adam@398
|
1 (* Copyright (c) 2008-2012, Adam Chlipala
|
adamc@105
|
2 *
|
adamc@105
|
3 * This work is licensed under a
|
adamc@105
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@105
|
5 * Unported License.
|
adamc@105
|
6 * The license text is available at:
|
adamc@105
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@105
|
8 *)
|
adamc@105
|
9
|
adamc@105
|
10 (* begin hide *)
|
adamc@111
|
11 Require Import Arith List.
|
adamc@105
|
12
|
adam@314
|
13 Require Import CpdtTactics.
|
adamc@105
|
14
|
adamc@105
|
15 Set Implicit Arguments.
|
adamc@105
|
16 (* end hide *)
|
adamc@105
|
17
|
adamc@105
|
18
|
adamc@105
|
19 (** %\chapter{Dependent Data Structures}% *)
|
adamc@105
|
20
|
adamc@106
|
21 (** Our red-black tree example from the last chapter illustrated how dependent types enable static enforcement of data structure invariants. To find interesting uses of dependent data structures, however, we need not look to the favorite examples of data structures and algorithms textbooks. More basic examples like length-indexed and heterogeneous lists come up again and again as the building blocks of dependent programs. There is a surprisingly large design space for this class of data structure, and we will spend this chapter exploring it. *)
|
adamc@105
|
22
|
adamc@105
|
23
|
adamc@106
|
24 (** * More Length-Indexed Lists *)
|
adamc@106
|
25
|
adam@342
|
26 (** We begin with a deeper look at the length-indexed lists that began the last chapter.%\index{Gallina terms!ilist}% *)
|
adamc@105
|
27
|
adamc@105
|
28 Section ilist.
|
adamc@105
|
29 Variable A : Set.
|
adamc@105
|
30
|
adamc@105
|
31 Inductive ilist : nat -> Set :=
|
adamc@105
|
32 | Nil : ilist O
|
adamc@105
|
33 | Cons : forall n, A -> ilist n -> ilist (S n).
|
adamc@105
|
34
|
adam@426
|
35 (** We might like to have a certified function for selecting an element of an [ilist] by position. We could do this using subset types and explicit manipulation of proofs, but dependent types let us do it more directly. It is helpful to define a type family %\index{Gallina terms!fin}%[fin], where [fin n] is isomorphic to [{m : nat | m < n}]. The type family name stands for "finite." *)
|
adamc@106
|
36
|
adamc@113
|
37 (* EX: Define a function [get] for extracting an [ilist] element by position. *)
|
adamc@113
|
38
|
adamc@113
|
39 (* begin thide *)
|
adamc@215
|
40 Inductive fin : nat -> Set :=
|
adamc@215
|
41 | First : forall n, fin (S n)
|
adamc@215
|
42 | Next : forall n, fin n -> fin (S n).
|
adamc@105
|
43
|
adam@406
|
44 (** An instance of [fin] is essentially a more richly typed copy of the natural numbers. Every element is a [First] iterated through applying [Next] a number of times that indicates which number is being selected. For instance, the three values of type [fin 3] are [First 2], [Next (First 1)], and [Next (Next (First 0))].
|
adamc@106
|
45
|
adamc@106
|
46 Now it is easy to pick a [Prop]-free type for a selection function. As usual, our first implementation attempt will not convince the type checker, and we will attack the deficiencies one at a time.
|
adamc@106
|
47
|
adamc@106
|
48 [[
|
adamc@215
|
49 Fixpoint get n (ls : ilist n) : fin n -> A :=
|
adamc@215
|
50 match ls with
|
adamc@106
|
51 | Nil => fun idx => ?
|
adamc@106
|
52 | Cons _ x ls' => fun idx =>
|
adamc@106
|
53 match idx with
|
adamc@106
|
54 | First _ => x
|
adamc@106
|
55 | Next _ idx' => get ls' idx'
|
adamc@106
|
56 end
|
adamc@106
|
57 end.
|
adamc@106
|
58
|
adamc@205
|
59 ]]
|
adamc@205
|
60
|
adamc@215
|
61 We apply the usual wisdom of delaying arguments in [Fixpoint]s so that they may be included in [return] clauses. This still leaves us with a quandary in each of the [match] cases. First, we need to figure out how to take advantage of the contradiction in the [Nil] case. Every [fin] has a type of the form [S n], which cannot unify with the [O] value that we learn for [n] in the [Nil] case. The solution we adopt is another case of [match]-within-[return].
|
adamc@106
|
62
|
adamc@106
|
63 [[
|
adamc@215
|
64 Fixpoint get n (ls : ilist n) : fin n -> A :=
|
adamc@215
|
65 match ls with
|
adamc@106
|
66 | Nil => fun idx =>
|
adamc@215
|
67 match idx in fin n' return (match n' with
|
adamc@106
|
68 | O => A
|
adamc@106
|
69 | S _ => unit
|
adamc@106
|
70 end) with
|
adamc@106
|
71 | First _ => tt
|
adamc@106
|
72 | Next _ _ => tt
|
adamc@106
|
73 end
|
adamc@106
|
74 | Cons _ x ls' => fun idx =>
|
adamc@106
|
75 match idx with
|
adamc@106
|
76 | First _ => x
|
adamc@106
|
77 | Next _ idx' => get ls' idx'
|
adamc@106
|
78 end
|
adamc@106
|
79 end.
|
adamc@106
|
80
|
adamc@205
|
81 ]]
|
adamc@205
|
82
|
adam@284
|
83 Now the first [match] case type-checks, and we see that the problem with the [Cons] case is that the pattern-bound variable [idx'] does not have an apparent type compatible with [ls']. In fact, the error message Coq gives for this exact code can be confusing, thanks to an overenthusiastic type inference heuristic. We are told that the [Nil] case body has type [match X with | 0 => A | S _ => unit end] for a unification variable [X], while it is expected to have type [A]. We can see that setting [X] to [0] resolves the conflict, but Coq is not yet smart enough to do this unification automatically. Repeating the function's type in a [return] annotation, used with an [in] annotation, leads us to a more informative error message, saying that [idx'] has type [fin n1] while it is expected to have type [fin n0], where [n0] is bound by the [Cons] pattern and [n1] by the [Next] pattern. As the code is written above, nothing forces these two natural numbers to be equal, though we know intuitively that they must be.
|
adam@284
|
84
|
adam@284
|
85 We need to use [match] annotations to make the relationship explicit. Unfortunately, the usual trick of postponing argument binding will not help us here. We need to match on both [ls] and [idx]; one or the other must be matched first. To get around this, we apply the convoy pattern that we met last chapter. This application is a little more clever than those we saw before; we use the natural number predecessor function [pred] to express the relationship between the types of these variables.
|
adamc@106
|
86
|
adamc@106
|
87 [[
|
adamc@215
|
88 Fixpoint get n (ls : ilist n) : fin n -> A :=
|
adamc@215
|
89 match ls with
|
adamc@106
|
90 | Nil => fun idx =>
|
adamc@215
|
91 match idx in fin n' return (match n' with
|
adamc@106
|
92 | O => A
|
adamc@106
|
93 | S _ => unit
|
adamc@106
|
94 end) with
|
adamc@106
|
95 | First _ => tt
|
adamc@106
|
96 | Next _ _ => tt
|
adamc@106
|
97 end
|
adamc@106
|
98 | Cons _ x ls' => fun idx =>
|
adamc@215
|
99 match idx in fin n' return ilist (pred n') -> A with
|
adamc@106
|
100 | First _ => fun _ => x
|
adamc@106
|
101 | Next _ idx' => fun ls' => get ls' idx'
|
adamc@106
|
102 end ls'
|
adamc@106
|
103 end.
