adamc@215
|
1 (* Copyright (c) 2008-2009, Adam Chlipala
|
adamc@105
|
2 *
|
adamc@105
|
3 * This work is licensed under a
|
adamc@105
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@105
|
5 * Unported License.
|
adamc@105
|
6 * The license text is available at:
|
adamc@105
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@105
|
8 *)
|
adamc@105
|
9
|
adamc@105
|
10 (* begin hide *)
|
adamc@111
|
11 Require Import Arith List.
|
adamc@105
|
12
|
adamc@105
|
13 Require Import Tactics.
|
adamc@105
|
14
|
adamc@105
|
15 Set Implicit Arguments.
|
adamc@105
|
16 (* end hide *)
|
adamc@105
|
17
|
adamc@105
|
18
|
adamc@105
|
19 (** %\chapter{Dependent Data Structures}% *)
|
adamc@105
|
20
|
adamc@106
|
21 (** Our red-black tree example from the last chapter illustrated how dependent types enable static enforcement of data structure invariants. To find interesting uses of dependent data structures, however, we need not look to the favorite examples of data structures and algorithms textbooks. More basic examples like length-indexed and heterogeneous lists come up again and again as the building blocks of dependent programs. There is a surprisingly large design space for this class of data structure, and we will spend this chapter exploring it. *)
|
adamc@105
|
22
|
adamc@105
|
23
|
adamc@106
|
24 (** * More Length-Indexed Lists *)
|
adamc@106
|
25
|
adamc@106
|
26 (** We begin with a deeper look at the length-indexed lists that began the last chapter. *)
|
adamc@105
|
27
|
adamc@105
|
28 Section ilist.
|
adamc@105
|
29 Variable A : Set.
|
adamc@105
|
30
|
adamc@105
|
31 Inductive ilist : nat -> Set :=
|
adamc@105
|
32 | Nil : ilist O
|
adamc@105
|
33 | Cons : forall n, A -> ilist n -> ilist (S n).
|
adamc@105
|
34
|
adamc@215
|
35 (** We might like to have a certified function for selecting an element of an [ilist] by position. We could do this using subset types and explicit manipulation of proofs, but dependent types let us do it more directly. It is helpful to define a type family [fin], where [fin n] is isomorphic to [{m : nat | m < n}]. The type family names stands for "finite." *)
|
adamc@106
|
36
|
adamc@113
|
37 (* EX: Define a function [get] for extracting an [ilist] element by position. *)
|
adamc@113
|
38
|
adamc@113
|
39 (* begin thide *)
|
adamc@215
|
40 Inductive fin : nat -> Set :=
|
adamc@215
|
41 | First : forall n, fin (S n)
|
adamc@215
|
42 | Next : forall n, fin n -> fin (S n).
|
adamc@105
|
43
|
adamc@215
|
44 (** [fin] essentially makes a more richly-typed copy of the natural numbers. Every element is a [First] iterated through applying [Next] a number of times that indicates which number is being selected.
|
adamc@106
|
45
|
adamc@106
|
46 Now it is easy to pick a [Prop]-free type for a selection function. As usual, our first implementation attempt will not convince the type checker, and we will attack the deficiencies one at a time.
|
adamc@106
|
47
|
adamc@106
|
48 [[
|
adamc@215
|
49 Fixpoint get n (ls : ilist n) : fin n -> A :=
|
adamc@215
|
50 match ls with
|
adamc@106
|
51 | Nil => fun idx => ?
|
adamc@106
|
52 | Cons _ x ls' => fun idx =>
|
adamc@106
|
53 match idx with
|
adamc@106
|
54 | First _ => x
|
adamc@106
|
55 | Next _ idx' => get ls' idx'
|
adamc@106
|
56 end
|
adamc@106
|
57 end.
|
adamc@106
|
58
|
adamc@205
|
59 ]]
|
adamc@205
|
60
|
adamc@215
|
61 We apply the usual wisdom of delaying arguments in [Fixpoint]s so that they may be included in [return] clauses. This still leaves us with a quandary in each of the [match] cases. First, we need to figure out how to take advantage of the contradiction in the [Nil] case. Every [fin] has a type of the form [S n], which cannot unify with the [O] value that we learn for [n] in the [Nil] case. The solution we adopt is another case of [match]-within-[return].
|
adamc@106
|
62
|
adamc@106
|
63 [[
|
adamc@215
|
64 Fixpoint get n (ls : ilist n) : fin n -> A :=
|
adamc@215
|
65 match ls with
|
adamc@106
|
66 | Nil => fun idx =>
|
adamc@215
|
67 match idx in fin n' return (match n' with
|
adamc@106
|
68 | O => A
|
adamc@106
|
69 | S _ => unit
|
adamc@106
|
70 end) with
|
adamc@106
|
71 | First _ => tt
|
adamc@106
|
72 | Next _ _ => tt
|
adamc@106
|
73 end
|
adamc@106
|
74 | Cons _ x ls' => fun idx =>
|
adamc@106
|
75 match idx with
|
adamc@106
|
76 | First _ => x
|
adamc@106
|
77 | Next _ idx' => get ls' idx'
|
adamc@106
|
78 end
|
adamc@106
|
79 end.
|
adamc@106
|
80
|
adamc@205
|
81 ]]
|
adamc@205
|
82
|
adamc@215
|
83 Now the first [match] case type-checks, and we see that the problem with the [Cons] case is that the pattern-bound variable [idx'] does not have an apparent type compatible with [ls']. We need to use [match] annotations to make the relationship explicit. Unfortunately, the usual trick of postponing argument binding will not help us here. We need to match on both [ls] and [idx]; one or the other must be matched first. To get around this, we apply the convoy pattern that we met last chapter. This application is a little more clever than those we saw before; we use the natural number predecessor function [pred] to express the relationship between the types of these variables.
