annotate src/Reflection.v @ 209:90af611e2993

Port Predicates
author Adam Chlipala <adamc@hcoop.net>
date Mon, 09 Nov 2009 11:48:27 -0500
parents f05514cc6c0d
children 54e8ecb5ec88
rev   line source
adamc@142 1 (* Copyright (c) 2008, Adam Chlipala
adamc@142 2 *
adamc@142 3 * This work is licensed under a
adamc@142 4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
adamc@142 5 * Unported License.
adamc@142 6 * The license text is available at:
adamc@142 7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
adamc@142 8 *)
adamc@142 9
adamc@142 10 (* begin hide *)
adamc@142 11 Require Import List.
adamc@142 12
adamc@142 13 Require Import Tactics MoreSpecif.
adamc@142 14
adamc@142 15 Set Implicit Arguments.
adamc@142 16 (* end hide *)
adamc@142 17
adamc@142 18
adamc@142 19 (** %\chapter{Proof by Reflection}% *)
adamc@142 20
adamc@142 21 (** The last chapter highlighted a very heuristic approach to proving. In this chapter, we will study an alternative technique, %\textit{%#<i>#proof by reflection#</i>#%}%. We will write, in Gallina, decision procedures with proofs of correctness, and we will appeal to these procedures in writing very short proofs. Such a proof is checked by running the decision procedure. The term %\textit{%#<i>#reflection#</i>#%}% applies because we will need to translate Gallina propositions into values of inductive types representing syntax, so that Gallina programs may analyze them. *)
adamc@142 22
adamc@142 23
adamc@142 24 (** * Proving Evenness *)
adamc@142 25
adamc@142 26 (** Proving that particular natural number constants are even is certainly something we would rather have happen automatically. The Ltac-programming techniques that we learned in the last chapter make it easy to implement such a procedure. *)
adamc@142 27
adamc@142 28 Inductive isEven : nat -> Prop :=
adamc@144 29 | Even_O : isEven O
adamc@144 30 | Even_SS : forall n, isEven n -> isEven (S (S n)).
adamc@142 31
adamc@148 32 (* begin thide *)
adamc@142 33 Ltac prove_even := repeat constructor.
adamc@148 34 (* end thide *)
adamc@142 35
adamc@142 36 Theorem even_256 : isEven 256.
adamc@142 37 prove_even.
adamc@142 38 Qed.
adamc@142 39
adamc@142 40 Print even_256.
adamc@142 41 (** [[
adamc@142 42
adamc@142 43 even_256 =
adamc@142 44 Even_SS
adamc@142 45 (Even_SS
adamc@142 46 (Even_SS
adamc@142 47 (Even_SS
adamc@142 48 ]]
adamc@142 49
adamc@142 50 ...and so on. This procedure always works (at least on machines with infinite resources), but it has a serious drawback, which we see when we print the proof it generates that 256 is even. The final proof term has length linear in the input value. This seems like a shame, since we could write a trivial and trustworthy program to verify evenness of constants. The proof checker could simply call our program where needed.
adamc@142 51
adamc@142 52 It is also unfortunate not to have static typing guarantees that our tactic always behaves appropriately. Other invocations of similar tactics might fail with dynamic type errors, and we would not know about the bugs behind these errors until we happened to attempt to prove complex enough goals.
adamc@142 53
adamc@142 54 The techniques of proof by reflection address both complaints. We will be able to write proofs like this with constant size overhead beyond the size of the input, and we will do it with verified decision procedures written in Gallina.
adamc@142 55
adamc@142 56 For this example, we begin by using a type from the [MoreSpecif] module to write a certified evenness checker. *)
adamc@142 57
adamc@142 58 Print partial.
adamc@142 59 (** [[
adamc@142 60
adamc@142 61 Inductive partial (P : Prop) : Set := Proved : P -> [P] | Uncertain : [P]
adamc@142 62 ]] *)
adamc@142 63
adamc@142 64 (** A [partial P] value is an optional proof of [P]. The notation [[P]] stands for [partial P]. *)
adamc@142 65
adamc@142 66 Open Local Scope partial_scope.
adamc@142 67
adamc@142 68 (** We bring into scope some notations for the [partial] type. These overlap with some of the notations we have seen previously for specification types, so they were placed in a separate scope that needs separate opening. *)
adamc@142 69
adamc@148 70 (* begin thide *)
adamc@142 71 Definition check_even (n : nat) : [isEven n].
adamc@142 72 Hint Constructors isEven.
adamc@142 73
adamc@142 74 refine (fix F (n : nat) : [isEven n] :=
adamc@142 75 match n return [isEven n] with
adamc@142 76 | 0 => Yes
adamc@142 77 | 1 => No
adamc@142 78 | S (S n') => Reduce (F n')
adamc@142 79 end); auto.
adamc@142 80 Defined.
adamc@142 81
adamc@142 82 (** We can use dependent pattern-matching to write a function that performs a surprising feat. When given a [partial P], this function [partialOut] returns a proof of [P] if the [partial] value contains a proof, and it returns a (useless) proof of [True] otherwise. From the standpoint of ML and Haskell programming, it seems impossible to write such a type, but it is trivial with a [return] annotation. *)
adamc@142 83
adamc@142 84 Definition partialOut (P : Prop) (x : [P]) :=
adamc@142 85 match x return (match x with
adamc@142 86 | Proved _ => P
adamc@142 87 | Uncertain => True
adamc@142 88 end) with
adamc@142 89 | Proved pf => pf
adamc@142 90 | Uncertain => I
adamc@142 91 end.