|
adamc@106
|
104
|
adamc@205
|
105 ]]
|
adamc@205
|
106
|
adamc@106
|
107 There is just one problem left with this implementation. Though we know that the local [ls'] in the [Next] case is equal to the original [ls'], the type-checker is not satisfied that the recursive call to [get] does not introduce non-termination. We solve the problem by convoy-binding the partial application of [get] to [ls'], rather than [ls'] by itself. *)
|
adamc@106
|
108
|
adamc@215
|
109 Fixpoint get n (ls : ilist n) : fin n -> A :=
|
adamc@215
|
110 match ls with
|
adamc@105
|
111 | Nil => fun idx =>
|
adamc@215
|
112 match idx in fin n' return (match n' with
|
adamc@105
|
113 | O => A
|
adamc@105
|
114 | S _ => unit
|
adamc@105
|
115 end) with
|
adamc@105
|
116 | First _ => tt
|
adamc@105
|
117 | Next _ _ => tt
|
adamc@105
|
118 end
|
adamc@105
|
119 | Cons _ x ls' => fun idx =>
|
adamc@215
|
120 match idx in fin n' return (fin (pred n') -> A) -> A with
|
adamc@105
|
121 | First _ => fun _ => x
|
adamc@105
|
122 | Next _ idx' => fun get_ls' => get_ls' idx'
|
adamc@105
|
123 end (get ls')
|
adamc@105
|
124 end.
|
adamc@113
|
125 (* end thide *)
|
adamc@105
|
126 End ilist.
|
adamc@105
|
127
|
adamc@105
|
128 Implicit Arguments Nil [A].
|
adamc@108
|
129 Implicit Arguments First [n].
|
adamc@105
|
130
|
adamc@108
|
131 (** A few examples show how to make use of these definitions. *)
|
adamc@108
|
132
|
adamc@108
|
133 Check Cons 0 (Cons 1 (Cons 2 Nil)).
|
adamc@215
|
134 (** %\vspace{-.15in}% [[
|
adamc@215
|
135 Cons 0 (Cons 1 (Cons 2 Nil))
|
adamc@108
|
136 : ilist nat 3
|
adam@302
|
137 ]]
|
adam@302
|
138 *)
|
adamc@215
|
139
|
adamc@113
|
140 (* begin thide *)
|
adamc@108
|
141 Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.
|
adamc@215
|
142 (** %\vspace{-.15in}% [[
|
adamc@108
|
143 = 0
|
adamc@108
|
144 : nat
|
adam@302
|
145 ]]
|
adam@302
|
146 *)
|
adamc@215
|
147
|
adamc@108
|
148 Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).
|
adamc@215
|
149 (** %\vspace{-.15in}% [[
|
adamc@108
|
150 = 1
|
adamc@108
|
151 : nat
|
adam@302
|
152 ]]
|
adam@302
|
153 *)
|
adamc@215
|
154
|
adamc@108
|
155 Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)).
|
adamc@215
|
156 (** %\vspace{-.15in}% [[
|
adamc@108
|
157 = 2
|
adamc@108
|
158 : nat
|
adam@302
|
159 ]]
|
adam@302
|
160 *)
|
adamc@113
|
161 (* end thide *)
|
adamc@108
|
162
|
adam@426
|
163 (* begin hide *)
|
adam@437
|
164 (* begin thide *)
|
adam@426
|
165 Definition map' := map.
|
adam@437
|
166 (* end thide *)
|
adam@426
|
167 (* end hide *)
|
adam@426
|
168
|
adamc@108
|
169 (** Our [get] function is also quite easy to reason about. We show how with a short example about an analogue to the list [map] function. *)
|
adamc@107
|
170
|
adamc@105
|
171 Section ilist_map.
|
adamc@105
|
172 Variables A B : Set.
|
adamc@105
|
173 Variable f : A -> B.
|
adamc@105
|
174
|
adamc@215
|
175 Fixpoint imap n (ls : ilist A n) : ilist B n :=
|
adamc@215
|
176 match ls with
|
adamc@105
|
177 | Nil => Nil
|
adamc@105
|
178 | Cons _ x ls' => Cons (f x) (imap ls')
|
adamc@105
|
179 end.
|
adamc@105
|
180
|
adam@426
|
181 (** It is easy to prove that [get] "distributes over" [imap] calls. *)
|
adamc@107
|
182
|
adam@342
|
183 (* EX: Prove that [get] distributes over [imap]. *)
|
adam@342
|
184
|
adam@342
|
185 (* begin thide *)
|
adamc@215
|
186 Theorem get_imap : forall n (idx : fin n) (ls : ilist A n),
|
adamc@105
|
187 get (imap ls) idx = f (get ls idx).
|
adamc@107
|
188 induction ls; dep_destruct idx; crush.
|
adamc@105
|
189 Qed.
|
adamc@113
|
190 (* end thide *)
|
adamc@105
|
191 End ilist_map.
|
adamc@107
|
192
|
adam@406
|
193 (** The only tricky bit is remembering to use our [dep_destruct] tactic in place of plain [destruct] when faced with a baffling tactic error message. *)
|
adamc@107
|
194
|
adamc@107
|
195 (** * Heterogeneous Lists *)
|
adamc@107
|
196
|
adam@426
|
197 (** Programmers who move to statically typed functional languages from scripting languages often complain about the requirement that every element of a list have the same type. With fancy type systems, we can partially lift this requirement. We can index a list type with a "type-level" list that explains what type each element of the list should have. This has been done in a variety of ways in Haskell using type classes, and we can do it much more cleanly and directly in Coq. *)
|
adamc@107
|
198
|
adamc@107
|
199 Section hlist.
|
adamc@107
|
200 Variable A : Type.
|
adamc@107
|
201 Variable B : A -> Type.
|
adamc@107
|
202
|
adamc@113
|
203 (* EX: Define a type [hlist] indexed by a [list A], where the type of each element is determined by running [B] on the corresponding element of the index list. *)
|
adamc@113
|
204
|
adam@342
|
205 (** We parameterize our heterogeneous lists by a type [A] and an [A]-indexed type [B].%\index{Gallina terms!hlist}% *)
|
adamc@107
|
206
|
adamc@113
|
207 (* begin thide *)
|
adamc@107
|
208 Inductive hlist : list A -> Type :=
|
adamc@107
|
209 | MNil : hlist nil
|
adamc@107
|
210 | MCons : forall (x : A) (ls : list A), B x -> hlist ls -> hlist (x :: ls).
|
adamc@107
|
211
|
adam@342
|
212 (** We can implement a variant of the last section's [get] function for [hlist]s. To get the dependent typing to work out, we will need to index our element selectors by the types of data that they point to.%\index{Gallina terms!member}% *)
|
adamc@107
|
213
|
adamc@113
|
214 (* end thide *)
|
adamc@113
|
215 (* EX: Define an analogue to [get] for [hlist]s. *)
|
adamc@113
|
216
|
adamc@113
|
217 (* begin thide *)
|
adamc@107
|
218 Variable elm : A.
|
adamc@107
|
219
|
adamc@107
|
220 Inductive member : list A -> Type :=
|
adamc@107
|
221 | MFirst : forall ls, member (elm :: ls)
|
adamc@107
|
222 | MNext : forall x ls, member ls -> member (x :: ls).
|
adamc@107
|
223
|
adam@426
|
224 (** Because the element [elm] that we are "searching for" in a list does not change across the constructors of [member], we simplify our definitions by making [elm] a local variable. In the definition of [member], we say that [elm] is found in any list that begins with [elm], and, if removing the first element of a list leaves [elm] present, then [elm] is present in the original list, too. The form looks much like a predicate for list membership, but we purposely define [member] in [Type] so that we may decompose its values to guide computations.