|
adamc@106
|
84
|
adamc@106
|
85 [[
|
adamc@215
|
86 Fixpoint get n (ls : ilist n) : fin n -> A :=
|
adamc@215
|
87 match ls with
|
adamc@106
|
88 | Nil => fun idx =>
|
adamc@215
|
89 match idx in fin n' return (match n' with
|
adamc@106
|
90 | O => A
|
adamc@106
|
91 | S _ => unit
|
adamc@106
|
92 end) with
|
adamc@106
|
93 | First _ => tt
|
adamc@106
|
94 | Next _ _ => tt
|
adamc@106
|
95 end
|
adamc@106
|
96 | Cons _ x ls' => fun idx =>
|
adamc@215
|
97 match idx in fin n' return ilist (pred n') -> A with
|
adamc@106
|
98 | First _ => fun _ => x
|
adamc@106
|
99 | Next _ idx' => fun ls' => get ls' idx'
|
adamc@106
|
100 end ls'
|
adamc@106
|
101 end.
|
adamc@106
|
102
|
adamc@205
|
103 ]]
|
adamc@205
|
104
|
adamc@106
|
105 There is just one problem left with this implementation. Though we know that the local [ls'] in the [Next] case is equal to the original [ls'], the type-checker is not satisfied that the recursive call to [get] does not introduce non-termination. We solve the problem by convoy-binding the partial application of [get] to [ls'], rather than [ls'] by itself. *)
|
adamc@106
|
106
|
adamc@215
|
107 Fixpoint get n (ls : ilist n) : fin n -> A :=
|
adamc@215
|
108 match ls with
|
adamc@105
|
109 | Nil => fun idx =>
|
adamc@215
|
110 match idx in fin n' return (match n' with
|
adamc@105
|
111 | O => A
|
adamc@105
|
112 | S _ => unit
|
adamc@105
|
113 end) with
|
adamc@105
|
114 | First _ => tt
|
adamc@105
|
115 | Next _ _ => tt
|
adamc@105
|
116 end
|
adamc@105
|
117 | Cons _ x ls' => fun idx =>
|
adamc@215
|
118 match idx in fin n' return (fin (pred n') -> A) -> A with
|
adamc@105
|
119 | First _ => fun _ => x
|
adamc@105
|
120 | Next _ idx' => fun get_ls' => get_ls' idx'
|
adamc@105
|
121 end (get ls')
|
adamc@105
|
122 end.
|
adamc@113
|
123 (* end thide *)
|
adamc@105
|
124 End ilist.
|
adamc@105
|
125
|
adamc@105
|
126 Implicit Arguments Nil [A].
|
adamc@113
|
127 (* begin thide *)
|
adamc@108
|
128 Implicit Arguments First [n].
|
adamc@113
|
129 (* end thide *)
|
adamc@105
|
130
|
adamc@108
|
131 (** A few examples show how to make use of these definitions. *)
|
adamc@108
|
132
|
adamc@108
|
133 Check Cons 0 (Cons 1 (Cons 2 Nil)).
|
adamc@215
|
134 (** %\vspace{-.15in}% [[
|
adamc@215
|
135 Cons 0 (Cons 1 (Cons 2 Nil))
|
adamc@108
|
136 : ilist nat 3
|
adamc@108
|
137 ]] *)
|
adamc@215
|
138
|
adamc@113
|
139 (* begin thide *)
|
adamc@108
|
140 Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.
|
adamc@215
|
141 (** %\vspace{-.15in}% [[
|
adamc@108
|
142 = 0
|
adamc@108
|
143 : nat
|
adamc@108
|
144 ]] *)
|
adamc@215
|
145
|
adamc@108
|
146 Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).
|
adamc@215
|
147 (** %\vspace{-.15in}% [[
|
adamc@108
|
148 = 1
|
adamc@108
|
149 : nat
|
adamc@108
|
150 ]] *)
|
adamc@215
|
151
|
adamc@108
|
152 Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)).
|
adamc@215
|
153 (** %\vspace{-.15in}% [[
|
adamc@108
|
154 = 2
|
adamc@108
|
155 : nat
|
adamc@108
|
156 ]] *)
|
adamc@113
|
157 (* end thide *)
|
adamc@108
|
158
|
adamc@108
|
159 (** Our [get] function is also quite easy to reason about. We show how with a short example about an analogue to the list [map] function. *)
|
adamc@107
|
160
|
adamc@105
|
161 Section ilist_map.
|
adamc@105
|
162 Variables A B : Set.
|
adamc@105
|
163 Variable f : A -> B.
|
adamc@105
|
164
|
adamc@215
|
165 Fixpoint imap n (ls : ilist A n) : ilist B n :=
|
adamc@215
|
166 match ls with
|
adamc@105
|
167 | Nil => Nil
|
adamc@105
|
168 | Cons _ x ls' => Cons (f x) (imap ls')
|
adamc@105
|
169 end.
|
adamc@105
|
170
|
adamc@107
|
171 (** It is easy to prove that [get] "distributes over" [imap] calls. The only tricky bit is remembering to use the [dep_destruct] tactic in place of plain [destruct] when faced with a baffling tactic error message. *)
|
adamc@107
|
172
|
adamc@215
|
173 Theorem get_imap : forall n (idx : fin n) (ls : ilist A n),
|
adamc@105
|
174 get (imap ls) idx = f (get ls idx).
|
adamc@113
|
175 (* begin thide *)
|
adamc@107
|
176 induction ls; dep_destruct idx; crush.