adamc@142 92
adamc@142 93 (** It may seem strange to define a function like this. However, it turns out to be very useful in writing a reflective verison of our earlier [prove_even] tactic: *)
adamc@142 94
adamc@142 95 Ltac prove_even_reflective :=
adamc@142 96 match goal with
adamc@142 97 | [ |- isEven ?N] => exact (partialOut (check_even N))
adamc@142 98 end.
adamc@148 99 (* end thide *)
adamc@142 100
adamc@142 101 (** We identify which natural number we are considering, and we "prove" its evenness by pulling the proof out of the appropriate [check_even] call. *)
adamc@142 102
adamc@142 103 Theorem even_256' : isEven 256.
adamc@142 104 prove_even_reflective.
adamc@142 105 Qed.
adamc@142 106
adamc@142 107 Print even_256'.
adamc@142 108 (** [[
adamc@142 109
adamc@142 110 even_256' = partialOut (check_even 256)
adamc@142 111 : isEven 256
adamc@142 112 ]]
adamc@142 113
adamc@142 114 We can see a constant wrapper around the object of the proof. For any even number, this form of proof will suffice. What happens if we try the tactic with an odd number? *)
adamc@142 115
adamc@142 116 Theorem even_255 : isEven 255.
adamc@142 117 (** [[
adamc@142 118
adamc@142 119 prove_even_reflective.
adamc@142 120
adamc@205 121 ]]
adamc@205 122
adamc@142 123 [[
adamc@142 124
adamc@142 125 User error: No matching clauses for match goal
adamc@142 126 ]]
adamc@142 127
adamc@142 128 Thankfully, the tactic fails. To see more precisely what goes wrong, we can run manually the body of the [match].
adamc@142 129
adamc@142 130 [[
adamc@142 131
adamc@142 132 exact (partialOut (check_even 255)).
adamc@142 133
adamc@205 134 ]]
adamc@205 135
adamc@142 136 [[
adamc@142 137
adamc@142 138 Error: The term "partialOut (check_even 255)" has type
adamc@142 139 "match check_even 255 with
adamc@142 140 | Yes => isEven 255
adamc@142 141 | No => True
adamc@142 142 end" while it is expected to have type "isEven 255"
adamc@142 143 ]]
adamc@142 144
adamc@142 145 As usual, the type-checker performs no reductions to simplify error messages. If we reduced the first term ourselves, we would see that [check_even 255] reduces to a [No], so that the first term is equivalent to [True], which certainly does not unify with [isEven 255]. *)
adamc@142 146 Abort.
adamc@143 147
adamc@143 148
adamc@143 149 (** * Reflecting the Syntax of a Trivial Tautology Language *)
adamc@143 150
adamc@143 151 (** We might also like to have reflective proofs of trivial tautologies like this one: *)
adamc@143 152
adamc@143 153 Theorem true_galore : (True /\ True) -> (True \/ (True /\ (True -> True))).
adamc@143 154 tauto.
adamc@143 155 Qed.
adamc@143 156
adamc@143 157 Print true_galore.
adamc@143 158
adamc@143 159 (** [[
adamc@143 160
adamc@143 161 true_galore =
adamc@143 162 fun H : True /\ True =>
adamc@143 163 and_ind (fun _ _ : True => or_introl (True /\ (True -> True)) I) H
adamc@143 164 : True /\ True -> True \/ True /\ (True -> True)
adamc@143 165 ]]
adamc@143 166
adamc@143 167 As we might expect, the proof that [tauto] builds contains explicit applications of natural deduction rules. For large formulas, this can add a linear amount of proof size overhead, beyond the size of the input.
adamc@143 168
adamc@143 169 To write a reflective procedure for this class of goals, we will need to get into the actual "reflection" part of "proof by reflection." It is impossible to case-analyze a [Prop] in any way in Gallina. We must %\textit{%#<i>#reflect#</i>#%}% [Prop] into some type that we %\textit{%#<i>#can#</i>#%}% analyze. This inductive type is a good candidate: *)
adamc@143 170
adamc@148 171 (* begin thide *)
adamc@143 172 Inductive taut : Set :=
adamc@143 173 | TautTrue : taut
adamc@143 174 | TautAnd : taut -> taut -> taut
adamc@143 175 | TautOr : taut -> taut -> taut
adamc@143 176 | TautImp : taut -> taut -> taut.
adamc@143 177
adamc@143 178 (** We write a recursive function to "unreflect" this syntax back to [Prop]. *)
adamc@143 179
adamc@143 180 Fixpoint tautDenote (t : taut) : Prop :=
adamc@143 181 match t with
adamc@143 182 | TautTrue => True
adamc@143 183 | TautAnd t1 t2 => tautDenote t1 /\ tautDenote t2
adamc@143 184 | TautOr t1 t2 => tautDenote t1 \/ tautDenote t2
adamc@143 185 | TautImp t1 t2 => tautDenote t1 -> tautDenote t2
adamc@143 186 end.