|
adamc@107
|
225
|
adam@342
|
226 We can use [member] to adapt our definition of [get] to [hlist]s. The same basic [match] tricks apply. In the [MCons] case, we form a two-element convoy, passing both the data element [x] and the recursor for the sublist [mls'] to the result of the inner [match]. We did not need to do that in [get]'s definition because the types of list elements were not dependent there. *)
|
adamc@107
|
227
|
adamc@215
|
228 Fixpoint hget ls (mls : hlist ls) : member ls -> B elm :=
|
adamc@215
|
229 match mls with
|
adamc@107
|
230 | MNil => fun mem =>
|
adamc@107
|
231 match mem in member ls' return (match ls' with
|
adamc@107
|
232 | nil => B elm
|
adamc@107
|
233 | _ :: _ => unit
|
adamc@107
|
234 end) with
|
adamc@107
|
235 | MFirst _ => tt
|
adamc@107
|
236 | MNext _ _ _ => tt
|
adamc@107
|
237 end
|
adamc@107
|
238 | MCons _ _ x mls' => fun mem =>
|
adamc@107
|
239 match mem in member ls' return (match ls' with
|
adamc@107
|
240 | nil => Empty_set
|
adamc@107
|
241 | x' :: ls'' =>
|
adam@437
|
242 B x' -> (member ls'' -> B elm)
|
adam@437
|
243 -> B elm
|
adamc@107
|
244 end) with
|
adamc@107
|
245 | MFirst _ => fun x _ => x
|
adamc@107
|
246 | MNext _ _ mem' => fun _ get_mls' => get_mls' mem'
|
adamc@107
|
247 end x (hget mls')
|
adamc@107
|
248 end.
|
adamc@113
|
249 (* end thide *)
|
adamc@107
|
250 End hlist.
|
adamc@108
|
251
|
adamc@113
|
252 (* begin thide *)
|
adamc@108
|
253 Implicit Arguments MNil [A B].
|
adamc@108
|
254 Implicit Arguments MCons [A B x ls].
|
adamc@108
|
255
|
adamc@108
|
256 Implicit Arguments MFirst [A elm ls].
|
adamc@108
|
257 Implicit Arguments MNext [A elm x ls].
|
adamc@113
|
258 (* end thide *)
|
adamc@108
|
259
|
adamc@108
|
260 (** By putting the parameters [A] and [B] in [Type], we allow some very higher-order uses. For instance, one use of [hlist] is for the simple heterogeneous lists that we referred to earlier. *)
|
adamc@108
|
261
|
adamc@108
|
262 Definition someTypes : list Set := nat :: bool :: nil.
|
adamc@108
|
263
|
adamc@113
|
264 (* begin thide *)
|
adamc@113
|
265
|
adamc@108
|
266 Example someValues : hlist (fun T : Set => T) someTypes :=
|
adamc@108
|
267 MCons 5 (MCons true MNil).
|
adamc@108
|
268
|
adamc@108
|
269 Eval simpl in hget someValues MFirst.
|
adamc@215
|
270 (** %\vspace{-.15in}% [[
|
adamc@108
|
271 = 5
|
adamc@108
|
272 : (fun T : Set => T) nat
|
adam@302
|
273 ]]
|
adam@302
|
274 *)
|
adamc@215
|
275
|
adamc@108
|
276 Eval simpl in hget someValues (MNext MFirst).
|
adamc@215
|
277 (** %\vspace{-.15in}% [[
|
adamc@108
|
278 = true
|
adamc@108
|
279 : (fun T : Set => T) bool
|
adam@302
|
280 ]]
|
adam@302
|
281 *)
|
adamc@108
|
282
|
adamc@108
|
283 (** We can also build indexed lists of pairs in this way. *)
|
adamc@108
|
284
|
adamc@108
|
285 Example somePairs : hlist (fun T : Set => T * T)%type someTypes :=
|
adamc@108
|
286 MCons (1, 2) (MCons (true, false) MNil).
|
adamc@108
|
287
|
adamc@113
|
288 (* end thide *)
|
adamc@113
|
289
|
adamc@113
|
290
|
adamc@108
|
291 (** ** A Lambda Calculus Interpreter *)
|
adamc@108
|
292
|
adam@342
|
293 (** Heterogeneous lists are very useful in implementing %\index{interpreters}%interpreters for functional programming languages. Using the types and operations we have already defined, it is trivial to write an interpreter for simply typed lambda calculus%\index{lambda calculus}%. Our interpreter can alternatively be thought of as a denotational semantics.
|
adamc@108
|
294
|
adamc@108
|
295 We start with an algebraic datatype for types. *)
|
adamc@108
|
296
|
adamc@108
|
297 Inductive type : Set :=
|
adamc@108
|
298 | Unit : type
|
adamc@108
|
299 | Arrow : type -> type -> type.
|
adamc@108
|
300
|
adam@342
|
301 (** Now we can define a type family for expressions. An [exp ts t] will stand for an expression that has type [t] and whose free variables have types in the list [ts]. We effectively use the de Bruijn index variable representation%~\cite{DeBruijn}%. Variables are represented as [member] values; that is, a variable is more or less a constructive proof that a particular type is found in the type environment. *)
|
adamc@108
|
302
|
adamc@108
|
303 Inductive exp : list type -> type -> Set :=
|
adamc@108
|
304 | Const : forall ts, exp ts Unit
|
adamc@113
|
305 (* begin thide *)
|
adamc@108
|
306 | Var : forall ts t, member t ts -> exp ts t
|
adamc@108
|
307 | App : forall ts dom ran, exp ts (Arrow dom ran) -> exp ts dom -> exp ts ran
|
adamc@108
|
308 | Abs : forall ts dom ran, exp (dom :: ts) ran -> exp ts (Arrow dom ran).
|
adamc@113
|
309 (* end thide *)
|
adamc@108
|
310
|
adamc@108
|
311 Implicit Arguments Const [ts].
|
adamc@108
|
312
|
adamc@108
|
313 (** We write a simple recursive function to translate [type]s into [Set]s. *)
|
adamc@108
|
314
|
adamc@108
|
315 Fixpoint typeDenote (t : type) : Set :=
|
adamc@108
|
316 match t with
|
adamc@108
|
317 | Unit => unit
|
adamc@108
|
318 | Arrow t1 t2 => typeDenote t1 -> typeDenote t2
|
adamc@108
|
319 end.
|
adamc@108
|
320
|
adam@342
|
321 (** Now it is straightforward to write an expression interpreter. The type of the function, [expDenote], tells us that we translate expressions into functions from properly typed environments to final values. An environment for a free variable list [ts] is simply a [hlist typeDenote ts]. That is, for each free variable, the heterogeneous list that is the environment must have a value of the variable's associated type. We use [hget] to implement the [Var] case, and we use [MCons] to extend the environment in the [Abs] case. *)
|
adamc@108
|
322
|
adamc@113
|
323 (* EX: Define an interpreter for [exp]s. *)
|
adamc@113
|
324
|
adamc@113
|
325 (* begin thide *)
|
adamc@215
|
326 Fixpoint expDenote ts t (e : exp ts t) : hlist typeDenote ts -> typeDenote t :=
|
adamc@215
|
327 match e with
|
adamc@108
|
328 | Const _ => fun _ => tt
|
adamc@108
|
329
|
adamc@108
|
330 | Var _ _ mem => fun s => hget s mem
|
adamc@108
|
331 | App _ _ _ e1 e2 => fun s => (expDenote e1 s) (expDenote e2 s)
|
adamc@108
|
332 | Abs _ _ _ e' => fun s => fun x => expDenote e' (MCons x s)
|
adamc@108
|
333 end.