|
adamc@105
|
177 Qed.
|
adamc@113
|
178 (* end thide *)
|
adamc@105
|
179 End ilist_map.
|
adamc@107
|
180
|
adamc@107
|
181
|
adamc@107
|
182 (** * Heterogeneous Lists *)
|
adamc@107
|
183
|
adamc@215
|
184 (** Programmers who move to statically-typed functional languages from "scripting languages" often complain about the requirement that every element of a list have the same type. With fancy type systems, we can partially lift this requirement. We can index a list type with a "type-level" list that explains what type each element of the list should have. This has been done in a variety of ways in Haskell using type classes, and we can do it much more cleanly and directly in Coq. *)
|
adamc@107
|
185
|
adamc@107
|
186 Section hlist.
|
adamc@107
|
187 Variable A : Type.
|
adamc@107
|
188 Variable B : A -> Type.
|
adamc@107
|
189
|
adamc@113
|
190 (* EX: Define a type [hlist] indexed by a [list A], where the type of each element is determined by running [B] on the corresponding element of the index list. *)
|
adamc@113
|
191
|
adamc@107
|
192 (** We parameterize our heterogeneous lists by a type [A] and an [A]-indexed type [B]. *)
|
adamc@107
|
193
|
adamc@113
|
194 (* begin thide *)
|
adamc@107
|
195 Inductive hlist : list A -> Type :=
|
adamc@107
|
196 | MNil : hlist nil
|
adamc@107
|
197 | MCons : forall (x : A) (ls : list A), B x -> hlist ls -> hlist (x :: ls).
|
adamc@107
|
198
|
adamc@107
|
199 (** We can implement a variant of the last section's [get] function for [hlist]s. To get the dependent typing to work out, we will need to index our element selectors by the types of data that they point to. *)
|
adamc@107
|
200
|
adamc@113
|
201 (* end thide *)
|
adamc@113
|
202 (* EX: Define an analogue to [get] for [hlist]s. *)
|
adamc@113
|
203
|
adamc@113
|
204 (* begin thide *)
|
adamc@107
|
205 Variable elm : A.
|
adamc@107
|
206
|
adamc@107
|
207 Inductive member : list A -> Type :=
|
adamc@107
|
208 | MFirst : forall ls, member (elm :: ls)
|
adamc@107
|
209 | MNext : forall x ls, member ls -> member (x :: ls).
|
adamc@107
|
210
|
adamc@107
|
211 (** Because the element [elm] that we are "searching for" in a list does not change across the constructors of [member], we simplify our definitions by making [elm] a local variable. In the definition of [member], we say that [elm] is found in any list that begins with [elm], and, if removing the first element of a list leaves [elm] present, then [elm] is present in the original list, too. The form looks much like a predicate for list membership, but we purposely define [member] in [Type] so that we may decompose its values to guide computations.
|
adamc@107
|
212
|
adamc@107
|
213 We can use [member] to adapt our definition of [get] to [hlists]. The same basic [match] tricks apply. In the [MCons] case, we form a two-element convoy, passing both the data element [x] and the recursor for the sublist [mls'] to the result of the inner [match]. We did not need to do that in [get]'s definition because the types of list elements were not dependent there. *)
|
adamc@107
|
214
|
adamc@215
|
215 Fixpoint hget ls (mls : hlist ls) : member ls -> B elm :=
|
adamc@215
|
216 match mls with
|
adamc@107
|
217 | MNil => fun mem =>
|
adamc@107
|
218 match mem in member ls' return (match ls' with
|
adamc@107
|
219 | nil => B elm
|
adamc@107
|
220 | _ :: _ => unit
|
adamc@107
|
221 end) with
|
adamc@107
|
222 | MFirst _ => tt
|
adamc@107
|
223 | MNext _ _ _ => tt
|
adamc@107
|
224 end
|
adamc@107
|
225 | MCons _ _ x mls' => fun mem =>
|
adamc@107
|
226 match mem in member ls' return (match ls' with
|
adamc@107
|
227 | nil => Empty_set
|
adamc@107
|
228 | x' :: ls'' =>
|
adamc@107
|
229 B x' -> (member ls'' -> B elm) -> B elm
|
adamc@107
|
230 end) with
|
adamc@107
|
231 | MFirst _ => fun x _ => x
|
adamc@107
|
232 | MNext _ _ mem' => fun _ get_mls' => get_mls' mem'
|
adamc@107
|
233 end x (hget mls')
|
adamc@107
|
234 end.
|
adamc@113
|
235 (* end thide *)
|
adamc@107
|
236 End hlist.
|
adamc@108
|
237
|
adamc@113
|
238 (* begin thide *)
|
adamc@108
|
239 Implicit Arguments MNil [A B].
|
adamc@108
|
240 Implicit Arguments MCons [A B x ls].
|
adamc@108
|
241
|
adamc@108
|
242 Implicit Arguments MFirst [A elm ls].
|
adamc@108
|
243 Implicit Arguments MNext [A elm x ls].
|
adamc@113
|
244 (* end thide *)
|
adamc@108
|
245
|
adamc@108
|
246 (** By putting the parameters [A] and [B] in [Type], we allow some very higher-order uses. For instance, one use of [hlist] is for the simple heterogeneous lists that we referred to earlier. *)
|
adamc@108
|
247
|
adamc@108
|
248 Definition someTypes : list Set := nat :: bool :: nil.
|
adamc@108
|
249
|
adamc@113
|
250 (* begin thide *)
|
adamc@113
|
251
|
adamc@108
|
252 Example someValues : hlist (fun T : Set => T) someTypes :=
|
adamc@108
|
253 MCons 5 (MCons true MNil).
|
adamc@108
|
254
|
adamc@108
|
255 Eval simpl in hget someValues MFirst.
|
adamc@215
|
256 (** %\vspace{-.15in}% [[
|
adamc@108
|
257 = 5
|
adamc@108
|
258 : (fun T : Set => T) nat
|
adamc@108
|
259 ]] *)
|
adamc@215
|
260
|
adamc@108
|
261 Eval simpl in hget someValues (MNext MFirst).
|
adamc@215
|
262 (** %\vspace{-.15in}% [[
|
adamc@108
|
263 = true
|
adamc@108
|
264 : (fun T : Set => T) bool
|
adamc@108
|
265 ]] *)
|
adamc@108
|
266
|
adamc@108
|
267 (** We can also build indexed lists of pairs in this way. *)
|
adamc@108
|
268
|
adamc@108
|
269 Example somePairs : hlist (fun T : Set => T * T)%type someTypes :=
|
adamc@108
|
270 MCons (1, 2) (MCons (true, false) MNil).
|
adamc@108
|
271
|
adamc@113
|
272 (* end thide *)
|
adamc@113
|
273
|
adamc@113
|
274
|
adamc@108
|
275 (** ** A Lambda Calculus Interpreter *)
|
adamc@108
|
276
|
adamc@108
|
277 (** Heterogeneous lists are very useful in implementing interpreters for functional programming languages. Using the types and operations we have already defined, it is trivial to write an interpreter for simply-typed lambda calculus. Our interpreter can alternatively be thought of as a denotational semantics.
