adamc@142
|
1 (* Copyright (c) 2008, Adam Chlipala
|
adamc@142
|
2 *
|
adamc@142
|
3 * This work is licensed under a
|
adamc@142
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@142
|
5 * Unported License.
|
adamc@142
|
6 * The license text is available at:
|
adamc@142
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@142
|
8 *)
|
adamc@142
|
9
|
adamc@142
|
10 (* begin hide *)
|
adamc@142
|
11 Require Import List.
|
adamc@142
|
12
|
adamc@142
|
13 Require Import Tactics MoreSpecif.
|
adamc@142
|
14
|
adamc@142
|
15 Set Implicit Arguments.
|
adamc@142
|
16 (* end hide *)
|
adamc@142
|
17
|
adamc@142
|
18
|
adamc@142
|
19 (** %\chapter{Proof by Reflection}% *)
|
adamc@142
|
20
|
adamc@142
|
21 (** The last chapter highlighted a very heuristic approach to proving. In this chapter, we will study an alternative technique, %\textit{%#<i>#proof by reflection#</i>#%}%. We will write, in Gallina, decision procedures with proofs of correctness, and we will appeal to these procedures in writing very short proofs. Such a proof is checked by running the decision procedure. The term %\textit{%#<i>#reflection#</i>#%}% applies because we will need to translate Gallina propositions into values of inductive types representing syntax, so that Gallina programs may analyze them. *)
|
adamc@142
|
22
|
adamc@142
|
23
|
adamc@142
|
24 (** * Proving Evenness *)
|
adamc@142
|
25
|
adamc@142
|
26 (** Proving that particular natural number constants are even is certainly something we would rather have happen automatically. The Ltac-programming techniques that we learned in the last chapter make it easy to implement such a procedure. *)
|
adamc@142
|
27
|
adamc@142
|
28 Inductive isEven : nat -> Prop :=
|
adamc@144
|
29 | Even_O : isEven O
|
adamc@144
|
30 | Even_SS : forall n, isEven n -> isEven (S (S n)).
|
adamc@142
|
31
|
adamc@148
|
32 (* begin thide *)
|
adamc@142
|
33 Ltac prove_even := repeat constructor.
|
adamc@148
|
34 (* end thide *)
|
adamc@142
|
35
|
adamc@142
|
36 Theorem even_256 : isEven 256.
|
adamc@142
|
37 prove_even.
|
adamc@142
|
38 Qed.
|
adamc@142
|
39
|
adamc@142
|
40 Print even_256.
|
adamc@142
|
41 (** [[
|
adamc@142
|
42
|
adamc@142
|
43 even_256 =
|
adamc@142
|
44 Even_SS
|
adamc@142
|
45 (Even_SS
|
adamc@142
|
46 (Even_SS
|
adamc@142
|
47 (Even_SS
|
adamc@142
|
48 ]]
|
adamc@142
|
49
|
adamc@142
|
50 ...and so on. This procedure always works (at least on machines with infinite resources), but it has a serious drawback, which we see when we print the proof it generates that 256 is even. The final proof term has length linear in the input value. This seems like a shame, since we could write a trivial and trustworthy program to verify evenness of constants. The proof checker could simply call our program where needed.
|
adamc@142
|
51
|
adamc@142
|
52 It is also unfortunate not to have static typing guarantees that our tactic always behaves appropriately. Other invocations of similar tactics might fail with dynamic type errors, and we would not know about the bugs behind these errors until we happened to attempt to prove complex enough goals.
|
adamc@142
|
53
|
adamc@142
|
54 The techniques of proof by reflection address both complaints. We will be able to write proofs like this with constant size overhead beyond the size of the input, and we will do it with verified decision procedures written in Gallina.
|
adamc@142
|
55
|
adamc@142
|
56 For this example, we begin by using a type from the [MoreSpecif] module to write a certified evenness checker. *)
|
adamc@142
|
57
|
adamc@142
|
58 Print partial.
|
adamc@142
|
59 (** [[
|
adamc@142
|
60
|
adamc@142
|
61 Inductive partial (P : Prop) : Set := Proved : P -> [P] | Uncertain : [P]
|
adamc@142
|
62 ]] *)
|
adamc@142
|
63
|
adamc@142
|
64 (** A [partial P] value is an optional proof of [P]. The notation [[P]] stands for [partial P]. *)
|
adamc@142
|
65
|
adamc@142
|
66 Open Local Scope partial_scope.
|
adamc@142
|
67
|
adamc@142
|
68 (** We bring into scope some notations for the [partial] type. These overlap with some of the notations we have seen previously for specification types, so they were placed in a separate scope that needs separate opening. *)
|
adamc@142
|
69
|
adamc@148
|
70 (* begin thide *)
|
adamc@142
|
71 Definition check_even (n : nat) : [isEven n].
|
adamc@142
|
72 Hint Constructors isEven.
|
adamc@142
|
73
|
adamc@142
|
74 refine (fix F (n : nat) : [isEven n] :=
|
adamc@142
|
75 match n return [isEven n] with
|
adamc@142
|
76 | 0 => Yes
|
adamc@142
|
77 | 1 => No
|
adamc@142
|
78 | S (S n') => Reduce (F n')
|
adamc@142
|
79 end); auto.
|
adamc@142
|
80 Defined.
|
adamc@142
|
81
|
adamc@142
|
82 (** We can use dependent pattern-matching to write a function that performs a surprising feat. When given a [partial P], this function [partialOut] returns a proof of [P] if the [partial] value contains a proof, and it returns a (useless) proof of [True] otherwise. From the standpoint of ML and Haskell programming, it seems impossible to write such a type, but it is trivial with a [return] annotation. *)
|
adamc@142
|
83
|
adamc@142
|
84 Definition partialOut (P : Prop) (x : [P]) :=
|
adamc@142
|
85 match x return (match x with
|
adamc@142
|
86 | Proved _ => P
|
adamc@142
|
87 | Uncertain => True
|
adamc@142
|
88 end) with
|
adamc@142
|
89 | Proved pf => pf
|
adamc@142
|
90 | Uncertain => I
|
adamc@142
|
91 end.