adamc@143 187
adamc@143 188 (** It is easy to prove that every formula in the range of [tautDenote] is true. *)
adamc@143 189
adamc@143 190 Theorem tautTrue : forall t, tautDenote t.
adamc@143 191 induction t; crush.
adamc@143 192 Qed.
adamc@143 193
adamc@143 194 (** To use [tautTrue] to prove particular formulas, we need to implement the syntax reflection process. A recursive Ltac function does the job. *)
adamc@143 195
adamc@143 196 Ltac tautReflect P :=
adamc@143 197 match P with
adamc@143 198 | True => TautTrue
adamc@143 199 | ?P1 /\ ?P2 =>
adamc@143 200 let t1 := tautReflect P1 in
adamc@143 201 let t2 := tautReflect P2 in
adamc@143 202 constr:(TautAnd t1 t2)
adamc@143 203 | ?P1 \/ ?P2 =>
adamc@143 204 let t1 := tautReflect P1 in
adamc@143 205 let t2 := tautReflect P2 in
adamc@143 206 constr:(TautOr t1 t2)
adamc@143 207 | ?P1 -> ?P2 =>
adamc@143 208 let t1 := tautReflect P1 in
adamc@143 209 let t2 := tautReflect P2 in
adamc@143 210 constr:(TautImp t1 t2)
adamc@143 211 end.
adamc@143 212
adamc@143 213 (** With [tautReflect] available, it is easy to finish our reflective tactic. We look at the goal formula, reflect it, and apply [tautTrue] to the reflected formula. *)
adamc@143 214
adamc@143 215 Ltac obvious :=
adamc@143 216 match goal with
adamc@143 217 | [ |- ?P ] =>
adamc@143 218 let t := tautReflect P in
adamc@143 219 exact (tautTrue t)
adamc@143 220 end.
adamc@143 221
adamc@143 222 (** We can verify that [obvious] solves our original example, with a proof term that does not mention details of the proof. *)
adamc@148 223 (* end thide *)
adamc@143 224
adamc@143 225 Theorem true_galore' : (True /\ True) -> (True \/ (True /\ (True -> True))).
adamc@143 226 obvious.
adamc@143 227 Qed.
adamc@143 228
adamc@143 229 Print true_galore'.
adamc@143 230
adamc@143 231 (** [[
adamc@143 232
adamc@143 233 true_galore' =
adamc@143 234 tautTrue
adamc@143 235 (TautImp (TautAnd TautTrue TautTrue)
adamc@143 236 (TautOr TautTrue (TautAnd TautTrue (TautImp TautTrue TautTrue))))
adamc@143 237 : True /\ True -> True \/ True /\ (True -> True)
adamc@143 238
adamc@143 239 ]]
adamc@143 240
adamc@143 241 It is worth considering how the reflective tactic improves on a pure-Ltac implementation. The formula reflection process is just as ad-hoc as before, so we gain little there. In general, proofs will be more complicated than formula translation, and the "generic proof rule" that we apply here %\textit{%#<i>#is#</i>#%}% on much better formal footing than a recursive Ltac function. The dependent type of the proof guarantees that it "works" on any input formula. This is all in addition to the proof-size improvement that we have already seen. *)
adamc@144 242
adamc@144 243
adamc@145 244 (** * A Monoid Expression Simplifier *)
adamc@145 245
adamc@146 246 (** Proof by reflection does not require encoding of all of the syntax in a goal. We can insert "variables" in our syntax types to allow injection of arbitrary pieces, even if we cannot apply specialized reasoning to them. In this section, we explore that possibility by writing a tactic for normalizing monoid equations. *)
adamc@146 247
adamc@145 248 Section monoid.
adamc@145 249 Variable A : Set.
adamc@145 250 Variable e : A.
adamc@145 251 Variable f : A -> A -> A.
adamc@145 252
adamc@145 253 Infix "+" := f.
adamc@145 254
adamc@145 255 Hypothesis assoc : forall a b c, (a + b) + c = a + (b + c).
adamc@145 256 Hypothesis identl : forall a, e + a = a.
adamc@145 257 Hypothesis identr : forall a, a + e = a.
adamc@145 258
adamc@146 259 (** We add variables and hypotheses characterizing an arbitrary instance of the algebraic structure of monoids. We have an associative binary operator and an identity element for it.
adamc@146 260
adamc@146 261 It is easy to define an expression tree type for monoid expressions. A [Var] constructor is a "catch-all" case for subexpressions that we cannot model. These subexpressions could be actual Gallina variables, or they could just use functions that our tactic is unable to understand. *)
adamc@146 262
adamc@148 263 (* begin thide *)
adamc@145 264 Inductive mexp : Set :=
adamc@145 265 | Ident : mexp
adamc@145 266 | Var : A -> mexp
adamc@145 267 | Op : mexp -> mexp -> mexp.
adamc@145 268
adamc@146 269 (** Next, we write an "un-reflect" function. *)
adamc@146 270
adamc@145 271 Fixpoint mdenote (me : mexp) : A :=
adamc@145 272 match me with
adamc@145 273 | Ident => e
adamc@145 274 | Var v => v
adamc@145 275 | Op me1 me2 => mdenote me1 + mdenote me2
adamc@145 276 end.