|
adamc@108
|
278
|
adamc@108
|
279 We start with an algebraic datatype for types. *)
|
adamc@108
|
280
|
adamc@108
|
281 Inductive type : Set :=
|
adamc@108
|
282 | Unit : type
|
adamc@108
|
283 | Arrow : type -> type -> type.
|
adamc@108
|
284
|
adamc@108
|
285 (** Now we can define a type family for expressions. An [exp ts t] will stand for an expression that has type [t] and whose free variables have types in the list [ts]. We effectively use the de Bruijn variable representation, which we will discuss in more detail in later chapters. Variables are represented as [member] values; that is, a variable is more or less a constructive proof that a particular type is found in the type environment. *)
|
adamc@108
|
286
|
adamc@108
|
287 Inductive exp : list type -> type -> Set :=
|
adamc@108
|
288 | Const : forall ts, exp ts Unit
|
adamc@113
|
289 (* begin thide *)
|
adamc@108
|
290 | Var : forall ts t, member t ts -> exp ts t
|
adamc@108
|
291 | App : forall ts dom ran, exp ts (Arrow dom ran) -> exp ts dom -> exp ts ran
|
adamc@108
|
292 | Abs : forall ts dom ran, exp (dom :: ts) ran -> exp ts (Arrow dom ran).
|
adamc@113
|
293 (* end thide *)
|
adamc@108
|
294
|
adamc@108
|
295 Implicit Arguments Const [ts].
|
adamc@108
|
296
|
adamc@108
|
297 (** We write a simple recursive function to translate [type]s into [Set]s. *)
|
adamc@108
|
298
|
adamc@108
|
299 Fixpoint typeDenote (t : type) : Set :=
|
adamc@108
|
300 match t with
|
adamc@108
|
301 | Unit => unit
|
adamc@108
|
302 | Arrow t1 t2 => typeDenote t1 -> typeDenote t2
|
adamc@108
|
303 end.
|
adamc@108
|
304
|
adamc@108
|
305 (** Now it is straightforward to write an expression interpreter. The type of the function, [expDenote], tells us that we translate expressions into functions from properly-typed environments to final values. An environment for a free variable list [ts] is simply a [hlist typeDenote ts]. That is, for each free variable, the heterogeneous list that is the environment must have a value of the variable's associated type. We use [hget] to implement the [Var] case, and we use [MCons] to extend the environment in the [Abs] case. *)
|
adamc@108
|
306
|
adamc@113
|
307 (* EX: Define an interpreter for [exp]s. *)
|
adamc@113
|
308
|
adamc@113
|
309 (* begin thide *)
|
adamc@215
|
310 Fixpoint expDenote ts t (e : exp ts t) : hlist typeDenote ts -> typeDenote t :=
|
adamc@215
|
311 match e with
|
adamc@108
|
312 | Const _ => fun _ => tt
|
adamc@108
|
313
|
adamc@108
|
314 | Var _ _ mem => fun s => hget s mem
|
adamc@108
|
315 | App _ _ _ e1 e2 => fun s => (expDenote e1 s) (expDenote e2 s)
|
adamc@108
|
316 | Abs _ _ _ e' => fun s => fun x => expDenote e' (MCons x s)
|
adamc@108
|
317 end.
|
adamc@108
|
318
|
adamc@108
|
319 (** Like for previous examples, our interpreter is easy to run with [simpl]. *)
|
adamc@108
|
320
|
adamc@108
|
321 Eval simpl in expDenote Const MNil.
|
adamc@215
|
322 (** %\vspace{-.15in}% [[
|
adamc@108
|
323 = tt
|
adamc@108
|
324 : typeDenote Unit
|
adamc@108
|
325 ]] *)
|
adamc@215
|
326
|
adamc@108
|
327 Eval simpl in expDenote (Abs (dom := Unit) (Var MFirst)) MNil.
|
adamc@215
|
328 (** %\vspace{-.15in}% [[
|
adamc@108
|
329 = fun x : unit => x
|
adamc@108
|
330 : typeDenote (Arrow Unit Unit)
|
adamc@108
|
331 ]] *)
|
adamc@215
|
332
|
adamc@108
|
333 Eval simpl in expDenote (Abs (dom := Unit)
|
adamc@108
|
334 (Abs (dom := Unit) (Var (MNext MFirst)))) MNil.