|
adamc@142
|
92
|
adamc@142
|
93 (** It may seem strange to define a function like this. However, it turns out to be very useful in writing a reflective verison of our earlier [prove_even] tactic: *)
|
adamc@142
|
94
|
adamc@142
|
95 Ltac prove_even_reflective :=
|
adamc@142
|
96 match goal with
|
adamc@142
|
97 | [ |- isEven ?N] => exact (partialOut (check_even N))
|
adamc@142
|
98 end.
|
adamc@148
|
99 (* end thide *)
|
adamc@142
|
100
|
adamc@142
|
101 (** We identify which natural number we are considering, and we "prove" its evenness by pulling the proof out of the appropriate [check_even] call. *)
|
adamc@142
|
102
|
adamc@142
|
103 Theorem even_256' : isEven 256.
|
adamc@142
|
104 prove_even_reflective.
|
adamc@142
|
105 Qed.
|
adamc@142
|
106
|
adamc@142
|
107 Print even_256'.
|
adamc@142
|
108 (** [[
|
adamc@142
|
109
|
adamc@142
|
110 even_256' = partialOut (check_even 256)
|
adamc@142
|
111 : isEven 256
|
adamc@142
|
112 ]]
|
adamc@142
|
113
|
adamc@142
|
114 We can see a constant wrapper around the object of the proof. For any even number, this form of proof will suffice. What happens if we try the tactic with an odd number? *)
|
adamc@142
|
115
|
adamc@142
|
116 Theorem even_255 : isEven 255.
|
adamc@142
|
117 (** [[
|
adamc@142
|
118
|
adamc@142
|
119 prove_even_reflective.
|
adamc@142
|
120
|
adamc@205
|
121 ]]
|
adamc@205
|
122
|
adamc@142
|
123 [[
|
adamc@142
|
124
|
adamc@142
|
125 User error: No matching clauses for match goal
|
adamc@142
|
126 ]]
|
adamc@142
|
127
|
adamc@142
|
128 Thankfully, the tactic fails. To see more precisely what goes wrong, we can run manually the body of the [match].
|
adamc@142
|
129
|
adamc@142
|
130 [[
|
adamc@142
|
131
|
adamc@142
|
132 exact (partialOut (check_even 255)).
|
adamc@142
|
133
|
adamc@205
|
134 ]]
|
adamc@205
|
135
|
adamc@142
|
136 [[
|
adamc@142
|
137
|
adamc@142
|
138 Error: The term "partialOut (check_even 255)" has type
|
adamc@142
|
139 "match check_even 255 with
|
adamc@142
|
140 | Yes => isEven 255
|
adamc@142
|
141 | No => True
|
adamc@142
|
142 end" while it is expected to have type "isEven 255"
|
adamc@142
|
143 ]]
|
adamc@142
|
144
|
adamc@142
|
145 As usual, the type-checker performs no reductions to simplify error messages. If we reduced the first term ourselves, we would see that [check_even 255] reduces to a [No], so that the first term is equivalent to [True], which certainly does not unify with [isEven 255]. *)
|
adamc@142
|
146 Abort.
|
adamc@143
|
147
|
adamc@143
|
148
|
adamc@143
|
149 (** * Reflecting the Syntax of a Trivial Tautology Language *)
|
adamc@143
|
150
|
adamc@143
|
151 (** We might also like to have reflective proofs of trivial tautologies like this one: *)
|
adamc@143
|
152
|
adamc@143
|
153 Theorem true_galore : (True /\ True) -> (True \/ (True /\ (True -> True))).
|
adamc@143
|
154 tauto.
|
adamc@143
|
155 Qed.
|
adamc@143
|
156
|
adamc@143
|
157 Print true_galore.
|
adamc@143
|
158
|
adamc@143
|
159 (** [[
|
adamc@143
|
160
|
adamc@143
|
161 true_galore =
|
adamc@143
|
162 fun H : True /\ True =>
|
adamc@143
|
163 and_ind (fun _ _ : True => or_introl (True /\ (True -> True)) I) H
|
adamc@143
|
164 : True /\ True -> True \/ True /\ (True -> True)
|
adamc@143
|
165 ]]
|
adamc@143
|
166
|
adamc@143
|
167 As we might expect, the proof that [tauto] builds contains explicit applications of natural deduction rules. For large formulas, this can add a linear amount of proof size overhead, beyond the size of the input.
|
adamc@143
|
168
|
adamc@143
|
169 To write a reflective procedure for this class of goals, we will need to get into the actual "reflection" part of "proof by reflection." It is impossible to case-analyze a [Prop] in any way in Gallina. We must %\textit{%#<i>#reflect#</i>#%}% [Prop] into some type that we %\textit{%#<i>#can#</i>#%}% analyze. This inductive type is a good candidate: *)
|
adamc@143
|
170
|
adamc@148
|
171 (* begin thide *)
|
adamc@143
|
172 Inductive taut : Set :=
|
adamc@143
|
173 | TautTrue : taut
|
adamc@143
|
174 | TautAnd : taut -> taut -> taut
|
adamc@143
|
175 | TautOr : taut -> taut -> taut
|
adamc@143
|
176 | TautImp : taut -> taut -> taut.
|
adamc@143
|
177
|
adamc@143
|
178 (** We write a recursive function to "unreflect" this syntax back to [Prop]. *)
|
adamc@143
|
179
|
adamc@143
|
180 Fixpoint tautDenote (t : taut) : Prop :=
|
adamc@143
|
181 match t with
|
adamc@143
|
182 | TautTrue => True
|
adamc@143
|
183 | TautAnd t1 t2 => tautDenote t1 /\ tautDenote t2
|
adamc@143
|
184 | TautOr t1 t2 => tautDenote t1 \/ tautDenote t2
|
adamc@143
|
185 | TautImp t1 t2 => tautDenote t1 -> tautDenote t2
|
adamc@143
|
186 end.