|
adamc@108
|
334
|
adamc@108
|
335 (** Like for previous examples, our interpreter is easy to run with [simpl]. *)
|
adamc@108
|
336
|
adamc@108
|
337 Eval simpl in expDenote Const MNil.
|
adamc@215
|
338 (** %\vspace{-.15in}% [[
|
adamc@108
|
339 = tt
|
adamc@108
|
340 : typeDenote Unit
|
adam@302
|
341 ]]
|
adam@302
|
342 *)
|
adamc@215
|
343
|
adamc@108
|
344 Eval simpl in expDenote (Abs (dom := Unit) (Var MFirst)) MNil.
|
adamc@215
|
345 (** %\vspace{-.15in}% [[
|
adamc@108
|
346 = fun x : unit => x
|
adamc@108
|
347 : typeDenote (Arrow Unit Unit)
|
adam@302
|
348 ]]
|
adam@302
|
349 *)
|
adamc@215
|
350
|
adamc@108
|
351 Eval simpl in expDenote (Abs (dom := Unit)
|
adamc@108
|
352 (Abs (dom := Unit) (Var (MNext MFirst)))) MNil.
|
adamc@215
|
353 (** %\vspace{-.15in}% [[
|
adamc@108
|
354 = fun x _ : unit => x
|
adamc@108
|
355 : typeDenote (Arrow Unit (Arrow Unit Unit))
|
adam@302
|
356 ]]
|
adam@302
|
357 *)
|
adamc@215
|
358
|
adamc@108
|
359 Eval simpl in expDenote (Abs (dom := Unit) (Abs (dom := Unit) (Var MFirst))) MNil.
|
adamc@215
|
360 (** %\vspace{-.15in}% [[
|
adamc@108
|
361 = fun _ x0 : unit => x0
|
adamc@108
|
362 : typeDenote (Arrow Unit (Arrow Unit Unit))
|
adam@302
|
363 ]]
|
adam@302
|
364 *)
|
adamc@215
|
365
|
adamc@108
|
366 Eval simpl in expDenote (App (Abs (Var MFirst)) Const) MNil.
|
adamc@215
|
367 (** %\vspace{-.15in}% [[
|
adamc@108
|
368 = tt
|
adamc@108
|
369 : typeDenote Unit
|
adam@302
|
370 ]]
|
adam@302
|
371 *)
|
adamc@108
|
372
|
adamc@113
|
373 (* end thide *)
|
adamc@113
|
374
|
adam@342
|
375 (** We are starting to develop the tools behind dependent typing's amazing advantage over alternative approaches in several important areas. Here, we have implemented complete syntax, typing rules, and evaluation semantics for simply typed lambda calculus without even needing to define a syntactic substitution operation. We did it all without a single line of proof, and our implementation is manifestly executable. Other, more common approaches to language formalization often state and prove explicit theorems about type safety of languages. In the above example, we got type safety, termination, and other meta-theorems for free, by reduction to CIC, which we know has those properties. *)
|
adamc@108
|
376
|
adamc@108
|
377
|
adamc@109
|
378 (** * Recursive Type Definitions *)
|
adamc@109
|
379
|
adam@426
|
380 (** %\index{recursive type definition}%There is another style of datatype definition that leads to much simpler definitions of the [get] and [hget] definitions above. Because Coq supports "type-level computation," we can redo our inductive definitions as _recursive_ definitions. *)
|
adamc@109
|
381
|
adamc@113
|
382 (* EX: Come up with an alternate [ilist] definition that makes it easier to write [get]. *)
|
adamc@113
|
383
|
adamc@109
|
384 Section filist.
|
adamc@109
|
385 Variable A : Set.
|
adamc@109
|
386
|
adamc@113
|
387 (* begin thide *)
|
adamc@109
|
388 Fixpoint filist (n : nat) : Set :=
|
adamc@109
|
389 match n with
|
adamc@109
|
390 | O => unit
|
adamc@109
|
391 | S n' => A * filist n'
|
adamc@109
|
392 end%type.
|
adamc@109
|
393
|
adamc@109
|
394 (** We say that a list of length 0 has no contents, and a list of length [S n'] is a pair of a data value and a list of length [n']. *)
|
adamc@109
|
395
|
adamc@215
|
396 Fixpoint ffin (n : nat) : Set :=
|
adamc@109
|
397 match n with
|
adamc@109
|
398 | O => Empty_set
|
adamc@215
|
399 | S n' => option (ffin n')
|
adamc@109
|
400 end.
|
adamc@109
|
401
|
adam@406
|
402 (** We express that there are no index values when [n = O], by defining such indices as type [Empty_set]; and we express that, at [n = S n'], there is a choice between picking the first element of the list (represented as [None]) or choosing a later element (represented by [Some idx], where [idx] is an index into the list tail). For instance, the three values of type [ffin 3] are [None], [Some None], and [Some (Some None)]. *)
|
adamc@109
|
403
|
adamc@215
|
404 Fixpoint fget (n : nat) : filist n -> ffin n -> A :=
|
adamc@215
|
405 match n with
|
adamc@109
|
406 | O => fun _ idx => match idx with end
|
adamc@109
|
407 | S n' => fun ls idx =>
|
adamc@109
|
408 match idx with
|
adamc@109
|
409 | None => fst ls
|
adamc@109
|
410 | Some idx' => fget n' (snd ls) idx'
|
adamc@109
|
411 end
|
adamc@109
|
412 end.
|
adamc@109
|
413
|
adamc@215
|
414 (** Our new [get] implementation needs only one dependent [match], and its annotation is inferred for us. Our choices of data structure implementations lead to just the right typing behavior for this new definition to work out. *)
|
adamc@113
|
415 (* end thide *)
|
adamc@215
|
416
|
adamc@109
|
417 End filist.
|
adamc@109
|
418
|
adamc@109
|
419 (** Heterogeneous lists are a little trickier to define with recursion, but we then reap similar benefits in simplicity of use. *)
|
adamc@109
|
420
|
adamc@113
|
421 (* EX: Come up with an alternate [hlist] definition that makes it easier to write [hget]. *)
|
adamc@113
|
422
|
adamc@109
|
423 Section fhlist.
|
adamc@109
|
424 Variable A : Type.
|
adamc@109
|
425 Variable B : A -> Type.
|
adamc@109
|
426
|
adamc@113
|
427 (* begin thide *)
|
adamc@109
|
428 Fixpoint fhlist (ls : list A) : Type :=
|
adamc@109
|
429 match ls with
|
adamc@109
|
430 | nil => unit
|
adamc@109
|
431 | x :: ls' => B x * fhlist ls'
|
adamc@109
|
432 end%type.
|
adamc@109
|
433
|
adam@342
|
434 (** The definition of [fhlist] follows the definition of [filist], with the added wrinkle of dependently typed data elements. *)
|
adamc@109
|
435
|
adamc@109
|
436 Variable elm : A.
|
adamc@109
|
437
|
adamc@109
|
438 Fixpoint fmember (ls : list A) : Type :=
|
adamc@109
|
439 match ls with
|
adamc@109
|
440 | nil => Empty_set
|
adamc@109
|
441 | x :: ls' => (x = elm) + fmember ls'
|
adamc@109
|
442 end%type.