|
adamc@215
|
335 (** %\vspace{-.15in}% [[
|
adamc@108
|
336 = fun x _ : unit => x
|
adamc@108
|
337 : typeDenote (Arrow Unit (Arrow Unit Unit))
|
adamc@108
|
338 ]] *)
|
adamc@215
|
339
|
adamc@108
|
340 Eval simpl in expDenote (Abs (dom := Unit) (Abs (dom := Unit) (Var MFirst))) MNil.
|
adamc@215
|
341 (** %\vspace{-.15in}% [[
|
adamc@108
|
342 = fun _ x0 : unit => x0
|
adamc@108
|
343 : typeDenote (Arrow Unit (Arrow Unit Unit))
|
adamc@108
|
344 ]] *)
|
adamc@215
|
345
|
adamc@108
|
346 Eval simpl in expDenote (App (Abs (Var MFirst)) Const) MNil.
|
adamc@215
|
347 (** %\vspace{-.15in}% [[
|
adamc@108
|
348 = tt
|
adamc@108
|
349 : typeDenote Unit
|
adamc@108
|
350 ]] *)
|
adamc@108
|
351
|
adamc@113
|
352 (* end thide *)
|
adamc@113
|
353
|
adamc@108
|
354 (** We are starting to develop the tools behind dependent typing's amazing advantage over alternative approaches in several important areas. Here, we have implemented complete syntax, typing rules, and evaluation semantics for simply-typed lambda calculus without even needing to define a syntactic substitution operation. We did it all without a single line of proof, and our implementation is manifestly executable. In a later chapter, we will meet other, more common approaches to language formalization. Such approaches often state and prove explicit theorems about type safety of languages. In the above example, we got type safety, termination, and other meta-theorems for free, by reduction to CIC, which we know has those properties. *)
|
adamc@108
|
355
|
adamc@108
|
356
|
adamc@109
|
357 (** * Recursive Type Definitions *)
|
adamc@109
|
358
|
adamc@109
|
359 (** There is another style of datatype definition that leads to much simpler definitions of the [get] and [hget] definitions above. Because Coq supports "type-level computation," we can redo our inductive definitions as %\textit{%#<i>#recursive#</i>#%}% definitions. *)
|
adamc@109
|
360
|
adamc@113
|
361 (* EX: Come up with an alternate [ilist] definition that makes it easier to write [get]. *)
|
adamc@113
|
362
|
adamc@109
|
363 Section filist.
|
adamc@109
|
364 Variable A : Set.
|
adamc@109
|
365
|
adamc@113
|
366 (* begin thide *)
|
adamc@109
|
367 Fixpoint filist (n : nat) : Set :=
|
adamc@109
|
368 match n with
|
adamc@109
|
369 | O => unit
|
adamc@109
|
370 | S n' => A * filist n'
|
adamc@109
|
371 end%type.
|
adamc@109
|
372
|
adamc@109
|
373 (** We say that a list of length 0 has no contents, and a list of length [S n'] is a pair of a data value and a list of length [n']. *)
|
adamc@109
|
374
|
adamc@215
|
375 Fixpoint ffin (n : nat) : Set :=
|
adamc@109
|
376 match n with
|
adamc@109
|
377 | O => Empty_set
|
adamc@215
|
378 | S n' => option (ffin n')
|
adamc@109
|
379 end.
|
adamc@109
|
380
|
adamc@109
|
381 (** We express that there are no index values when [n = O], by defining such indices as type [Empty_set]; and we express that, at [n = S n'], there is a choice between picking the first element of the list (represented as [None]) or choosing a later element (represented by [Some idx], where [idx] is an index into the list tail). *)
|
adamc@109
|
382
|
adamc@215
|
383 Fixpoint fget (n : nat) : filist n -> ffin n -> A :=
|
adamc@215
|
384 match n with
|
adamc@109
|
385 | O => fun _ idx => match idx with end
|
adamc@109
|
386 | S n' => fun ls idx =>
|
adamc@109
|
387 match idx with
|
adamc@109
|
388 | None => fst ls
|
adamc@109
|
389 | Some idx' => fget n' (snd ls) idx'
|
adamc@109
|
390 end
|
adamc@109
|
391 end.
|
adamc@109
|
392
|
adamc@215
|
393 (** Our new [get] implementation needs only one dependent [match], and its annotation is inferred for us. Our choices of data structure implementations lead to just the right typing behavior for this new definition to work out. *)
|
adamc@113
|
394 (* end thide *)
|
adamc@215
|
395
|
adamc@109
|
396 End filist.
|
adamc@109
|
397
|
adamc@109
|
398 (** Heterogeneous lists are a little trickier to define with recursion, but we then reap similar benefits in simplicity of use. *)
|
adamc@109
|
399
|
adamc@113
|
400 (* EX: Come up with an alternate [hlist] definition that makes it easier to write [hget]. *)
|
adamc@113
|
401
|
adamc@109
|
402 Section fhlist.
|
adamc@109
|
403 Variable A : Type.
|
adamc@109
|
404 Variable B : A -> Type.
|
adamc@109
|
405
|
adamc@113
|
406 (* begin thide *)
|
adamc@109
|
407 Fixpoint fhlist (ls : list A) : Type :=
|
adamc@109
|
408 match ls with
|
adamc@109
|
409 | nil => unit
|
adamc@109
|
410 | x :: ls' => B x * fhlist ls'
|
adamc@109
|
411 end%type.
|
adamc@109
|
412
|
adamc@109
|
413 (** The definition of [fhlist] follows the definition of [filist], with the added wrinkle of dependently-typed data elements. *)
|
adamc@109
|
414
|
adamc@109
|
415 Variable elm : A.
|
adamc@109
|
416
|
adamc@109
|
417 Fixpoint fmember (ls : list A) : Type :=
|
adamc@109
|
418 match ls with
|
adamc@109
|
419 | nil => Empty_set
|
adamc@109
|
420 | x :: ls' => (x = elm) + fmember ls'
|
adamc@109
|
421 end%type.
|
adamc@109
|
422
|
adamc@215
|
423 (** The definition of [fmember] follows the definition of [ffin]. Empty lists have no members, and member types for nonempty lists are built by adding one new option to the type of members of the list tail. While for [index] we needed no new information associated with the option that we add, here we need to know that the head of the list equals the element we are searching for. We express that with a sum type whose left branch is the appropriate equality proposition. Since we define [fmember] to live in [Type], we can insert [Prop] types as needed, because [Prop] is a subtype of [Type].