|
adamc@143
|
187
|
adamc@143
|
188 (** It is easy to prove that every formula in the range of [tautDenote] is true. *)
|
adamc@143
|
189
|
adamc@143
|
190 Theorem tautTrue : forall t, tautDenote t.
|
adamc@143
|
191 induction t; crush.
|
adamc@143
|
192 Qed.
|
adamc@143
|
193
|
adamc@143
|
194 (** To use [tautTrue] to prove particular formulas, we need to implement the syntax reflection process. A recursive Ltac function does the job. *)
|
adamc@143
|
195
|
adamc@143
|
196 Ltac tautReflect P :=
|
adamc@143
|
197 match P with
|
adamc@143
|
198 | True => TautTrue
|
adamc@143
|
199 | ?P1 /\ ?P2 =>
|
adamc@143
|
200 let t1 := tautReflect P1 in
|
adamc@143
|
201 let t2 := tautReflect P2 in
|
adamc@143
|
202 constr:(TautAnd t1 t2)
|
adamc@143
|
203 | ?P1 \/ ?P2 =>
|
adamc@143
|
204 let t1 := tautReflect P1 in
|
adamc@143
|
205 let t2 := tautReflect P2 in
|
adamc@143
|
206 constr:(TautOr t1 t2)
|
adamc@143
|
207 | ?P1 -> ?P2 =>
|
adamc@143
|
208 let t1 := tautReflect P1 in
|
adamc@143
|
209 let t2 := tautReflect P2 in
|
adamc@143
|
210 constr:(TautImp t1 t2)
|
adamc@143
|
211 end.
|
adamc@143
|
212
|
adamc@143
|
213 (** With [tautReflect] available, it is easy to finish our reflective tactic. We look at the goal formula, reflect it, and apply [tautTrue] to the reflected formula. *)
|
adamc@143
|
214
|
adamc@143
|
215 Ltac obvious :=
|
adamc@143
|
216 match goal with
|
adamc@143
|
217 | [ |- ?P ] =>
|
adamc@143
|
218 let t := tautReflect P in
|
adamc@143
|
219 exact (tautTrue t)
|
adamc@143
|
220 end.
|
adamc@143
|
221
|
adamc@143
|
222 (** We can verify that [obvious] solves our original example, with a proof term that does not mention details of the proof. *)
|
adamc@148
|
223 (* end thide *)
|
adamc@143
|
224
|
adamc@143
|
225 Theorem true_galore' : (True /\ True) -> (True \/ (True /\ (True -> True))).
|
adamc@143
|
226 obvious.
|
adamc@143
|
227 Qed.
|
adamc@143
|
228
|
adamc@143
|
229 Print true_galore'.
|
adamc@143
|
230
|
adamc@143
|
231 (** [[
|
adamc@143
|
232
|
adamc@143
|
233 true_galore' =
|
adamc@143
|
234 tautTrue
|
adamc@143
|
235 (TautImp (TautAnd TautTrue TautTrue)
|
adamc@143
|
236 (TautOr TautTrue (TautAnd TautTrue (TautImp TautTrue TautTrue))))
|
adamc@143
|
237 : True /\ True -> True \/ True /\ (True -> True)
|
adamc@143
|
238
|
adamc@143
|
239 ]]
|
adamc@143
|
240
|
adamc@143
|
241 It is worth considering how the reflective tactic improves on a pure-Ltac implementation. The formula reflection process is just as ad-hoc as before, so we gain little there. In general, proofs will be more complicated than formula translation, and the "generic proof rule" that we apply here %\textit{%#<i>#is#</i>#%}% on much better formal footing than a recursive Ltac function. The dependent type of the proof guarantees that it "works" on any input formula. This is all in addition to the proof-size improvement that we have already seen. *)
|
adamc@144
|
242
|
adamc@144
|
243
|
adamc@145
|
244 (** * A Monoid Expression Simplifier *)
|
adamc@145
|
245
|
adamc@146
|
246 (** Proof by reflection does not require encoding of all of the syntax in a goal. We can insert "variables" in our syntax types to allow injection of arbitrary pieces, even if we cannot apply specialized reasoning to them. In this section, we explore that possibility by writing a tactic for normalizing monoid equations. *)
|
adamc@146
|
247
|
adamc@145
|
248 Section monoid.
|
adamc@145
|
249 Variable A : Set.
|
adamc@145
|
250 Variable e : A.
|
adamc@145
|
251 Variable f : A -> A -> A.
|
adamc@145
|
252
|
adamc@145
|
253 Infix "+" := f.
|
adamc@145
|
254
|
adamc@145
|
255 Hypothesis assoc : forall a b c, (a + b) + c = a + (b + c).
|
adamc@145
|
256 Hypothesis identl : forall a, e + a = a.
|
adamc@145
|
257 Hypothesis identr : forall a, a + e = a.
|
adamc@145
|
258
|
adamc@146
|
259 (** We add variables and hypotheses characterizing an arbitrary instance of the algebraic structure of monoids. We have an associative binary operator and an identity element for it.
|
adamc@146
|
260
|
adamc@146
|
261 It is easy to define an expression tree type for monoid expressions. A [Var] constructor is a "catch-all" case for subexpressions that we cannot model. These subexpressions could be actual Gallina variables, or they could just use functions that our tactic is unable to understand. *)
|
adamc@146
|
262
|
adamc@148
|
263 (* begin thide *)
|
adamc@145
|
264 Inductive mexp : Set :=
|
adamc@145
|
265 | Ident : mexp
|
adamc@145
|
266 | Var : A -> mexp
|
adamc@145
|
267 | Op : mexp -> mexp -> mexp.
|
adamc@145
|
268
|
adamc@146
|
269 (** Next, we write an "un-reflect" function. *)
|
adamc@146
|
270
|
adamc@145
|
271 Fixpoint mdenote (me : mexp) : A :=
|
adamc@145
|
272 match me with
|
adamc@145
|
273 | Ident => e
|
adamc@145
|
274 | Var v => v
|
adamc@145
|
275 | Op me1 me2 => mdenote me1 + mdenote me2
|
adamc@145
|
276 end.