|
adamc@109
|
443
|
adam@426
|
444 (** The definition of [fmember] follows the definition of [ffin]. Empty lists have no members, and member types for nonempty lists are built by adding one new option to the type of members of the list tail. While for [ffin] we needed no new information associated with the option that we add, here we need to know that the head of the list equals the element we are searching for. We express that with a sum type whose left branch is the appropriate equality proposition. Since we define [fmember] to live in [Type], we can insert [Prop] types as needed, because [Prop] is a subtype of [Type].
|
adamc@109
|
445
|
adamc@109
|
446 We know all of the tricks needed to write a first attempt at a [get] function for [fhlist]s.
|
adamc@109
|
447
|
adamc@109
|
448 [[
|
adamc@109
|
449 Fixpoint fhget (ls : list A) : fhlist ls -> fmember ls -> B elm :=
|
adamc@215
|
450 match ls with
|
adamc@109
|
451 | nil => fun _ idx => match idx with end
|
adamc@109
|
452 | _ :: ls' => fun mls idx =>
|
adamc@109
|
453 match idx with
|
adamc@109
|
454 | inl _ => fst mls
|
adamc@109
|
455 | inr idx' => fhget ls' (snd mls) idx'
|
adamc@109
|
456 end
|
adamc@109
|
457 end.
|
adamc@109
|
458
|
adamc@205
|
459 ]]
|
adamc@205
|
460
|
adamc@109
|
461 Only one problem remains. The expression [fst mls] is not known to have the proper type. To demonstrate that it does, we need to use the proof available in the [inl] case of the inner [match]. *)
|
adamc@109
|
462
|
adamc@109
|
463 Fixpoint fhget (ls : list A) : fhlist ls -> fmember ls -> B elm :=
|
adamc@215
|
464 match ls with
|
adamc@109
|
465 | nil => fun _ idx => match idx with end
|
adamc@109
|
466 | _ :: ls' => fun mls idx =>
|
adamc@109
|
467 match idx with
|
adamc@109
|
468 | inl pf => match pf with
|
adam@426
|
469 | eq_refl => fst mls
|
adamc@109
|
470 end
|
adamc@109
|
471 | inr idx' => fhget ls' (snd mls) idx'
|
adamc@109
|
472 end
|
adamc@109
|
473 end.
|
adamc@109
|
474
|
adamc@109
|
475 (** By pattern-matching on the equality proof [pf], we make that equality known to the type-checker. Exactly why this works can be seen by studying the definition of equality. *)
|
adamc@109
|
476
|
adam@426
|
477 (* begin hide *)
|
adam@437
|
478 (* begin thide *)
|
adam@437
|
479 Definition foo := @eq_refl.
|
adam@437
|
480 (* end thide *)
|
adam@426
|
481 (* end hide *)
|
adam@426
|
482
|
adamc@109
|
483 Print eq.
|
adamc@215
|
484 (** %\vspace{-.15in}% [[
|
adam@426
|
485 Inductive eq (A : Type) (x : A) : A -> Prop := eq_refl : x = x
|
adamc@215
|
486
|
adamc@109
|
487 ]]
|
adamc@109
|
488
|
adam@426
|
489 In a proposition [x = y], we see that [x] is a parameter and [y] is a regular argument. The type of the constructor [eq_refl] shows that [y] can only ever be instantiated to [x]. Thus, within a pattern-match with [eq_refl], occurrences of [y] can be replaced with occurrences of [x] for typing purposes. *)
|
adamc@113
|
490 (* end thide *)
|
adamc@215
|
491
|
adamc@109
|
492 End fhlist.
|
adamc@110
|
493
|
adamc@111
|
494 Implicit Arguments fhget [A B elm ls].
|
adamc@111
|
495
|
adamc@110
|
496
|
adamc@110
|
497 (** * Data Structures as Index Functions *)
|
adamc@110
|
498
|
adam@342
|
499 (** %\index{index function}%Indexed lists can be useful in defining other inductive types with constructors that take variable numbers of arguments. In this section, we consider parameterized trees with arbitrary branching factor. *)
|
adamc@110
|
500
|
adamc@110
|
501 Section tree.
|
adamc@110
|
502 Variable A : Set.
|
adamc@110
|
503
|
adamc@110
|
504 Inductive tree : Set :=
|
adamc@110
|
505 | Leaf : A -> tree
|
adamc@110
|
506 | Node : forall n, ilist tree n -> tree.
|
adamc@110
|
507 End tree.
|
adamc@110
|
508
|
adamc@110
|
509 (** Every [Node] of a [tree] has a natural number argument, which gives the number of child trees in the second argument, typed with [ilist]. We can define two operations on trees of naturals: summing their elements and incrementing their elements. It is useful to define a generic fold function on [ilist]s first. *)
|
adamc@110
|
510
|
adamc@110
|
511 Section ifoldr.
|
adamc@110
|
512 Variables A B : Set.
|
adamc@110
|
513 Variable f : A -> B -> B.
|
adamc@110
|
514 Variable i : B.
|
adamc@110
|
515
|
adamc@215
|
516 Fixpoint ifoldr n (ls : ilist A n) : B :=
|
adamc@110
|
517 match ls with
|
adamc@110
|
518 | Nil => i
|
adamc@110
|
519 | Cons _ x ls' => f x (ifoldr ls')
|
adamc@110
|
520 end.
|
adamc@110
|
521 End ifoldr.
|
adamc@110
|
522
|
adamc@110
|
523 Fixpoint sum (t : tree nat) : nat :=
|
adamc@110
|
524 match t with
|
adamc@110
|
525 | Leaf n => n
|
adamc@110
|
526 | Node _ ls => ifoldr (fun t' n => sum t' + n) O ls
|
adamc@110
|
527 end.
|
adamc@110
|
528
|
adamc@110
|
529 Fixpoint inc (t : tree nat) : tree nat :=
|
adamc@110
|
530 match t with
|
adamc@110
|
531 | Leaf n => Leaf (S n)
|
adamc@110
|
532 | Node _ ls => Node (imap inc ls)
|
adamc@110
|
533 end.
|
adamc@110
|
534
|
adamc@110
|
535 (** Now we might like to prove that [inc] does not decrease a tree's [sum]. *)
|
adamc@110
|
536
|
adamc@110
|
537 Theorem sum_inc : forall t, sum (inc t) >= sum t.
|
adamc@113
|
538 (* begin thide *)
|
adamc@110
|
539 induction t; crush.
|
adamc@110
|
540 (** [[
|
adamc@110
|
541 n : nat
|
adamc@110
|
542 i : ilist (tree nat) n
|
adamc@110
|
543 ============================
|
adamc@110
|
544 ifoldr (fun (t' : tree nat) (n0 : nat) => sum t' + n0) 0 (imap inc i) >=
|
adamc@110
|
545 ifoldr (fun (t' : tree nat) (n0 : nat) => sum t' + n0) 0 i
|
adamc@215
|
546
|
adamc@110
|
547 ]]
|
adamc@110
|
548
|
adam@342
|
549 We are left with a single subgoal which does not seem provable directly. This is the same problem that we met in Chapter 3 with other %\index{nested inductive type}%nested inductive types. *)
|
adamc@110
|
550
|
adamc@110
|
551 Check tree_ind.
|
adamc@215
|
552 (** %\vspace{-.15in}% [[
|
adamc@215
|
553 tree_ind
|
adamc@110
|
554 : forall (A : Set) (P : tree A -> Prop),
|
adamc@110
|
555 (forall a : A, P (Leaf a)) ->
|
adamc@110
|
556 (forall (n : nat) (i : ilist (tree A) n), P (Node i)) ->
|
adamc@110
|
557 forall t : tree A, P t
|
adamc@215
|
558
|
adamc@110
|
559 ]]
|
adamc@110
|
560
|
adam@342
|
561 The automatically generated induction principle is too weak. For the [Node] case, it gives us no inductive hypothesis. We could write our own induction principle, as we did in Chapter 3, but there is an easier way, if we are willing to alter the definition of [tree]. *)
|
adamc@215
|
562
|
adamc@110
|
563 Abort.
|
adamc@110
|
564
|
adamc@110
|
565 Reset tree.
|
adamc@110
|
566
|
adamc@110
|
567 (** First, let us try using our recursive definition of [ilist]s instead of the inductive version. *)
|
adamc@110
|
568
|
adamc@110
|
569 Section tree.
|
adamc@110
|
570 Variable A : Set.
|
adamc@110
|
571
|
adamc@215
|
572 (** %\vspace{-.15in}% [[
|
adamc@110
|
573 Inductive tree : Set :=
|
adamc@110
|
574 | Leaf : A -> tree
|
adamc@110
|
575 | Node : forall n, filist tree n -> tree.