adamc@145 277
adamc@146 278 (** We will normalize expressions by flattening them into lists, via associativity, so it is helpful to have a denotation function for lists of monoid values. *)
adamc@146 279
adamc@145 280 Fixpoint mldenote (ls : list A) : A :=
adamc@145 281 match ls with
adamc@145 282 | nil => e
adamc@145 283 | x :: ls' => x + mldenote ls'
adamc@145 284 end.
adamc@145 285
adamc@146 286 (** The flattening function itself is easy to implement. *)
adamc@146 287
adamc@145 288 Fixpoint flatten (me : mexp) : list A :=
adamc@145 289 match me with
adamc@145 290 | Ident => nil
adamc@145 291 | Var x => x :: nil
adamc@145 292 | Op me1 me2 => flatten me1 ++ flatten me2
adamc@145 293 end.
adamc@145 294
adamc@146 295 (** [flatten] has a straightforward correctness proof in terms of our [denote] functions. *)
adamc@146 296
adamc@146 297 Lemma flatten_correct' : forall ml2 ml1,
adamc@146 298 mldenote ml1 + mldenote ml2 = mldenote (ml1 ++ ml2).
adamc@145 299 induction ml1; crush.
adamc@145 300 Qed.
adamc@145 301
adamc@145 302 Theorem flatten_correct : forall me, mdenote me = mldenote (flatten me).
adamc@145 303 Hint Resolve flatten_correct'.
adamc@145 304
adamc@145 305 induction me; crush.
adamc@145 306 Qed.
adamc@145 307
adamc@146 308 (** Now it is easy to prove a theorem that will be the main tool behind our simplification tactic. *)
adamc@146 309
adamc@146 310 Theorem monoid_reflect : forall me1 me2,
adamc@146 311 mldenote (flatten me1) = mldenote (flatten me2)
adamc@146 312 -> mdenote me1 = mdenote me2.
adamc@145 313 intros; repeat rewrite flatten_correct; assumption.
adamc@145 314 Qed.
adamc@145 315
adamc@146 316 (** We implement reflection into the [mexp] type. *)
adamc@146 317
adamc@146 318 Ltac reflect me :=
adamc@146 319 match me with
adamc@145 320 | e => Ident
adamc@146 321 | ?me1 + ?me2 =>
adamc@146 322 let r1 := reflect me1 in
adamc@146 323 let r2 := reflect me2 in
adamc@145 324 constr:(Op r1 r2)
adamc@146 325 | _ => constr:(Var me)
adamc@145 326 end.
adamc@145 327
adamc@146 328 (** The final [monoid] tactic works on goals that equate two monoid terms. We reflect each and change the goal to refer to the reflected versions, finishing off by applying [monoid_reflect] and simplifying uses of [mldenote]. *)
adamc@146 329
adamc@145 330 Ltac monoid :=
adamc@145 331 match goal with
adamc@146 332 | [ |- ?me1 = ?me2 ] =>
adamc@146 333 let r1 := reflect me1 in
adamc@146 334 let r2 := reflect me2 in
adamc@145 335 change (mdenote r1 = mdenote r2);
adamc@145 336 apply monoid_reflect; simpl mldenote
adamc@145 337 end.
adamc@145 338
adamc@146 339 (** We can make short work of theorems like this one: *)
adamc@146 340
adamc@148 341 (* end thide *)
adamc@148 342
adamc@145 343 Theorem t1 : forall a b c d, a + b + c + d = a + (b + c) + d.
adamc@146 344 intros; monoid.
adamc@146 345 (** [[
adamc@146 346
adamc@146 347 ============================
adamc@146 348 a + (b + (c + (d + e))) = a + (b + (c + (d + e)))
adamc@146 349 ]]
adamc@146 350
adamc@146 351 [monoid] has canonicalized both sides of the equality, such that we can finish the proof by reflexivity. *)
adamc@146 352
adamc@145 353 reflexivity.
adamc@145 354 Qed.
adamc@146 355
adamc@146 356 (** It is interesting to look at the form of the proof. *)
adamc@146 357
adamc@146 358 Print t1.
adamc@146 359 (** [[
adamc@146 360
adamc@146 361 t1 =
adamc@146 362 fun a b c d : A =>
adamc@146 363 monoid_reflect (Op (Op (Op (Var a) (Var b)) (Var c)) (Var d))
adamc@146 364 (Op (Op (Var a) (Op (Var b) (Var c))) (Var d))
adamc@146 365 (refl_equal (a + (b + (c + (d + e)))))
adamc@146 366 : forall a b c d : A, a + b + c + d = a + (b + c) + d
adamc@146 367 ]]
adamc@146 368
adamc@146 369 The proof term contains only restatements of the equality operands in reflected form, followed by a use of reflexivity on the shared canonical form. *)
adamc@145 370 End monoid.
adamc@145 371
adamc@146 372 (** Extensions of this basic approach are used in the implementations of the [ring] and [field] tactics that come packaged with Coq. *)
adamc@146 373
adamc@145 374
adamc@144 375 (** * A Smarter Tautology Solver *)
adamc@144 376
adamc@147 377 (** Now we are ready to revisit our earlier tautology solver example. We want to broaden the scope of the tactic to include formulas whose truth is not syntactically apparent. We will want to allow injection of arbitrary formulas, like we allowed arbitrary monoid expressions in the last example. Since we are working in a richer theory, it is important to be able to use equalities between different injected formulas. For instance, we cannott prove [P -> P] by translating the formula into a value like [Imp (Var P) (Var P)], because a Gallina function has no way of comparing the two [P]s for equality.