|
adamc@145
|
277
|
adamc@146
|
278 (** We will normalize expressions by flattening them into lists, via associativity, so it is helpful to have a denotation function for lists of monoid values. *)
|
adamc@146
|
279
|
adamc@145
|
280 Fixpoint mldenote (ls : list A) : A :=
|
adamc@145
|
281 match ls with
|
adamc@145
|
282 | nil => e
|
adamc@145
|
283 | x :: ls' => x + mldenote ls'
|
adamc@145
|
284 end.
|
adamc@145
|
285
|
adamc@146
|
286 (** The flattening function itself is easy to implement. *)
|
adamc@146
|
287
|
adamc@145
|
288 Fixpoint flatten (me : mexp) : list A :=
|
adamc@145
|
289 match me with
|
adamc@145
|
290 | Ident => nil
|
adamc@145
|
291 | Var x => x :: nil
|
adamc@145
|
292 | Op me1 me2 => flatten me1 ++ flatten me2
|
adamc@145
|
293 end.
|
adamc@145
|
294
|
adamc@146
|
295 (** [flatten] has a straightforward correctness proof in terms of our [denote] functions. *)
|
adamc@146
|
296
|
adamc@146
|
297 Lemma flatten_correct' : forall ml2 ml1,
|
adamc@146
|
298 mldenote ml1 + mldenote ml2 = mldenote (ml1 ++ ml2).
|
adamc@145
|
299 induction ml1; crush.
|
adamc@145
|
300 Qed.
|
adamc@145
|
301
|
adamc@145
|
302 Theorem flatten_correct : forall me, mdenote me = mldenote (flatten me).
|
adamc@145
|
303 Hint Resolve flatten_correct'.
|
adamc@145
|
304
|
adamc@145
|
305 induction me; crush.
|
adamc@145
|
306 Qed.
|
adamc@145
|
307
|
adamc@146
|
308 (** Now it is easy to prove a theorem that will be the main tool behind our simplification tactic. *)
|
adamc@146
|
309
|
adamc@146
|
310 Theorem monoid_reflect : forall me1 me2,
|
adamc@146
|
311 mldenote (flatten me1) = mldenote (flatten me2)
|
adamc@146
|
312 -> mdenote me1 = mdenote me2.
|
adamc@145
|
313 intros; repeat rewrite flatten_correct; assumption.
|
adamc@145
|
314 Qed.
|
adamc@145
|
315
|
adamc@146
|
316 (** We implement reflection into the [mexp] type. *)
|
adamc@146
|
317
|
adamc@146
|
318 Ltac reflect me :=
|
adamc@146
|
319 match me with
|
adamc@145
|
320 | e => Ident
|
adamc@146
|
321 | ?me1 + ?me2 =>
|
adamc@146
|
322 let r1 := reflect me1 in
|
adamc@146
|
323 let r2 := reflect me2 in
|
adamc@145
|
324 constr:(Op r1 r2)
|
adamc@146
|
325 | _ => constr:(Var me)
|
adamc@145
|
326 end.
|
adamc@145
|
327
|
adamc@146
|
328 (** The final [monoid] tactic works on goals that equate two monoid terms. We reflect each and change the goal to refer to the reflected versions, finishing off by applying [monoid_reflect] and simplifying uses of [mldenote]. *)
|
adamc@146
|
329
|
adamc@145
|
330 Ltac monoid :=
|
adamc@145
|
331 match goal with
|
adamc@146
|
332 | [ |- ?me1 = ?me2 ] =>
|
adamc@146
|
333 let r1 := reflect me1 in
|
adamc@146
|
334 let r2 := reflect me2 in
|
adamc@145
|
335 change (mdenote r1 = mdenote r2);
|
adamc@145
|
336 apply monoid_reflect; simpl mldenote
|
adamc@145
|
337 end.
|
adamc@145
|
338
|
adamc@146
|
339 (** We can make short work of theorems like this one: *)
|
adamc@146
|
340
|
adamc@148
|
341 (* end thide *)
|
adamc@148
|
342
|
adamc@145
|
343 Theorem t1 : forall a b c d, a + b + c + d = a + (b + c) + d.
|
adamc@146
|
344 intros; monoid.
|
adamc@146
|
345 (** [[
|
adamc@146
|
346
|
adamc@146
|
347 ============================
|
adamc@146
|
348 a + (b + (c + (d + e))) = a + (b + (c + (d + e)))
|
adamc@146
|
349 ]]
|
adamc@146
|
350
|
adamc@146
|
351 [monoid] has canonicalized both sides of the equality, such that we can finish the proof by reflexivity. *)
|
adamc@146
|
352
|
adamc@145
|
353 reflexivity.
|
adamc@145
|
354 Qed.
|
adamc@146
|
355
|
adamc@146
|
356 (** It is interesting to look at the form of the proof. *)
|
adamc@146
|
357
|
adamc@146
|
358 Print t1.
|
adamc@146
|
359 (** [[
|
adamc@146
|
360
|
adamc@146
|
361 t1 =
|
adamc@146
|
362 fun a b c d : A =>
|
adamc@146
|
363 monoid_reflect (Op (Op (Op (Var a) (Var b)) (Var c)) (Var d))
|
adamc@146
|
364 (Op (Op (Var a) (Op (Var b) (Var c))) (Var d))
|
adamc@146
|
365 (refl_equal (a + (b + (c + (d + e)))))
|
adamc@146
|
366 : forall a b c d : A, a + b + c + d = a + (b + c) + d
|
adamc@146
|
367 ]]
|
adamc@146
|
368
|
adamc@146
|
369 The proof term contains only restatements of the equality operands in reflected form, followed by a use of reflexivity on the shared canonical form. *)
|
adamc@145
|
370 End monoid.
|
adamc@145
|
371
|
adamc@146
|
372 (** Extensions of this basic approach are used in the implementations of the [ring] and [field] tactics that come packaged with Coq. *)
|
adamc@146
|
373
|
adamc@145
|
374
|
adamc@144
|
375 (** * A Smarter Tautology Solver *)
|
adamc@144
|
376
|
adamc@147
|
377 (** Now we are ready to revisit our earlier tautology solver example. We want to broaden the scope of the tactic to include formulas whose truth is not syntactically apparent. We will want to allow injection of arbitrary formulas, like we allowed arbitrary monoid expressions in the last example. Since we are working in a richer theory, it is important to be able to use equalities between different injected formulas. For instance, we cannott prove [P -> P] by translating the formula into a value like [Imp (Var P) (Var P)], because a Gallina function has no way of comparing the two [P]s for equality.
