annotate src/Generic.v @ 193:8e9499e27b6c

Start of Generic
author Adam Chlipala <adamc@hcoop.net>
date Fri, 28 Nov 2008 09:55:56 -0500
parents
children 063b5741c248
rev   line source
adamc@193 1 (* Copyright (c) 2008, Adam Chlipala
adamc@193 2 *
adamc@193 3 * This work is licensed under a
adamc@193 4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
adamc@193 5 * Unported License.
adamc@193 6 * The license text is available at:
adamc@193 7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
adamc@193 8 *)
adamc@193 9
adamc@193 10 (* begin hide *)
adamc@193 11 Require Import List.
adamc@193 12
adamc@193 13 Require Import Tactics DepList.
adamc@193 14
adamc@193 15 Set Implicit Arguments.
adamc@193 16 (* end hide *)
adamc@193 17
adamc@193 18
adamc@193 19 (** %\part{Chapters to be Moved Earlier}
adamc@193 20
adamc@193 21 \chapter{Generic Programming}% *)
adamc@193 22
adamc@193 23 (** TODO: Prose for this chapter *)
adamc@193 24
adamc@193 25
adamc@193 26 (** * Simple Algebraic Datatypes *)
adamc@193 27
adamc@193 28 Record constructor : Type := Con {
adamc@193 29 nonrecursive : Type;
adamc@193 30 recursive : nat
adamc@193 31 }.
adamc@193 32
adamc@193 33 Definition datatype := list constructor.
adamc@193 34
adamc@193 35 Definition Empty_set_dt : datatype := nil.
adamc@193 36 Definition unit_dt : datatype := Con unit 0 :: nil.
adamc@193 37 Definition bool_dt : datatype := Con unit 0 :: Con unit 0 :: nil.
adamc@193 38 Definition nat_dt : datatype := Con unit 0 :: Con unit 1 :: nil.
adamc@193 39 Definition list_dt (A : Type) : datatype := Con unit 0 :: Con A 1 :: nil.
adamc@193 40
adamc@193 41 Section tree.
adamc@193 42 Variable A : Type.
adamc@193 43
adamc@193 44 Inductive tree : Type :=
adamc@193 45 | Leaf : A -> tree
adamc@193 46 | Node : tree -> tree -> tree.
adamc@193 47 End tree.
adamc@193 48
adamc@193 49 Definition tree_dt (A : Type) : datatype := Con A 0 :: Con unit 2 :: nil.
adamc@193 50
adamc@193 51 Section denote.
adamc@193 52 Variable T : Type.
adamc@193 53
adamc@193 54 Definition constructorDenote (c : constructor) :=
adamc@193 55 nonrecursive c -> ilist T (recursive c) -> T.
adamc@193 56
adamc@193 57 Definition datatypeDenote := hlist constructorDenote.
adamc@193 58 End denote.
adamc@193 59
adamc@193 60 Notation "[ ! , ! ~> x ]" := ((fun _ _ => x) : constructorDenote _ (Con _ _)).
adamc@193 61 Notation "[ v , ! ~> x ]" := ((fun v _ => x) : constructorDenote _ (Con _ _)).
adamc@193 62 Notation "[ ! , r # n ~> x ]" := ((fun _ r => x) : constructorDenote _ (Con _ n)).
adamc@193 63 Notation "[ v , r # n ~> x ]" := ((fun v r => x) : constructorDenote _ (Con _ n)).
adamc@193 64
adamc@193 65 Definition Empty_set_den : datatypeDenote Empty_set Empty_set_dt :=
adamc@193 66 hnil.
adamc@193 67 Definition unit_den : datatypeDenote unit unit_dt :=
adamc@193 68 [!, ! ~> tt] ::: hnil.
adamc@193 69 Definition bool_den : datatypeDenote bool bool_dt :=
adamc@193 70 [!, ! ~> true] ::: [!, ! ~> false] ::: hnil.
adamc@193 71 Definition nat_den : datatypeDenote nat nat_dt :=
adamc@193 72 [!, ! ~> O] ::: [!, r # 1 ~> S (hd r)] ::: hnil.
adamc@193 73 Definition list_den (A : Type) : datatypeDenote (list A) (list_dt A) :=
adamc@193 74 [!, ! ~> nil] ::: [x, r # 1 ~> x :: hd r] ::: hnil.
adamc@193 75 Definition tree_den (A : Type) : datatypeDenote (tree A) (tree_dt A) :=
adamc@193 76 [v, ! ~> Leaf v] ::: [!, r # 2 ~> Node (hd r) (hd (tl r))] ::: hnil.