adamc@147 378
adamc@147 379 To arrive at a nice implementation satisfying these criteria, we introduce the [quote] tactic and its associated library. *)
adamc@147 380
adamc@144 381 Require Import Quote.
adamc@144 382
adamc@148 383 (* begin thide *)
adamc@144 384 Inductive formula : Set :=
adamc@144 385 | Atomic : index -> formula
adamc@144 386 | Truth : formula
adamc@144 387 | Falsehood : formula
adamc@144 388 | And : formula -> formula -> formula
adamc@144 389 | Or : formula -> formula -> formula
adamc@144 390 | Imp : formula -> formula -> formula.
adamc@144 391
adamc@147 392 (** The type [index] comes from the [Quote] library and represents a countable variable type. The rest of [formula]'s definition should be old hat by now.
adamc@147 393
adamc@147 394 The [quote] tactic will implement injection from [Prop] into [formula] for us, but it is not quite as smart as we might like. In particular, it interprets implications incorrectly, so we will need to declare a wrapper definition for implication, as we did in the last chapter. *)
adamc@144 395
adamc@144 396 Definition imp (P1 P2 : Prop) := P1 -> P2.
adamc@144 397 Infix "-->" := imp (no associativity, at level 95).
adamc@144 398
adamc@147 399 (** Now we can define our denotation function. *)
adamc@147 400
adamc@147 401 Definition asgn := varmap Prop.
adamc@147 402
adamc@144 403 Fixpoint formulaDenote (atomics : asgn) (f : formula) : Prop :=
adamc@144 404 match f with
adamc@144 405 | Atomic v => varmap_find False v atomics
adamc@144 406 | Truth => True
adamc@144 407 | Falsehood => False
adamc@144 408 | And f1 f2 => formulaDenote atomics f1 /\ formulaDenote atomics f2
adamc@144 409 | Or f1 f2 => formulaDenote atomics f1 \/ formulaDenote atomics f2
adamc@144 410 | Imp f1 f2 => formulaDenote atomics f1 --> formulaDenote atomics f2
adamc@144 411 end.
adamc@144 412
adamc@147 413 (** The [varmap] type family implements maps from [index] values. In this case, we define an assignment as a map from variables to [Prop]s. [formulaDenote] works with an assignment, and we use the [varmap_find] function to consult the assignment in the [Atomic] case. The first argument to [varmap_find] is a default value, in case the variable is not found. *)
adamc@147 414
adamc@144 415 Section my_tauto.
adamc@144 416 Variable atomics : asgn.
adamc@144 417
adamc@144 418 Definition holds (v : index) := varmap_find False v atomics.
adamc@144 419
adamc@147 420 (** We define some shorthand for a particular variable being true, and now we are ready to define some helpful functions based on the [ListSet] module of the standard library, which (unsurprisingly) presents a view of lists as sets. *)
adamc@147 421
adamc@144 422 Require Import ListSet.
adamc@144 423
adamc@144 424 Definition index_eq : forall x y : index, {x = y} + {x <> y}.
adamc@144 425 decide equality.
adamc@144 426 Defined.
adamc@144 427
adamc@144 428 Definition add (s : set index) (v : index) := set_add index_eq v s.
adamc@147 429
adamc@144 430 Definition In_dec : forall v (s : set index), {In v s} + {~In v s}.
adamc@144 431 Open Local Scope specif_scope.
adamc@144 432
adamc@144 433 intro; refine (fix F (s : set index) : {In v s} + {~In v s} :=
adamc@144 434 match s return {In v s} + {~In v s} with
adamc@144 435 | nil => No
adamc@144 436 | v' :: s' => index_eq v' v || F s'
adamc@144 437 end); crush.
adamc@144 438 Defined.
adamc@144 439
adamc@147 440 (** We define what it means for all members of an index set to represent true propositions, and we prove some lemmas about this notion. *)
adamc@147 441
adamc@144 442 Fixpoint allTrue (s : set index) : Prop :=
adamc@144 443 match s with
adamc@144 444 | nil => True
adamc@144 445 | v :: s' => holds v /\ allTrue s'
adamc@144 446 end.
adamc@144 447
adamc@144 448 Theorem allTrue_add : forall v s,
adamc@144 449 allTrue s
adamc@144 450 -> holds v
adamc@144 451 -> allTrue (add s v).
adamc@144 452 induction s; crush;
adamc@144 453 match goal with
adamc@144 454 | [ |- context[if ?E then _ else _] ] => destruct E
adamc@144 455 end; crush.
adamc@144 456 Qed.
adamc@144 457
adamc@144 458 Theorem allTrue_In : forall v s,
adamc@144 459 allTrue s
adamc@144 460 -> set_In v s
adamc@144 461 -> varmap_find False v atomics.
adamc@144 462 induction s; crush.
adamc@144 463 Qed.
adamc@144 464
adamc@144 465 Hint Resolve allTrue_add allTrue_In.
adamc@144 466
adamc@144 467 Open Local Scope partial_scope.