|
adam@342
|
576 ]]
|
adamc@110
|
577
|
adam@342
|
578 <<
|
adamc@110
|
579 Error: Non strictly positive occurrence of "tree" in
|
adamc@110
|
580 "forall n : nat, filist tree n -> tree"
|
adam@342
|
581 >>
|
adamc@110
|
582
|
adam@342
|
583 The special-case rule for nested datatypes only works with nested uses of other inductive types, which could be replaced with uses of new mutually inductive types. We defined [filist] recursively, so it may not be used for nested recursion.
|
adamc@110
|
584
|
adam@398
|
585 Our final solution uses yet another of the inductive definition techniques introduced in Chapter 3, %\index{reflexive inductive type}%reflexive types. Instead of merely using [fin] to get elements out of [ilist], we can _define_ [ilist] in terms of [fin]. For the reasons outlined above, it turns out to be easier to work with [ffin] in place of [fin]. *)
|
adamc@110
|
586
|
adamc@110
|
587 Inductive tree : Set :=
|
adamc@110
|
588 | Leaf : A -> tree
|
adamc@215
|
589 | Node : forall n, (ffin n -> tree) -> tree.
|
adamc@110
|
590
|
adamc@215
|
591 (** A [Node] is indexed by a natural number [n], and the node's [n] children are represented as a function from [ffin n] to trees, which is isomorphic to the [ilist]-based representation that we used above. *)
|
adamc@215
|
592
|
adamc@110
|
593 End tree.
|
adamc@110
|
594
|
adamc@110
|
595 Implicit Arguments Node [A n].
|
adamc@110
|
596
|
adamc@215
|
597 (** We can redefine [sum] and [inc] for our new [tree] type. Again, it is useful to define a generic fold function first. This time, it takes in a function whose range is some [ffin] type, and it folds another function over the results of calling the first function at every possible [ffin] value. *)
|
adamc@110
|
598
|
adamc@110
|
599 Section rifoldr.
|
adamc@110
|
600 Variables A B : Set.
|
adamc@110
|
601 Variable f : A -> B -> B.
|
adamc@110
|
602 Variable i : B.
|
adamc@110
|
603
|
adamc@215
|
604 Fixpoint rifoldr (n : nat) : (ffin n -> A) -> B :=
|
adamc@215
|
605 match n with
|
adamc@110
|
606 | O => fun _ => i
|
adamc@110
|
607 | S n' => fun get => f (get None) (rifoldr n' (fun idx => get (Some idx)))
|
adamc@110
|
608 end.
|
adamc@110
|
609 End rifoldr.
|
adamc@110
|
610
|
adamc@110
|
611 Implicit Arguments rifoldr [A B n].
|
adamc@110
|
612
|
adamc@110
|
613 Fixpoint sum (t : tree nat) : nat :=
|
adamc@110
|
614 match t with
|
adamc@110
|
615 | Leaf n => n
|
adamc@110
|
616 | Node _ f => rifoldr plus O (fun idx => sum (f idx))
|
adamc@110
|
617 end.
|
adamc@110
|
618
|
adamc@110
|
619 Fixpoint inc (t : tree nat) : tree nat :=
|
adamc@110
|
620 match t with
|
adamc@110
|
621 | Leaf n => Leaf (S n)
|
adamc@110
|
622 | Node _ f => Node (fun idx => inc (f idx))
|
adamc@110
|
623 end.
|
adamc@110
|
624
|
adam@398
|
625 (** Now we are ready to prove the theorem where we got stuck before. We will not need to define any new induction principle, but it _will_ be helpful to prove some lemmas. *)
|
adamc@110
|
626
|
adamc@110
|
627 Lemma plus_ge : forall x1 y1 x2 y2,
|
adamc@110
|
628 x1 >= x2
|
adamc@110
|
629 -> y1 >= y2
|
adamc@110
|
630 -> x1 + y1 >= x2 + y2.
|
adamc@110
|
631 crush.
|
adamc@110
|
632 Qed.
|
adamc@110
|
633
|
adamc@215
|
634 Lemma sum_inc' : forall n (f1 f2 : ffin n -> nat),
|
adamc@110
|
635 (forall idx, f1 idx >= f2 idx)
|
adamc@110
|
636 -> rifoldr plus 0 f1 >= rifoldr plus 0 f2.
|
adamc@110
|
637 Hint Resolve plus_ge.
|
adamc@110
|
638
|
adamc@110
|
639 induction n; crush.
|
adamc@110
|
640 Qed.
|
adamc@110
|
641
|
adamc@110
|
642 Theorem sum_inc : forall t, sum (inc t) >= sum t.
|
adamc@110
|
643 Hint Resolve sum_inc'.
|
adamc@110
|
644
|
adamc@110
|
645 induction t; crush.
|
adamc@110
|
646 Qed.
|
adamc@110
|
647
|
adamc@113
|
648 (* end thide *)
|
adamc@113
|
649
|
adamc@110
|
650 (** Even if Coq would generate complete induction principles automatically for nested inductive definitions like the one we started with, there would still be advantages to using this style of reflexive encoding. We see one of those advantages in the definition of [inc], where we did not need to use any kind of auxiliary function. In general, reflexive encodings often admit direct implementations of operations that would require recursion if performed with more traditional inductive data structures. *)
|
adamc@111
|
651
|
adamc@111
|
652 (** ** Another Interpreter Example *)
|
adamc@111
|
653
|
adam@426
|
654 (** We develop another example of variable-arity constructors, in the form of optimization of a small expression language with a construct like Scheme's <<cond>>. Each of our conditional expressions takes a list of pairs of boolean tests and bodies. The value of the conditional comes from the body of the first test in the list to evaluate to [true]. To simplify the %\index{interpreters}%interpreter we will write, we force each conditional to include a final, default case. *)
|
adamc@112
|
655
|
adamc@112
|
656 Inductive type' : Type := Nat | Bool.
|
adamc@111
|
657
|
adamc@111
|
658 Inductive exp' : type' -> Type :=
|
adamc@112
|
659 | NConst : nat -> exp' Nat
|
adamc@112
|
660 | Plus : exp' Nat -> exp' Nat -> exp' Nat
|
adamc@112
|
661 | Eq : exp' Nat -> exp' Nat -> exp' Bool
|
adamc@111
|
662
|
adamc@112
|
663 | BConst : bool -> exp' Bool
|
adamc@113
|
664 (* begin thide *)
|
adamc@215
|
665 | Cond : forall n t, (ffin n -> exp' Bool)
|
adamc@215
|
666 -> (ffin n -> exp' t) -> exp' t -> exp' t.