|
adamc@147
|
378
|
adamc@147
|
379 To arrive at a nice implementation satisfying these criteria, we introduce the [quote] tactic and its associated library. *)
|
adamc@147
|
380
|
adamc@144
|
381 Require Import Quote.
|
adamc@144
|
382
|
adamc@148
|
383 (* begin thide *)
|
adamc@144
|
384 Inductive formula : Set :=
|
adamc@144
|
385 | Atomic : index -> formula
|
adamc@144
|
386 | Truth : formula
|
adamc@144
|
387 | Falsehood : formula
|
adamc@144
|
388 | And : formula -> formula -> formula
|
adamc@144
|
389 | Or : formula -> formula -> formula
|
adamc@144
|
390 | Imp : formula -> formula -> formula.
|
adamc@144
|
391
|
adamc@147
|
392 (** The type [index] comes from the [Quote] library and represents a countable variable type. The rest of [formula]'s definition should be old hat by now.
|
adamc@147
|
393
|
adamc@147
|
394 The [quote] tactic will implement injection from [Prop] into [formula] for us, but it is not quite as smart as we might like. In particular, it interprets implications incorrectly, so we will need to declare a wrapper definition for implication, as we did in the last chapter. *)
|
adamc@144
|
395
|
adamc@144
|
396 Definition imp (P1 P2 : Prop) := P1 -> P2.
|
adamc@144
|
397 Infix "-->" := imp (no associativity, at level 95).
|
adamc@144
|
398
|
adamc@147
|
399 (** Now we can define our denotation function. *)
|
adamc@147
|
400
|
adamc@147
|
401 Definition asgn := varmap Prop.
|
adamc@147
|
402
|
adamc@144
|
403 Fixpoint formulaDenote (atomics : asgn) (f : formula) : Prop :=
|
adamc@144
|
404 match f with
|
adamc@144
|
405 | Atomic v => varmap_find False v atomics
|
adamc@144
|
406 | Truth => True
|
adamc@144
|
407 | Falsehood => False
|
adamc@144
|
408 | And f1 f2 => formulaDenote atomics f1 /\ formulaDenote atomics f2
|
adamc@144
|
409 | Or f1 f2 => formulaDenote atomics f1 \/ formulaDenote atomics f2
|
adamc@144
|
410 | Imp f1 f2 => formulaDenote atomics f1 --> formulaDenote atomics f2
|
adamc@144
|
411 end.
|
adamc@144
|
412
|
adamc@147
|
413 (** The [varmap] type family implements maps from [index] values. In this case, we define an assignment as a map from variables to [Prop]s. [formulaDenote] works with an assignment, and we use the [varmap_find] function to consult the assignment in the [Atomic] case. The first argument to [varmap_find] is a default value, in case the variable is not found. *)
|
adamc@147
|
414
|
adamc@144
|
415 Section my_tauto.
|
adamc@144
|
416 Variable atomics : asgn.
|
adamc@144
|
417
|
adamc@144
|
418 Definition holds (v : index) := varmap_find False v atomics.
|
adamc@144
|
419
|
adamc@147
|
420 (** We define some shorthand for a particular variable being true, and now we are ready to define some helpful functions based on the [ListSet] module of the standard library, which (unsurprisingly) presents a view of lists as sets. *)
|
adamc@147
|
421
|
adamc@144
|
422 Require Import ListSet.
|
adamc@144
|
423
|
adamc@144
|
424 Definition index_eq : forall x y : index, {x = y} + {x <> y}.
|
adamc@144
|
425 decide equality.
|
adamc@144
|
426 Defined.
|
adamc@144
|
427
|
adamc@144
|
428 Definition add (s : set index) (v : index) := set_add index_eq v s.
|
adamc@147
|
429
|
adamc@144
|
430 Definition In_dec : forall v (s : set index), {In v s} + {~In v s}.
|
adamc@144
|
431 Open Local Scope specif_scope.
|
adamc@144
|
432
|
adamc@144
|
433 intro; refine (fix F (s : set index) : {In v s} + {~In v s} :=
|
adamc@144
|
434 match s return {In v s} + {~In v s} with
|
adamc@144
|
435 | nil => No
|
adamc@144
|
436 | v' :: s' => index_eq v' v || F s'
|
adamc@144
|
437 end); crush.
|
adamc@144
|
438 Defined.
|
adamc@144
|
439
|
adamc@147
|
440 (** We define what it means for all members of an index set to represent true propositions, and we prove some lemmas about this notion. *)
|
adamc@147
|
441
|
adamc@144
|
442 Fixpoint allTrue (s : set index) : Prop :=
|
adamc@144
|
443 match s with
|
adamc@144
|
444 | nil => True
|
adamc@144
|
445 | v :: s' => holds v /\ allTrue s'
|
adamc@144
|
446 end.
|
adamc@144
|
447
|
adamc@144
|
448 Theorem allTrue_add : forall v s,
|
adamc@144
|
449 allTrue s
|
adamc@144
|
450 -> holds v
|
adamc@144
|
451 -> allTrue (add s v).
|
adamc@144
|
452 induction s; crush;
|
adamc@144
|
453 match goal with
|
adamc@144
|
454 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@144
|
455 end; crush.
|
adamc@144
|
456 Qed.
|
adamc@144
|
457
|
adamc@144
|
458 Theorem allTrue_In : forall v s,
|
adamc@144
|
459 allTrue s
|
adamc@144
|
460 -> set_In v s
|
adamc@144
|
461 -> varmap_find False v atomics.
|
adamc@144
|
462 induction s; crush.