adamc@144 468
adamc@147 469 (** Now we can write a function [forward] which implements deconstruction of hypotheses. It has a dependent type, in the style of Chapter 6, guaranteeing correctness. The arguments to [forward] are a goal formula [f], a set [known] of atomic formulas that we may assume are true, a hypothesis formula [hyp], and a success continuation [cont] that we call when we have extended [known] to hold new truths implied by [hyp]. *)
adamc@147 470
adamc@144 471 Definition forward (f : formula) (known : set index) (hyp : formula)
adamc@144 472 (cont : forall known', [allTrue known' -> formulaDenote atomics f])
adamc@144 473 : [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f].
adamc@144 474 refine (fix F (f : formula) (known : set index) (hyp : formula)
adamc@144 475 (cont : forall known', [allTrue known' -> formulaDenote atomics f]){struct hyp}
adamc@144 476 : [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f] :=
adamc@144 477 match hyp return [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f] with
adamc@144 478 | Atomic v => Reduce (cont (add known v))
adamc@144 479 | Truth => Reduce (cont known)
adamc@144 480 | Falsehood => Yes
adamc@144 481 | And h1 h2 =>
adamc@144 482 Reduce (F (Imp h2 f) known h1 (fun known' =>
adamc@144 483 Reduce (F f known' h2 cont)))
adamc@144 484 | Or h1 h2 => F f known h1 cont && F f known h2 cont
adamc@144 485 | Imp _ _ => Reduce (cont known)
adamc@144 486 end); crush.
adamc@144 487 Defined.
adamc@144 488
adamc@147 489 (** A [backward] function implements analysis of the final goal. It calls [forward] to handle implications. *)
adamc@147 490
adamc@144 491 Definition backward (known : set index) (f : formula) : [allTrue known -> formulaDenote atomics f].
adamc@144 492 refine (fix F (known : set index) (f : formula) : [allTrue known -> formulaDenote atomics f] :=
adamc@144 493 match f return [allTrue known -> formulaDenote atomics f] with
adamc@144 494 | Atomic v => Reduce (In_dec v known)
adamc@144 495 | Truth => Yes
adamc@144 496 | Falsehood => No
adamc@144 497 | And f1 f2 => F known f1 && F known f2
adamc@144 498 | Or f1 f2 => F known f1 || F known f2
adamc@144 499 | Imp f1 f2 => forward f2 known f1 (fun known' => F known' f2)
adamc@144 500 end); crush; eauto.
adamc@144 501 Defined.
adamc@144 502
adamc@147 503 (** A simple wrapper around [backward] gives us the usual type of a partial decision procedure. *)
adamc@147 504
adamc@144 505 Definition my_tauto (f : formula) : [formulaDenote atomics f].
adamc@144 506 intro; refine (Reduce (backward nil f)); crush.
adamc@144 507 Defined.
adamc@144 508 End my_tauto.
adamc@144 509
adamc@147 510 (** Our final tactic implementation is now fairly straightforward. First, we [intro] all quantifiers that do not bind [Prop]s. Then we call the [quote] tactic, which implements the reflection for us. Finally, we are able to construct an exact proof via [partialOut] and the [my_tauto] Gallina function. *)
adamc@147 511
adamc@144 512 Ltac my_tauto :=
adamc@144 513 repeat match goal with
adamc@144 514 | [ |- forall x : ?P, _ ] =>
adamc@144 515 match type of P with
adamc@144 516 | Prop => fail 1
adamc@144 517 | _ => intro
adamc@144 518 end
adamc@144 519 end;
adamc@144 520 quote formulaDenote;
adamc@144 521 match goal with
adamc@144 522 | [ |- formulaDenote ?m ?f ] => exact (partialOut (my_tauto m f))
adamc@144 523 end.
adamc@148 524 (* end thide *)
adamc@144 525
adamc@147 526 (** A few examples demonstrate how the tactic works. *)
adamc@147 527
adamc@144 528 Theorem mt1 : True.
adamc@144 529 my_tauto.
adamc@144 530 Qed.
adamc@144 531
adamc@144 532 Print mt1.
adamc@147 533 (** [[
adamc@147 534
adamc@147 535 mt1 = partialOut (my_tauto (Empty_vm Prop) Truth)
adamc@147 536 : True
adamc@147 537 ]]
adamc@147 538
adamc@147 539 We see [my_tauto] applied with an empty [varmap], since every subformula is handled by [formulaDenote]. *)
adamc@144 540
adamc@144 541 Theorem mt2 : forall x y : nat, x = y --> x = y.
adamc@144 542 my_tauto.
adamc@144 543 Qed.
adamc@144 544
adamc@144 545 Print mt2.
adamc@147 546 (** [[
adamc@147 547
adamc@147 548 mt2 =
adamc@147 549 fun x y : nat =>
adamc@147 550 partialOut
adamc@147 551 (my_tauto (Node_vm (x = y) (Empty_vm Prop) (Empty_vm Prop))
adamc@147 552 (Imp (Atomic End_idx) (Atomic End_idx)))
adamc@147 553 : forall x y : nat, x = y --> x = y
adamc@147 554 ]]
adamc@147 555
adamc@147 556 Crucially, both instances of [x = y] are represented with the same index, [End_idx]. The value of this index only needs to appear once in the [varmap], whose form reveals that [varmap]s are represented as binary trees, where [index] values denote paths from tree roots to leaves. *)
adamc@144 557
adamc@144 558 Theorem mt3 : forall x y z,
adamc@144 559 (x < y /\ y > z) \/ (y > z /\ x < S y)
adamc@144 560 --> y > z /\ (x < y \/ x < S y).