|
adamc@113
|
667 (* end thide *)
|
adamc@111
|
668
|
adam@284
|
669 (** A [Cond] is parameterized by a natural [n], which tells us how many cases this conditional has. The test expressions are represented with a function of type [ffin n -> exp' Bool], and the bodies are represented with a function of type [ffin n -> exp' t], where [t] is the overall type. The final [exp' t] argument is the default case. For example, here is an expression that successively checks whether [2 + 2 = 5] (returning 0 if so) or if [1 + 1 = 2] (returning 1 if so), returning 2 otherwise. *)
|
adamc@112
|
670
|
adam@284
|
671 Example ex1 := Cond 2
|
adam@284
|
672 (fun f => match f with
|
adam@284
|
673 | None => Eq (Plus (NConst 2) (NConst 2)) (NConst 5)
|
adam@284
|
674 | Some None => Eq (Plus (NConst 1) (NConst 1)) (NConst 2)
|
adam@284
|
675 | Some (Some v) => match v with end
|
adam@284
|
676 end)
|
adam@284
|
677 (fun f => match f with
|
adam@284
|
678 | None => NConst 0
|
adam@284
|
679 | Some None => NConst 1
|
adam@284
|
680 | Some (Some v) => match v with end
|
adam@284
|
681 end)
|
adam@284
|
682 (NConst 2).
|
adam@284
|
683
|
adam@284
|
684 (** We start implementing our interpreter with a standard type denotation function. *)
|
adamc@112
|
685
|
adamc@111
|
686 Definition type'Denote (t : type') : Set :=
|
adamc@111
|
687 match t with
|
adamc@112
|
688 | Nat => nat
|
adamc@112
|
689 | Bool => bool
|
adamc@111
|
690 end.
|
adamc@111
|
691
|
adamc@112
|
692 (** To implement the expression interpreter, it is useful to have the following function that implements the functionality of [Cond] without involving any syntax. *)
|
adamc@112
|
693
|
adamc@113
|
694 (* begin thide *)
|
adamc@111
|
695 Section cond.
|
adamc@111
|
696 Variable A : Set.
|
adamc@111
|
697 Variable default : A.
|
adamc@111
|
698
|
adamc@215
|
699 Fixpoint cond (n : nat) : (ffin n -> bool) -> (ffin n -> A) -> A :=
|
adamc@215
|
700 match n with
|
adamc@111
|
701 | O => fun _ _ => default
|
adamc@111
|
702 | S n' => fun tests bodies =>
|
adamc@111
|
703 if tests None
|
adamc@111
|
704 then bodies None
|
adamc@111
|
705 else cond n'
|
adamc@111
|
706 (fun idx => tests (Some idx))
|
adamc@111
|
707 (fun idx => bodies (Some idx))
|
adamc@111
|
708 end.
|
adamc@111
|
709 End cond.
|
adamc@111
|
710
|
adamc@111
|
711 Implicit Arguments cond [A n].
|
adamc@113
|
712 (* end thide *)
|
adamc@111
|
713
|
adamc@112
|
714 (** Now the expression interpreter is straightforward to write. *)
|
adamc@112
|
715
|
adamc@215
|
716 Fixpoint exp'Denote t (e : exp' t) : type'Denote t :=
|
adamc@215
|
717 match e with
|
adamc@215
|
718 | NConst n => n
|
adamc@215
|
719 | Plus e1 e2 => exp'Denote e1 + exp'Denote e2
|
adamc@111
|
720 | Eq e1 e2 =>
|
adamc@111
|
721 if eq_nat_dec (exp'Denote e1) (exp'Denote e2) then true else false
|
adamc@111
|
722
|
adamc@215
|
723 | BConst b => b
|
adamc@111
|
724 | Cond _ _ tests bodies default =>
|
adamc@113
|
725 (* begin thide *)
|
adamc@111
|
726 cond
|
adamc@111
|
727 (exp'Denote default)
|
adamc@111
|
728 (fun idx => exp'Denote (tests idx))
|
adamc@111
|
729 (fun idx => exp'Denote (bodies idx))
|
adamc@113
|
730 (* end thide *)
|
adamc@111
|
731 end.
|
adamc@111
|
732
|
adamc@112
|
733 (** We will implement a constant-folding function that optimizes conditionals, removing cases with known-[false] tests and cases that come after known-[true] tests. A function [cfoldCond] implements the heart of this logic. The convoy pattern is used again near the end of the implementation. *)
|
adamc@112
|
734
|
adamc@113
|
735 (* begin thide *)
|
adamc@111
|
736 Section cfoldCond.
|
adamc@111
|
737 Variable t : type'.
|
adamc@111
|
738 Variable default : exp' t.
|
adamc@111
|
739
|
adamc@112
|
740 Fixpoint cfoldCond (n : nat)
|
adamc@215
|
741 : (ffin n -> exp' Bool) -> (ffin n -> exp' t) -> exp' t :=
|
adamc@215
|
742 match n with
|
adamc@111
|
743 | O => fun _ _ => default
|
adamc@111
|
744 | S n' => fun tests bodies =>
|
adamc@204
|
745 match tests None return _ with
|
adamc@111
|
746 | BConst true => bodies None
|
adamc@111
|
747 | BConst false => cfoldCond n'
|
adamc@111
|
748 (fun idx => tests (Some idx))
|
adamc@111
|
749 (fun idx => bodies (Some idx))
|
adamc@111
|
750 | _ =>
|
adamc@111
|
751 let e := cfoldCond n'
|
adamc@111
|
752 (fun idx => tests (Some idx))
|
adamc@111
|
753 (fun idx => bodies (Some idx)) in
|
adamc@112
|
754 match e in exp' t return exp' t -> exp' t with
|
adamc@112
|
755 | Cond n _ tests' bodies' default' => fun body =>
|
adamc@111
|
756 Cond
|
adamc@111
|
757 (S n)
|
adamc@111
|
758 (fun idx => match idx with
|
adamc@112
|
759 | None => tests None
|
adamc@111
|
760 | Some idx => tests' idx
|
adamc@111
|
761 end)
|
adamc@111
|
762 (fun idx => match idx with
|
adamc@111
|
763 | None => body
|
adamc@111
|
764 | Some idx => bodies' idx
|
adamc@111
|
765 end)
|
adamc@111
|
766 default'
|
adamc@112
|
767 | e => fun body =>
|
adamc@111
|
768 Cond
|
adamc@111
|
769 1
|
adamc@112
|
770 (fun _ => tests None)
|
adamc@111
|
771 (fun _ => body)
|
adamc@111
|
772 e
|
adamc@112
|
773 end (bodies None)
|
adamc@111
|
774 end
|
adamc@111
|
775 end.