|
adamc@144
|
463 Qed.
|
adamc@144
|
464
|
adamc@144
|
465 Hint Resolve allTrue_add allTrue_In.
|
adamc@144
|
466
|
adamc@144
|
467 Open Local Scope partial_scope.
|
adamc@144
|
468
|
adamc@147
|
469 (** Now we can write a function [forward] which implements deconstruction of hypotheses. It has a dependent type, in the style of Chapter 6, guaranteeing correctness. The arguments to [forward] are a goal formula [f], a set [known] of atomic formulas that we may assume are true, a hypothesis formula [hyp], and a success continuation [cont] that we call when we have extended [known] to hold new truths implied by [hyp]. *)
|
adamc@147
|
470
|
adamc@144
|
471 Definition forward (f : formula) (known : set index) (hyp : formula)
|
adamc@144
|
472 (cont : forall known', [allTrue known' -> formulaDenote atomics f])
|
adamc@144
|
473 : [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f].
|
adamc@144
|
474 refine (fix F (f : formula) (known : set index) (hyp : formula)
|
adamc@144
|
475 (cont : forall known', [allTrue known' -> formulaDenote atomics f]){struct hyp}
|
adamc@144
|
476 : [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f] :=
|
adamc@144
|
477 match hyp return [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f] with
|
adamc@144
|
478 | Atomic v => Reduce (cont (add known v))
|
adamc@144
|
479 | Truth => Reduce (cont known)
|
adamc@144
|
480 | Falsehood => Yes
|
adamc@144
|
481 | And h1 h2 =>
|
adamc@144
|
482 Reduce (F (Imp h2 f) known h1 (fun known' =>
|
adamc@144
|
483 Reduce (F f known' h2 cont)))
|
adamc@144
|
484 | Or h1 h2 => F f known h1 cont && F f known h2 cont
|
adamc@144
|
485 | Imp _ _ => Reduce (cont known)
|
adamc@144
|
486 end); crush.
|
adamc@144
|
487 Defined.
|
adamc@144
|
488
|
adamc@147
|
489 (** A [backward] function implements analysis of the final goal. It calls [forward] to handle implications. *)
|
adamc@147
|
490
|
adamc@144
|
491 Definition backward (known : set index) (f : formula) : [allTrue known -> formulaDenote atomics f].
|
adamc@144
|
492 refine (fix F (known : set index) (f : formula) : [allTrue known -> formulaDenote atomics f] :=
|
adamc@144
|
493 match f return [allTrue known -> formulaDenote atomics f] with
|
adamc@144
|
494 | Atomic v => Reduce (In_dec v known)
|
adamc@144
|
495 | Truth => Yes
|
adamc@144
|
496 | Falsehood => No
|
adamc@144
|
497 | And f1 f2 => F known f1 && F known f2
|
adamc@144
|
498 | Or f1 f2 => F known f1 || F known f2
|
adamc@144
|
499 | Imp f1 f2 => forward f2 known f1 (fun known' => F known' f2)
|
adamc@144
|
500 end); crush; eauto.
|
adamc@144
|
501 Defined.
|
adamc@144
|
502
|
adamc@147
|
503 (** A simple wrapper around [backward] gives us the usual type of a partial decision procedure. *)
|
adamc@147
|
504
|
adamc@144
|
505 Definition my_tauto (f : formula) : [formulaDenote atomics f].
|
adamc@144
|
506 intro; refine (Reduce (backward nil f)); crush.
|
adamc@144
|
507 Defined.
|
adamc@144
|
508 End my_tauto.
|
adamc@144
|
509
|
adamc@147
|
510 (** Our final tactic implementation is now fairly straightforward. First, we [intro] all quantifiers that do not bind [Prop]s. Then we call the [quote] tactic, which implements the reflection for us. Finally, we are able to construct an exact proof via [partialOut] and the [my_tauto] Gallina function. *)
|
adamc@147
|
511
|
adamc@144
|
512 Ltac my_tauto :=
|
adamc@144
|
513 repeat match goal with
|
adamc@144
|
514 | [ |- forall x : ?P, _ ] =>
|
adamc@144
|
515 match type of P with
|
adamc@144
|
516 | Prop => fail 1
|
adamc@144
|
517 | _ => intro
|
adamc@144
|
518 end
|
adamc@144
|
519 end;
|
adamc@144
|
520 quote formulaDenote;
|
adamc@144
|
521 match goal with
|
adamc@144
|
522 | [ |- formulaDenote ?m ?f ] => exact (partialOut (my_tauto m f))
|
adamc@144
|
523 end.
|
adamc@148
|
524 (* end thide *)
|
adamc@144
|
525
|
adamc@147
|
526 (** A few examples demonstrate how the tactic works. *)
|
adamc@147
|
527
|
adamc@144
|
528 Theorem mt1 : True.
|
adamc@144
|
529 my_tauto.
|
adamc@144
|
530 Qed.
|
adamc@144
|
531
|
adamc@144
|
532 Print mt1.
|
adamc@147
|
533 (** [[
|
adamc@147
|
534
|
adamc@147
|
535 mt1 = partialOut (my_tauto (Empty_vm Prop) Truth)
|
adamc@147
|
536 : True
|
adamc@147
|
537 ]]
|
adamc@147
|
538
|
adamc@147
|
539 We see [my_tauto] applied with an empty [varmap], since every subformula is handled by [formulaDenote]. *)
|
adamc@144
|
540
|
adamc@144
|
541 Theorem mt2 : forall x y : nat, x = y --> x = y.
|
adamc@144
|
542 my_tauto.