adamc@144 561 my_tauto.
adamc@144 562 Qed.
adamc@144 563
adamc@144 564 Print mt3.
adamc@147 565 (** [[
adamc@147 566
adamc@147 567 fun x y z : nat =>
adamc@147 568 partialOut
adamc@147 569 (my_tauto
adamc@147 570 (Node_vm (x < S y) (Node_vm (x < y) (Empty_vm Prop) (Empty_vm Prop))
adamc@147 571 (Node_vm (y > z) (Empty_vm Prop) (Empty_vm Prop)))
adamc@147 572 (Imp
adamc@147 573 (Or (And (Atomic (Left_idx End_idx)) (Atomic (Right_idx End_idx)))
adamc@147 574 (And (Atomic (Right_idx End_idx)) (Atomic End_idx)))
adamc@147 575 (And (Atomic (Right_idx End_idx))
adamc@147 576 (Or (Atomic (Left_idx End_idx)) (Atomic End_idx)))))
adamc@147 577 : forall x y z : nat,
adamc@147 578 x < y /\ y > z \/ y > z /\ x < S y --> y > z /\ (x < y \/ x < S y)
adamc@147 579 ]]
adamc@147 580
adamc@147 581 Our goal contained three distinct atomic formulas, and we see that a three-element [varmap] is generated.
adamc@147 582
adamc@147 583 It can be interesting to observe differences between the level of repetition in proof terms generated by [my_tauto] and [tauto] for especially trivial theorems. *)
adamc@144 584
adamc@144 585 Theorem mt4 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False.
adamc@144 586 my_tauto.
adamc@144 587 Qed.
adamc@144 588
adamc@144 589 Print mt4.
adamc@147 590 (** [[
adamc@147 591
adamc@147 592 mt4 =
adamc@147 593 partialOut
adamc@147 594 (my_tauto (Empty_vm Prop)
adamc@147 595 (Imp
adamc@147 596 (And Truth
adamc@147 597 (And Truth
adamc@147 598 (And Truth (And Truth (And Truth (And Truth Falsehood))))))
adamc@147 599 Falsehood))
adamc@147 600 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False
adamc@147 601 ]] *)
adamc@144 602
adamc@144 603 Theorem mt4' : True /\ True /\ True /\ True /\ True /\ True /\ False -> False.
adamc@144 604 tauto.
adamc@144 605 Qed.
adamc@144 606
adamc@144 607 Print mt4'.
adamc@147 608 (** [[
adamc@147 609
adamc@147 610 mt4' =
adamc@147 611 fun H : True /\ True /\ True /\ True /\ True /\ True /\ False =>
adamc@147 612 and_ind
adamc@147 613 (fun (_ : True) (H1 : True /\ True /\ True /\ True /\ True /\ False) =>
adamc@147 614 and_ind
adamc@147 615 (fun (_ : True) (H3 : True /\ True /\ True /\ True /\ False) =>
adamc@147 616 and_ind
adamc@147 617 (fun (_ : True) (H5 : True /\ True /\ True /\ False) =>
adamc@147 618 and_ind
adamc@147 619 (fun (_ : True) (H7 : True /\ True /\ False) =>
adamc@147 620 and_ind
adamc@147 621 (fun (_ : True) (H9 : True /\ False) =>
adamc@147 622 and_ind (fun (_ : True) (H11 : False) => False_ind False H11)
adamc@147 623 H9) H7) H5) H3) H1) H
adamc@147 624 : True /\ True /\ True /\ True /\ True /\ True /\ False -> False
adamc@147 625 ]] *)
adamc@147 626
adamc@149 627
adamc@149 628 (** * Exercises *)
adamc@149 629
adamc@149 630 (** %\begin{enumerate}%#<ol>#
adamc@149 631
adamc@149 632 %\item%#<li># Implement a reflective procedure for normalizing systems of linear equations over rational numbers. In particular, the tactic should identify all hypotheses that are linear equations over rationals where the equation righthand sides are constants. It should normalize each hypothesis to have a lefthand side that is a sum of products of constants and variables, with no variable appearing multiple times. Then, your tactic should add together all of these equations to form a single new equation, possibly clearing the original equations. Some coefficients may cancel in the addition, reducing the number of variables that appear.
adamc@149 633
adamc@149 634 To work with rational numbers, import module [QArith] and use [Open Local Scope Q_scope]. All of the usual arithmetic operator notations will then work with rationals, and there are shorthands for constants 0 and 1. Other rationals must be written as [num # den] for numerator [num] and denominator [den]. Use the infix operator [==] in place of [=], to deal with different ways of expressing the same number as a fraction. For instance, a theorem and proof like this one should work with your tactic:
adamc@149 635
adamc@149 636 [[
adamc@149 637 Theorem t2 : forall x y z, (2 # 1) * (x - (3 # 2) * y) == 15 # 1
adamc@149 638 -> z + (8 # 1) * x == 20 # 1
adamc@149 639 -> (-6 # 2) * y + (10 # 1) * x + z == 35 # 1.