|
adamc@111
|
776 End cfoldCond.
|
adamc@111
|
777
|
adamc@111
|
778 Implicit Arguments cfoldCond [t n].
|
adamc@113
|
779 (* end thide *)
|
adamc@111
|
780
|
adamc@112
|
781 (** Like for the interpreters, most of the action was in this helper function, and [cfold] itself is easy to write. *)
|
adamc@112
|
782
|
adamc@215
|
783 Fixpoint cfold t (e : exp' t) : exp' t :=
|
adamc@215
|
784 match e with
|
adamc@111
|
785 | NConst n => NConst n
|
adamc@111
|
786 | Plus e1 e2 =>
|
adamc@111
|
787 let e1' := cfold e1 in
|
adamc@111
|
788 let e2' := cfold e2 in
|
adam@417
|
789 match e1', e2' return exp' Nat with
|
adamc@111
|
790 | NConst n1, NConst n2 => NConst (n1 + n2)
|
adamc@111
|
791 | _, _ => Plus e1' e2'
|
adamc@111
|
792 end
|
adamc@111
|
793 | Eq e1 e2 =>
|
adamc@111
|
794 let e1' := cfold e1 in
|
adamc@111
|
795 let e2' := cfold e2 in
|
adam@417
|
796 match e1', e2' return exp' Bool with
|
adamc@111
|
797 | NConst n1, NConst n2 => BConst (if eq_nat_dec n1 n2 then true else false)
|
adamc@111
|
798 | _, _ => Eq e1' e2'
|
adamc@111
|
799 end
|
adamc@111
|
800
|
adamc@111
|
801 | BConst b => BConst b
|
adamc@111
|
802 | Cond _ _ tests bodies default =>
|
adamc@113
|
803 (* begin thide *)
|
adamc@111
|
804 cfoldCond
|
adamc@111
|
805 (cfold default)
|
adamc@111
|
806 (fun idx => cfold (tests idx))
|
adamc@111
|
807 (fun idx => cfold (bodies idx))
|
adamc@113
|
808 (* end thide *)
|
adamc@111
|
809 end.
|
adamc@111
|
810
|
adamc@113
|
811 (* begin thide *)
|
adam@342
|
812 (** To prove our final correctness theorem, it is useful to know that [cfoldCond] preserves expression meanings. This lemma formalizes that property. The proof is a standard mostly automated one, with the only wrinkle being a guided instantiation of the quantifiers in the induction hypothesis. *)
|
adamc@112
|
813
|
adamc@111
|
814 Lemma cfoldCond_correct : forall t (default : exp' t)
|
adamc@215
|
815 n (tests : ffin n -> exp' Bool) (bodies : ffin n -> exp' t),
|
adamc@111
|
816 exp'Denote (cfoldCond default tests bodies)
|
adamc@111
|
817 = exp'Denote (Cond n tests bodies default).
|
adamc@111
|
818 induction n; crush;
|
adamc@111
|
819 match goal with
|
adamc@111
|
820 | [ IHn : forall tests bodies, _, tests : _ -> _, bodies : _ -> _ |- _ ] =>
|
adam@294
|
821 specialize (IHn (fun idx => tests (Some idx)) (fun idx => bodies (Some idx)))
|
adamc@111
|
822 end;
|
adamc@111
|
823 repeat (match goal with
|
adam@406
|
824 | [ |- context[match ?E with NConst _ => _ | _ => _ end] ] => dep_destruct E
|
adamc@111
|
825 | [ |- context[if ?B then _ else _] ] => destruct B
|
adamc@111
|
826 end; crush).
|
adamc@111
|
827 Qed.
|
adamc@111
|
828
|
adam@398
|
829 (** It is also useful to know that the result of a call to [cond] is not changed by substituting new tests and bodies functions, so long as the new functions have the same input-output behavior as the old. It turns out that, in Coq, it is not possible to prove in general that functions related in this way are equal. We treat this issue with our discussion of axioms in a later chapter. For now, it suffices to prove that the particular function [cond] is _extensional_; that is, it is unaffected by substitution of functions with input-output equivalents. *)
|
adamc@112
|
830
|
adamc@215
|
831 Lemma cond_ext : forall (A : Set) (default : A) n (tests tests' : ffin n -> bool)
|
adamc@215
|
832 (bodies bodies' : ffin n -> A),
|
adamc@111
|
833 (forall idx, tests idx = tests' idx)
|
adamc@111
|
834 -> (forall idx, bodies idx = bodies' idx)
|
adamc@111
|
835 -> cond default tests bodies
|
adamc@111
|
836 = cond default tests' bodies'.
|
adamc@111
|
837 induction n; crush;
|
adamc@111
|
838 match goal with
|
adamc@111
|
839 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@111
|
840 end; crush.
|
adamc@111
|
841 Qed.
|
adamc@111
|
842
|
adam@426
|
843 (** Now the final theorem is easy to prove. *)
|
adamc@113
|
844 (* end thide *)
|
adamc@112
|
845
|
adamc@111
|
846 Theorem cfold_correct : forall t (e : exp' t),
|
adamc@111
|
847 exp'Denote (cfold e) = exp'Denote e.
|
adamc@113
|
848 (* begin thide *)
|
adam@375
|
849 Hint Rewrite cfoldCond_correct.
|
adamc@111
|
850 Hint Resolve cond_ext.
|
adamc@111
|
851
|
adamc@111
|
852 induction e; crush;
|
adamc@111
|
853 repeat (match goal with
|
adamc@111
|
854 | [ |- context[cfold ?E] ] => dep_destruct (cfold E)
|
adamc@111
|
855 end; crush).
|
adamc@111
|
856 Qed.
|
adamc@113
|
857 (* end thide *)
|
adamc@115
|
858
|
adam@426
|
859 (** We add our two lemmas as hints and perform standard automation with pattern-matching of subterms to destruct. *)
|
adamc@115
|
860
|
adamc@215
|
861 (** * Choosing Between Representations *)
|
adamc@215
|
862
|
adamc@215
|
863 (** It is not always clear which of these representation techniques to apply in a particular situation, but I will try to summarize the pros and cons of each.
|
adamc@215
|
864
|
adamc@215
|
865 Inductive types are often the most pleasant to work with, after someone has spent the time implementing some basic library functions for them, using fancy [match] annotations. Many aspects of Coq's logic and tactic support are specialized to deal with inductive types, and you may miss out if you use alternate encodings.
|
adamc@215
|
866
|
adam@426
|
867 Recursive types usually involve much less initial effort, but they can be less convenient to use with proof automation. For instance, the [simpl] tactic (which is among the ingredients in [crush]) will sometimes be overzealous in simplifying uses of functions over recursive types. Consider a call [get l f], where variable [l] has type [filist A (S n)]. The type of [l] would be simplified to an explicit pair type. In a proof involving many recursive types, this kind of unhelpful "simplification" can lead to rapid bloat in the sizes of subgoals. Even worse, it can prevent syntactic pattern-matching, like in cases where [filist] is expected but a pair type is found in the "simplified" version. The same problem applies to applications of recursive functions to values in recursive types: the recursive function call may "simplify" when the top-level structure of the type index but not the recursive value is known, because such functions are generally defined by recursion on the index, not the value.
|
adamc@215
|
868
|
adam@426
|
869 Another disadvantage of recursive types is that they only apply to type families whose indices determine their "skeletons." This is not true for all data structures; a good counterexample comes from the richly typed programming language syntax types we have used several times so far. The fact that a piece of syntax has type [Nat] tells us nothing about the tree structure of that syntax.
|
adamc@215
|
870
|
adam@426
|
871 Finally, Coq type inference can be more helpful in constructing values in inductive types. Application of a particular constructor of that type tells Coq what to expect from the arguments, while, for instance, forming a generic pair does not make clear an intention to interpret the value as belonging to a particular recursive type. This downside can be mitigated to an extent by writing "constructor" functions for a recursive type, mirroring the definition of the corresponding inductive type.
|
adam@342
|
872
|
adam@342
|
873 Reflexive encodings of data types are seen relatively rarely. As our examples demonstrated, manipulating index values manually can lead to hard-to-read code. A normal inductive type is generally easier to work with, once someone has gone through the trouble of implementing an induction principle manually with the techniques we studied in Chapter 3. For small developments, avoiding that kind of coding can justify the use of reflexive data structures. There are also some useful instances of %\index{co-inductive types}%co-inductive definitions with nested data structures (e.g., lists of values in the co-inductive type) that can only be deconstructed effectively with reflexive encoding of the nested structures. *)
|