|
adamc@144
|
543 Qed.
|
adamc@144
|
544
|
adamc@144
|
545 Print mt2.
|
adamc@147
|
546 (** [[
|
adamc@147
|
547
|
adamc@147
|
548 mt2 =
|
adamc@147
|
549 fun x y : nat =>
|
adamc@147
|
550 partialOut
|
adamc@147
|
551 (my_tauto (Node_vm (x = y) (Empty_vm Prop) (Empty_vm Prop))
|
adamc@147
|
552 (Imp (Atomic End_idx) (Atomic End_idx)))
|
adamc@147
|
553 : forall x y : nat, x = y --> x = y
|
adamc@147
|
554 ]]
|
adamc@147
|
555
|
adamc@147
|
556 Crucially, both instances of [x = y] are represented with the same index, [End_idx]. The value of this index only needs to appear once in the [varmap], whose form reveals that [varmap]s are represented as binary trees, where [index] values denote paths from tree roots to leaves. *)
|
adamc@144
|
557
|
adamc@144
|
558 Theorem mt3 : forall x y z,
|
adamc@144
|
559 (x < y /\ y > z) \/ (y > z /\ x < S y)
|
adamc@144
|
560 --> y > z /\ (x < y \/ x < S y).
|
adamc@144
|
561 my_tauto.
|
adamc@144
|
562 Qed.
|
adamc@144
|
563
|
adamc@144
|
564 Print mt3.
|
adamc@147
|
565 (** [[
|
adamc@147
|
566
|
adamc@147
|
567 fun x y z : nat =>
|
adamc@147
|
568 partialOut
|
adamc@147
|
569 (my_tauto
|
adamc@147
|
570 (Node_vm (x < S y) (Node_vm (x < y) (Empty_vm Prop) (Empty_vm Prop))
|
adamc@147
|
571 (Node_vm (y > z) (Empty_vm Prop) (Empty_vm Prop)))
|
adamc@147
|
572 (Imp
|
adamc@147
|
573 (Or (And (Atomic (Left_idx End_idx)) (Atomic (Right_idx End_idx)))
|
adamc@147
|
574 (And (Atomic (Right_idx End_idx)) (Atomic End_idx)))
|
adamc@147
|
575 (And (Atomic (Right_idx End_idx))
|
adamc@147
|
576 (Or (Atomic (Left_idx End_idx)) (Atomic End_idx)))))
|
adamc@147
|
577 : forall x y z : nat,
|
adamc@147
|
578 x < y /\ y > z \/ y > z /\ x < S y --> y > z /\ (x < y \/ x < S y)
|
adamc@147
|
579 ]]
|
adamc@147
|
580
|
adamc@147
|
581 Our goal contained three distinct atomic formulas, and we see that a three-element [varmap] is generated.
|
adamc@147
|
582
|
adamc@147
|
583 It can be interesting to observe differences between the level of repetition in proof terms generated by [my_tauto] and [tauto] for especially trivial theorems. *)
|
adamc@144
|
584
|
adamc@144
|
585 Theorem mt4 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False.
|
adamc@144
|
586 my_tauto.
|
adamc@144
|
587 Qed.
|
adamc@144
|
588
|
adamc@144
|
589 Print mt4.
|
adamc@147
|
590 (** [[
|
adamc@147
|
591
|
adamc@147
|
592 mt4 =
|
adamc@147
|
593 partialOut
|
adamc@147
|
594 (my_tauto (Empty_vm Prop)
|
adamc@147
|
595 (Imp
|
adamc@147
|
596 (And Truth
|
adamc@147
|
597 (And Truth
|
adamc@147
|
598 (And Truth (And Truth (And Truth (And Truth Falsehood))))))
|
adamc@147
|
599 Falsehood))
|
adamc@147
|
600 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False
|
adamc@147
|
601 ]] *)
|
adamc@144
|
602
|
adamc@144
|
603 Theorem mt4' : True /\ True /\ True /\ True /\ True /\ True /\ False -> False.
|
adamc@144
|
604 tauto.
|
adamc@144
|
605 Qed.
|
adamc@144
|
606
|
adamc@144
|
607 Print mt4'.
|
adamc@147
|
608 (** [[
|
adamc@147
|
609
|
adamc@147
|
610 mt4' =
|
adamc@147
|
611 fun H : True /\ True /\ True /\ True /\ True /\ True /\ False =>
|
adamc@147
|
612 and_ind
|
adamc@147
|
613 (fun (_ : True) (H1 : True /\ True /\ True /\ True /\ True /\ False) =>
|
adamc@147
|
614 and_ind
|
adamc@147
|
615 (fun (_ : True) (H3 : True /\ True /\ True /\ True /\ False) =>
|
adamc@147
|
616 and_ind
|
adamc@147
|
617 (fun (_ : True) (H5 : True /\ True /\ True /\ False) =>
|
adamc@147
|
618 and_ind
|
adamc@147
|
619 (fun (_ : True) (H7 : True /\ True /\ False) =>
|
adamc@147
|
620 and_ind
|
adamc@147
|
621 (fun (_ : True) (H9 : True /\ False) =>
|
adamc@147
|
622 and_ind (fun (_ : True) (H11 : False) => False_ind False H11)
|
adamc@147
|
623 H9) H7) H5) H3) H1) H
|
adamc@147
|
624 : True /\ True /\ True /\ True /\ True /\ True /\ False -> False
|
adamc@147
|
625 ]] *)
|
adamc@147
|
626
|
adamc@149
|
627
|
adamc@149
|
628 (** * Exercises *)
|
adamc@149
|
629
|
adamc@149
|
630 (** %\begin{enumerate}%#<ol>#
|
adamc@149
|
631
|
adamc@149
|
632 %\item%#<li># Implement a reflective procedure for normalizing systems of linear equations over rational numbers. In particular, the tactic should identify all hypotheses that are linear equations over rationals where the equation righthand sides are constants. It should normalize each hypothesis to have a lefthand side that is a sum of products of constants and variables, with no variable appearing multiple times. Then, your tactic should add together all of these equations to form a single new equation, possibly clearing the original equations. Some coefficients may cancel in the addition, reducing the number of variables that appear.
|
adamc@149
|
633
|
adamc@149
|
634 To work with rational numbers, import module [QArith] and use [Open Local Scope Q_scope]. All of the usual arithmetic operator notations will then work with rationals, and there are shorthands for constants 0 and 1. Other rationals must be written as [num # den] for numerator [num] and denominator [den]. Use the infix operator [==] in place of [=], to deal with different ways of expressing the same number as a fraction. For instance, a theorem and proof like this one should work with your tactic:
|
adamc@149
|
635
|
adamc@149
|
636 [[
|
adamc@149
|
637 Theorem t2 : forall x y z, (2 # 1) * (x - (3 # 2) * y) == 15 # 1
|
adamc@149
|
638 -> z + (8 # 1) * x == 20 # 1
|
adamc@149
|
639 -> (-6 # 2) * y + (10 # 1) * x + z == 35 # 1.