|
adamc@109
|
424
|
adamc@109
|
425 We know all of the tricks needed to write a first attempt at a [get] function for [fhlist]s.
|
adamc@109
|
426
|
adamc@109
|
427 [[
|
adamc@109
|
428 Fixpoint fhget (ls : list A) : fhlist ls -> fmember ls -> B elm :=
|
adamc@215
|
429 match ls with
|
adamc@109
|
430 | nil => fun _ idx => match idx with end
|
adamc@109
|
431 | _ :: ls' => fun mls idx =>
|
adamc@109
|
432 match idx with
|
adamc@109
|
433 | inl _ => fst mls
|
adamc@109
|
434 | inr idx' => fhget ls' (snd mls) idx'
|
adamc@109
|
435 end
|
adamc@109
|
436 end.
|
adamc@109
|
437
|
adamc@205
|
438 ]]
|
adamc@205
|
439
|
adamc@109
|
440 Only one problem remains. The expression [fst mls] is not known to have the proper type. To demonstrate that it does, we need to use the proof available in the [inl] case of the inner [match]. *)
|
adamc@109
|
441
|
adamc@109
|
442 Fixpoint fhget (ls : list A) : fhlist ls -> fmember ls -> B elm :=
|
adamc@215
|
443 match ls with
|
adamc@109
|
444 | nil => fun _ idx => match idx with end
|
adamc@109
|
445 | _ :: ls' => fun mls idx =>
|
adamc@109
|
446 match idx with
|
adamc@109
|
447 | inl pf => match pf with
|
adamc@109
|
448 | refl_equal => fst mls
|
adamc@109
|
449 end
|
adamc@109
|
450 | inr idx' => fhget ls' (snd mls) idx'
|
adamc@109
|
451 end
|
adamc@109
|
452 end.
|
adamc@109
|
453
|
adamc@109
|
454 (** By pattern-matching on the equality proof [pf], we make that equality known to the type-checker. Exactly why this works can be seen by studying the definition of equality. *)
|
adamc@109
|
455
|
adamc@109
|
456 Print eq.
|
adamc@215
|
457 (** %\vspace{-.15in}% [[
|
adamc@109
|
458 Inductive eq (A : Type) (x : A) : A -> Prop := refl_equal : x = x
|
adamc@215
|
459
|
adamc@109
|
460 ]]
|
adamc@109
|
461
|
adamc@215
|
462 In a proposition [x = y], we see that [x] is a parameter and [y] is a regular argument. The type of the constructor [refl_equal] shows that [y] can only ever be instantiated to [x]. Thus, within a pattern-match with [refl_equal], occurrences of [y] can be replaced with occurrences of [x] for typing purposes. *)
|
adamc@113
|
463 (* end thide *)
|
adamc@215
|
464
|
adamc@109
|
465 End fhlist.
|
adamc@110
|
466
|
adamc@111
|
467 Implicit Arguments fhget [A B elm ls].
|
adamc@111
|
468
|
adamc@110
|
469
|
adamc@110
|
470 (** * Data Structures as Index Functions *)
|
adamc@110
|
471
|
adamc@110
|
472 (** Indexed lists can be useful in defining other inductive types with constructors that take variable numbers of arguments. In this section, we consider parameterized trees with arbitrary branching factor. *)
|
adamc@110
|
473
|
adamc@110
|
474 Section tree.
|
adamc@110
|
475 Variable A : Set.
|
adamc@110
|
476
|
adamc@110
|
477 Inductive tree : Set :=
|
adamc@110
|
478 | Leaf : A -> tree
|
adamc@110
|
479 | Node : forall n, ilist tree n -> tree.
|
adamc@110
|
480 End tree.
|
adamc@110
|
481
|
adamc@110
|
482 (** Every [Node] of a [tree] has a natural number argument, which gives the number of child trees in the second argument, typed with [ilist]. We can define two operations on trees of naturals: summing their elements and incrementing their elements. It is useful to define a generic fold function on [ilist]s first. *)
|
adamc@110
|
483
|
adamc@110
|
484 Section ifoldr.
|
adamc@110
|
485 Variables A B : Set.
|
adamc@110
|
486 Variable f : A -> B -> B.
|
adamc@110
|
487 Variable i : B.
|
adamc@110
|
488
|
adamc@215
|
489 Fixpoint ifoldr n (ls : ilist A n) : B :=
|
adamc@110
|
490 match ls with
|
adamc@110
|
491 | Nil => i
|
adamc@110
|
492 | Cons _ x ls' => f x (ifoldr ls')
|
adamc@110
|
493 end.
|
adamc@110
|
494 End ifoldr.
|
adamc@110
|
495
|
adamc@110
|
496 Fixpoint sum (t : tree nat) : nat :=
|
adamc@110
|
497 match t with
|
adamc@110
|
498 | Leaf n => n
|
adamc@110
|
499 | Node _ ls => ifoldr (fun t' n => sum t' + n) O ls
|
adamc@110
|
500 end.
|
adamc@110
|
501
|
adamc@110
|
502 Fixpoint inc (t : tree nat) : tree nat :=
|
adamc@110
|
503 match t with
|
adamc@110
|
504 | Leaf n => Leaf (S n)
|
adamc@110
|
505 | Node _ ls => Node (imap inc ls)
|
adamc@110
|
506 end.
|
adamc@110
|
507
|
adamc@110
|
508 (** Now we might like to prove that [inc] does not decrease a tree's [sum]. *)
|
adamc@110
|
509
|
adamc@110
|
510 Theorem sum_inc : forall t, sum (inc t) >= sum t.
|
adamc@113
|
511 (* begin thide *)
|
adamc@110
|
512 induction t; crush.