adamc@205 640
adamc@205 641 ]]
adamc@205 642
adamc@149 643 [[
adamc@149 644
adamc@149 645 intros; reflectContext; assumption.
adamc@205 646
adamc@205 647 ]]
adamc@149 648 [[
adamc@149 649 Qed.
adamc@149 650
adamc@205 651 ]]
adamc@205 652
adamc@149 653 Your solution can work in any way that involves reflecting syntax and doing most calculation with a Gallina function. These hints outline a particular possible solution. Throughout, the [ring] tactic will be helpful for proving many simple facts about rationals, and tactics like [rewrite] are correctly overloaded to work with rational equality [==].
adamc@149 654
adamc@149 655 %\begin{enumerate}%#<ol>#
adamc@149 656 %\item%#<li># Define an inductive type [exp] of expressions over rationals (which inhabit the Coq type [Q]). Include variables (represented as natural numbers), constants, addition, substraction, and multiplication.#</li>#
adamc@149 657 %\item%#<li># Define a function [lookup] for reading an element out of a list of rationals, by its position in the list.#</li>#
adamc@149 658 %\item%#<li># Define a function [expDenote] that translates [exp]s, along with lists of rationals representing variable values, to [Q].#</li>#
adamc@149 659 %\item%#<li># Define a recursive function [eqsDenote] over [list (exp * Q)], characterizing when all of the equations are true.#</li>#
adamc@149 660 %\item%#<li># Fix a representation [lhs] of flattened expressions. Where [len] is the number of variables, represent a flattened equation as [ilist Q len]. Each position of the list gives the coefficient of the corresponding variable.#</li>#
adamc@151 661 %\item%#<li># Write a recursive function [linearize] that takes a constant [k] and an expression [e] and optionally returns an [lhs] equivalent to [k * e]. This function returns [None] when it discovers that the input expression is not linear. The parameter [len] of [lhs] should be a parameter of [linearize], too. The functions [singleton], [everywhere], and [map2] from [DepList] will probably be helpful. It is also helpful to know that [Qplus] is the identifier for rational addition.#</li>#
adamc@149 662 %\item%#<li># Write a recursive function [linearizeEqs : list (exp * Q) -> option (lhs * Q)]. This function linearizes all of the equations in the list in turn, building up the sum of the equations. It returns [None] if the linearization of any constituent equation fails.#</li>#
adamc@149 663 %\item%#<li># Define a denotation function for [lhs].#</li>#
adamc@149 664 %\item%#<li># Prove that, when [exp] linearization succeeds on constant [k] and expression [e], the linearized version has the same meaning as [k * e].#</li>#
adamc@149 665 %\item%#<li># Prove that, when [linearizeEqs] succeeds on an equation list [eqs], then the final summed-up equation is true whenever the original equation list is true.#</li>#
adamc@149 666 %\item%#<li># Write a tactic [findVarsHyps] to search through all equalities on rationals in the context, recursing through addition, subtraction, and multiplication to find the list of expressions that should be treated as variables. This list should be suitable as an argument to [expDenote] and [eqsDenote], associating a [Q] value to each natural number that stands for a variable.#</li>#
adamc@149 667 %\item%#<li># Write a tactic [reflect] to reflect a [Q] expression into [exp], with respect to a given list of variable values.#</li>#
adamc@149 668 %\item%#<li># Write a tactic [reflectEqs] to reflect a formula that begins with a sequence of implications from linear equalities whose lefthand sides are expressed with [expDenote]. This tactic should build a [list (exp * Q)] representing the equations. Remember to give an explicit type annotation when returning a nil list, as in [constr:(@nil (exp * Q))].#</li>#
adamc@149 669 %\item%#<li># Now this final tactic should do the job:
adamc@149 670 [[
adamc@149 671 Ltac reflectContext :=
adamc@149 672 let ls := findVarsHyps in
adamc@149 673 repeat match goal with
adamc@149 674 | [ H : ?e == ?num # ?den |- _ ] =>
adamc@149 675 let r := reflect ls e in
adamc@149 676 change (expDenote ls r == num # den) in H;
adamc@149 677 generalize H
adamc@149 678 end;
adamc@149 679 match goal with
adamc@149 680 | [ |- ?g ] => let re := reflectEqs g in
adamc@149 681 intros;
adamc@149 682 let H := fresh "H" in
adamc@149 683 assert (H : eqsDenote ls re); [ simpl in *; tauto
adamc@149 684 | repeat match goal with
adamc@149 685 | [ H : expDenote _ _ == _ |- _ ] => clear H
adamc@149 686 end;
adamc@149 687 generalize (linearizeEqsCorrect ls re H); clear H; simpl;
adamc@149 688 match goal with
adamc@149 689 | [ |- ?X == ?Y -> _ ] =>
adamc@149 690 ring_simplify X Y; intro
adamc@149 691 end ]
adamc@149 692 end.
adamc@149 693
adamc@205 694 ]]
adamc@205 695
adamc@149 696 #</ol>#%\end{enumerate}%
adamc@149 697 #</li>#
adamc@149 698
adamc@149 699 #</ol>#%\end{enumerate}% *)