|
adamc@205
|
640
|
adamc@205
|
641 ]]
|
adamc@205
|
642
|
adamc@149
|
643 [[
|
adamc@149
|
644
|
adamc@149
|
645 intros; reflectContext; assumption.
|
adamc@205
|
646
|
adamc@205
|
647 ]]
|
adamc@149
|
648 [[
|
adamc@149
|
649 Qed.
|
adamc@149
|
650
|
adamc@205
|
651 ]]
|
adamc@205
|
652
|
adamc@149
|
653 Your solution can work in any way that involves reflecting syntax and doing most calculation with a Gallina function. These hints outline a particular possible solution. Throughout, the [ring] tactic will be helpful for proving many simple facts about rationals, and tactics like [rewrite] are correctly overloaded to work with rational equality [==].
|
adamc@149
|
654
|
adamc@149
|
655 %\begin{enumerate}%#<ol>#
|
adamc@149
|
656 %\item%#<li># Define an inductive type [exp] of expressions over rationals (which inhabit the Coq type [Q]). Include variables (represented as natural numbers), constants, addition, substraction, and multiplication.#</li>#
|
adamc@149
|
657 %\item%#<li># Define a function [lookup] for reading an element out of a list of rationals, by its position in the list.#</li>#
|
adamc@149
|
658 %\item%#<li># Define a function [expDenote] that translates [exp]s, along with lists of rationals representing variable values, to [Q].#</li>#
|
adamc@149
|
659 %\item%#<li># Define a recursive function [eqsDenote] over [list (exp * Q)], characterizing when all of the equations are true.#</li>#
|
adamc@149
|
660 %\item%#<li># Fix a representation [lhs] of flattened expressions. Where [len] is the number of variables, represent a flattened equation as [ilist Q len]. Each position of the list gives the coefficient of the corresponding variable.#</li>#
|
adamc@151
|
661 %\item%#<li># Write a recursive function [linearize] that takes a constant [k] and an expression [e] and optionally returns an [lhs] equivalent to [k * e]. This function returns [None] when it discovers that the input expression is not linear. The parameter [len] of [lhs] should be a parameter of [linearize], too. The functions [singleton], [everywhere], and [map2] from [DepList] will probably be helpful. It is also helpful to know that [Qplus] is the identifier for rational addition.#</li>#
|
adamc@149
|
662 %\item%#<li># Write a recursive function [linearizeEqs : list (exp * Q) -> option (lhs * Q)]. This function linearizes all of the equations in the list in turn, building up the sum of the equations. It returns [None] if the linearization of any constituent equation fails.#</li>#
|
adamc@149
|
663 %\item%#<li># Define a denotation function for [lhs].#</li>#
|
adamc@149
|
664 %\item%#<li># Prove that, when [exp] linearization succeeds on constant [k] and expression [e], the linearized version has the same meaning as [k * e].#</li>#
|
adamc@149
|
665 %\item%#<li># Prove that, when [linearizeEqs] succeeds on an equation list [eqs], then the final summed-up equation is true whenever the original equation list is true.#</li>#
|
adamc@149
|
666 %\item%#<li># Write a tactic [findVarsHyps] to search through all equalities on rationals in the context, recursing through addition, subtraction, and multiplication to find the list of expressions that should be treated as variables. This list should be suitable as an argument to [expDenote] and [eqsDenote], associating a [Q] value to each natural number that stands for a variable.#</li>#
|
adamc@149
|
667 %\item%#<li># Write a tactic [reflect] to reflect a [Q] expression into [exp], with respect to a given list of variable values.#</li>#
|
adamc@149
|
668 %\item%#<li># Write a tactic [reflectEqs] to reflect a formula that begins with a sequence of implications from linear equalities whose lefthand sides are expressed with [expDenote]. This tactic should build a [list (exp * Q)] representing the equations. Remember to give an explicit type annotation when returning a nil list, as in [constr:(@nil (exp * Q))].#</li>#
|
adamc@149
|
669 %\item%#<li># Now this final tactic should do the job:
|
adamc@149
|
670 [[
|
adamc@149
|
671 Ltac reflectContext :=
|
adamc@149
|
672 let ls := findVarsHyps in
|
adamc@149
|
673 repeat match goal with
|
adamc@149
|
674 | [ H : ?e == ?num # ?den |- _ ] =>
|
adamc@149
|
675 let r := reflect ls e in
|
adamc@149
|
676 change (expDenote ls r == num # den) in H;
|
adamc@149
|
677 generalize H
|
adamc@149
|
678 end;
|
adamc@149
|
679 match goal with
|
adamc@149
|
680 | [ |- ?g ] => let re := reflectEqs g in
|
adamc@149
|
681 intros;
|
adamc@149
|
682 let H := fresh "H" in
|
adamc@149
|
683 assert (H : eqsDenote ls re); [ simpl in *; tauto
|
adamc@149
|
684 | repeat match goal with
|
adamc@149
|
685 | [ H : expDenote _ _ == _ |- _ ] => clear H
|
adamc@149
|
686 end;
|
adamc@149
|
687 generalize (linearizeEqsCorrect ls re H); clear H; simpl;
|
adamc@149
|
688 match goal with
|
adamc@149
|
689 | [ |- ?X == ?Y -> _ ] =>
|
adamc@149
|
690 ring_simplify X Y; intro
|
adamc@149
|
691 end ]
|
adamc@149
|
692 end.
|
adamc@149
|
693
|
adamc@205
|
694 ]]
|
adamc@205
|
695
|
adamc@149
|
696 #</ol>#%\end{enumerate}%
|
adamc@149
|
697 #</li>#
|
adamc@149
|
698
|
adamc@149
|
699 #</ol>#%\end{enumerate}% *)
|