|
adamc@110
|
513 (** [[
|
adamc@110
|
514
|
adamc@110
|
515 n : nat
|
adamc@110
|
516 i : ilist (tree nat) n
|
adamc@110
|
517 ============================
|
adamc@110
|
518 ifoldr (fun (t' : tree nat) (n0 : nat) => sum t' + n0) 0 (imap inc i) >=
|
adamc@110
|
519 ifoldr (fun (t' : tree nat) (n0 : nat) => sum t' + n0) 0 i
|
adamc@215
|
520
|
adamc@110
|
521 ]]
|
adamc@110
|
522
|
adamc@110
|
523 We are left with a single subgoal which does not seem provable directly. This is the same problem that we met in Chapter 3 with other nested inductive types. *)
|
adamc@110
|
524
|
adamc@110
|
525 Check tree_ind.
|
adamc@215
|
526 (** %\vspace{-.15in}% [[
|
adamc@215
|
527 tree_ind
|
adamc@110
|
528 : forall (A : Set) (P : tree A -> Prop),
|
adamc@110
|
529 (forall a : A, P (Leaf a)) ->
|
adamc@110
|
530 (forall (n : nat) (i : ilist (tree A) n), P (Node i)) ->
|
adamc@110
|
531 forall t : tree A, P t
|
adamc@215
|
532
|
adamc@110
|
533 ]]
|
adamc@110
|
534
|
adamc@110
|
535 The automatically-generated induction principle is too weak. For the [Node] case, it gives us no inductive hypothesis. We could write our own induction principle, as we did in Chapter 3, but there is an easier way, if we are willing to alter the definition of [tree]. *)
|
adamc@215
|
536
|
adamc@110
|
537 Abort.
|
adamc@110
|
538
|
adamc@110
|
539 Reset tree.
|
adamc@110
|
540
|
adamc@110
|
541 (** First, let us try using our recursive definition of [ilist]s instead of the inductive version. *)
|
adamc@110
|
542
|
adamc@110
|
543 Section tree.
|
adamc@110
|
544 Variable A : Set.
|
adamc@110
|
545
|
adamc@215
|
546 (** %\vspace{-.15in}% [[
|
adamc@110
|
547 Inductive tree : Set :=
|
adamc@110
|
548 | Leaf : A -> tree
|
adamc@110
|
549 | Node : forall n, filist tree n -> tree.
|
adamc@110
|
550
|
adamc@110
|
551 Error: Non strictly positive occurrence of "tree" in
|
adamc@110
|
552 "forall n : nat, filist tree n -> tree"
|
adamc@215
|
553
|
adamc@110
|
554 ]]
|
adamc@110
|
555
|
adamc@110
|
556 The special-case rule for nested datatypes only works with nested uses of other inductive types, which could be replaced with uses of new mutually-inductive types. We defined [filist] recursively, so it may not be used for nested recursion.
|
adamc@110
|
557
|
adamc@215
|
558 Our final solution uses yet another of the inductive definition techniques introduced in Chapter 3, reflexive types. Instead of merely using [fin] to get elements out of [ilist], we can %\textit{%#<i>#define#</i>#%}% [ilist] in terms of [fin]. For the reasons outlined above, it turns out to be easier to work with [ffin] in place of [fin]. *)
|
adamc@110
|
559
|
adamc@110
|
560 Inductive tree : Set :=
|
adamc@110
|
561 | Leaf : A -> tree
|
adamc@215
|
562 | Node : forall n, (ffin n -> tree) -> tree.
|
adamc@110
|
563
|
adamc@215
|
564 (** A [Node] is indexed by a natural number [n], and the node's [n] children are represented as a function from [ffin n] to trees, which is isomorphic to the [ilist]-based representation that we used above. *)
|
adamc@215
|
565
|
adamc@110
|
566 End tree.
|
adamc@110
|
567
|
adamc@110
|
568 Implicit Arguments Node [A n].
|
adamc@110
|
569
|
adamc@215
|
570 (** We can redefine [sum] and [inc] for our new [tree] type. Again, it is useful to define a generic fold function first. This time, it takes in a function whose range is some [ffin] type, and it folds another function over the results of calling the first function at every possible [ffin] value. *)
|
adamc@110
|
571
|
adamc@110
|
572 Section rifoldr.
|
adamc@110
|
573 Variables A B : Set.
|
adamc@110
|
574 Variable f : A -> B -> B.
|
adamc@110
|
575 Variable i : B.
|
adamc@110
|
576
|
adamc@215
|
577 Fixpoint rifoldr (n : nat) : (ffin n -> A) -> B :=
|
adamc@215
|
578 match n with
|
adamc@110
|
579 | O => fun _ => i
|
adamc@110
|
580 | S n' => fun get => f (get None) (rifoldr n' (fun idx => get (Some idx)))
|
adamc@110
|
581 end.
|
adamc@110
|
582 End rifoldr.
|
adamc@110
|
583
|
adamc@110
|
584 Implicit Arguments rifoldr [A B n].
|
adamc@110
|
585
|
adamc@110
|
586 Fixpoint sum (t : tree nat) : nat :=
|
adamc@110
|
587 match t with
|
adamc@110
|
588 | Leaf n => n
|
adamc@110
|
589 | Node _ f => rifoldr plus O (fun idx => sum (f idx))
|
adamc@110
|
590 end.
|
adamc@110
|
591
|
adamc@110
|
592 Fixpoint inc (t : tree nat) : tree nat :=
|
adamc@110
|
593 match t with
|
adamc@110
|
594 | Leaf n => Leaf (S n)
|
adamc@110
|
595 | Node _ f => Node (fun idx => inc (f idx))
|
adamc@110
|
596 end.
|
adamc@110
|
597
|
adamc@110
|
598 (** Now we are ready to prove the theorem where we got stuck before. We will not need to define any new induction principle, but it %\textit{%#<i>#will#</i>#%}% be helpful to prove some lemmas. *)
|
adamc@110
|
599
|
adamc@110
|
600 Lemma plus_ge : forall x1 y1 x2 y2,
|
adamc@110
|
601 x1 >= x2
|
adamc@110
|
602 -> y1 >= y2
|
adamc@110
|
603 -> x1 + y1 >= x2 + y2.
|
adamc@110
|
604 crush.
