamc@91
|
693
|
adamc@86
|
694 Lemma app_cong : forall x1 y1 x2 y2,
|
adamc@86
|
695 x1 = x2
|
adamc@86
|
696 -> y1 = y2
|
adamc@86
|
697 -> x1 ++ y1 = x2 ++ y2.
|
adamc@86
|
698 congruence.
|
adamc@86
|
699 Qed.
|
adamc@86
|
700
|
adamc@86
|
701 Hint Resolve app_cong.
|
adamc@86
|
702
|
adamc@91
|
703
|
adamc@91
|
704
|
adamc@86
|
705 Definition matches P (r : regexp P) s : {P s} + { ~P s}.
|
adamc@86
|
706 refine (fix F P (r : regexp P) s : {P s} + { ~P s} :=
|
adamc@86
|
707 match r with
|
adamc@86
|
708 | Char ch => string_dec s (String ch "")
|
adamc@86
|
709 | Concat _ _ r1 r2 => Reduce (split (F _ r1) (F _ r2) s)
|
adamc@87
|
710 | Or _ _ r1 r2 => F _ r1 s || F _ r2 s
|
adamc@91
|
711 | Star _ r => dec_star _ _ _
|
adamc@86
|
712 end); crush;
|
adamc@86
|
713 match goal with
|
adamc@86
|
714 | [ H : _ |- _ ] => generalize (H _ _ (refl_equal _))
|
adamc@86
|
715 end;
|
adamc@86
|
716 tauto.
|
adamc@86
|
717 Defined.
|
adamc@86
|
718
|
adamc@86
|
719 Example hi := Concat (Char "h"%char) (Char "i"%char).
|
adamc@86
|
720 Eval simpl in matches hi "hi".
|
adamc@86
|
721 Eval simpl in matches hi "bye".
|
adamc@87
|
722
|
adamc@87
|
723 Example a_b := Or (Char "a"%char) (Char "b"%char).
|
adamc@87
|
724 Eval simpl in matches a_b "".
|
adamc@87
|
725 Eval simpl in matches a_b "a".
|
adamc@87
|
726 Eval simpl in matches a_b "aa".
|
adamc@87
|
727 Eval simpl in matches a_b "b".
|
adamc@91
|
728
|
adamc@91
|
729 Example a_star := Star (Char "a"%char).
|
adamc@91
|
730 Eval simpl in matches a_star "".
|
adamc@91
|
731 Eval simpl in matches a_star "a".
|
adamc@91
|
732 Eval simpl in matches a_star "b".
|
adamc@91
|
733 Eval simpl in matches a_star "aa".
|