|
adamc@110
|
605 Qed.
|
adamc@110
|
606
|
adamc@215
|
607 Lemma sum_inc' : forall n (f1 f2 : ffin n -> nat),
|
adamc@110
|
608 (forall idx, f1 idx >= f2 idx)
|
adamc@110
|
609 -> rifoldr plus 0 f1 >= rifoldr plus 0 f2.
|
adamc@110
|
610 Hint Resolve plus_ge.
|
adamc@110
|
611
|
adamc@110
|
612 induction n; crush.
|
adamc@110
|
613 Qed.
|
adamc@110
|
614
|
adamc@110
|
615 Theorem sum_inc : forall t, sum (inc t) >= sum t.
|
adamc@110
|
616 Hint Resolve sum_inc'.
|
adamc@110
|
617
|
adamc@110
|
618 induction t; crush.
|
adamc@110
|
619 Qed.
|
adamc@110
|
620
|
adamc@113
|
621 (* end thide *)
|
adamc@113
|
622
|
adamc@110
|
623 (** Even if Coq would generate complete induction principles automatically for nested inductive definitions like the one we started with, there would still be advantages to using this style of reflexive encoding. We see one of those advantages in the definition of [inc], where we did not need to use any kind of auxiliary function. In general, reflexive encodings often admit direct implementations of operations that would require recursion if performed with more traditional inductive data structures. *)
|
adamc@111
|
624
|
adamc@111
|
625 (** ** Another Interpreter Example *)
|
adamc@111
|
626
|
adamc@112
|
627 (** We develop another example of variable-arity constructors, in the form of optimization of a small expression language with a construct like Scheme's %\texttt{%#<tt>#cond#</tt>#%}%. Each of our conditional expressions takes a list of pairs of boolean tests and bodies. The value of the conditional comes from the body of the first test in the list to evaluate to [true]. To simplify the interpreter we will write, we force each conditional to include a final, default case. *)
|
adamc@112
|
628
|
adamc@112
|
629 Inductive type' : Type := Nat | Bool.
|
adamc@111
|
630
|
adamc@111
|
631 Inductive exp' : type' -> Type :=
|
adamc@112
|
632 | NConst : nat -> exp' Nat
|
adamc@112
|
633 | Plus : exp' Nat -> exp' Nat -> exp' Nat
|
adamc@112
|
634 | Eq : exp' Nat -> exp' Nat -> exp' Bool
|
adamc@111
|
635
|
adamc@112
|
636 | BConst : bool -> exp' Bool
|
adamc@113
|
637 (* begin thide *)
|
adamc@215
|
638 | Cond : forall n t, (ffin n -> exp' Bool)
|
adamc@215
|
639 -> (ffin n -> exp' t) -> exp' t -> exp' t.
|
adamc@113
|
640 (* end thide *)
|
adamc@111
|
641
|
adamc@215
|
642 (** A [Cond] is parameterized by a natural [n], which tells us how many cases this conditional has. The test expressions are represented with a function of type [ffin n -> exp' Bool], and the bodies are represented with a function of type [ffin n -> exp' t], where [t] is the overall type. The final [exp' t] argument is the default case.
|
adamc@112
|
643
|
adamc@112
|
644 We start implementing our interpreter with a standard type denotation function. *)
|
adamc@112
|
645
|
adamc@111
|
646 Definition type'Denote (t : type') : Set :=
|
adamc@111
|
647 match t with
|
adamc@112
|
648 | Nat => nat
|
adamc@112
|
649 | Bool => bool
|
adamc@111
|
650 end.
|
adamc@111
|
651
|
adamc@112
|
652 (** To implement the expression interpreter, it is useful to have the following function that implements the functionality of [Cond] without involving any syntax. *)
|
adamc@112
|
653
|
adamc@113
|
654 (* begin thide *)
|
adamc@111
|
655 Section cond.
|
adamc@111
|
656 Variable A : Set.
|
adamc@111
|
657 Variable default : A.
|
adamc@111
|
658
|
adamc@215
|
659 Fixpoint cond (n : nat) : (ffin n -> bool) -> (ffin n -> A) -> A :=
|
adamc@215
|
660 match n with
|
adamc@111
|
661 | O => fun _ _ => default
|
adamc@111
|
662 | S n' => fun tests bodies =>
|
adamc@111
|
663 if tests None
|
adamc@111
|
664 then bodies None
|
adamc@111
|
665 else cond n'
|
adamc@111
|
666 (fun idx => tests (Some idx))
|
adamc@111
|
667 (fun idx => bodies (Some idx))
|
adamc@111
|
668 end.
|
adamc@111
|
669 End cond.
|
adamc@111
|
670
|
adamc@111
|
671 Implicit Arguments cond [A n].
|
adamc@113
|
672 (* end thide *)
|
adamc@111
|
673
|
adamc@112
|
674 (** Now the expression interpreter is straightforward to write. *)
|
adamc@112
|
675
|
adamc@215
|
676 Fixpoint exp'Denote t (e : exp' t) : type'Denote t :=
|
adamc@215
|
677 match e with
|
adamc@215
|
678 | NConst n => n
|
adamc@215
|
679 | Plus e1 e2 => exp'Denote e1 + exp'Denote e2
|
adamc@111
|
680 | Eq e1 e2 =>
|
adamc@111
|
681 if eq_nat_dec (exp'Denote e1) (exp'Denote e2) then true else false
|
adamc@111
|
682
|
adamc@215
|
683 | BConst b => b
|
adamc@111
|
684 | Cond _ _ tests bodies default =>
|
adamc@113
|
685 (* begin thide *)
|
adamc@111
|
686 cond
|
adamc@111
|
687 (exp'Denote default)
|
adamc@111
|
688 (fun idx => exp'Denote (tests idx))
|
adamc@111
|
689 (fun idx => exp'Denote (bodies idx))
|
adamc@113
|
690 (* end thide *)
|
adamc@111
|
691 end.
|
adamc@111
|
692
|
adamc@112
|
693 (** We will implement a constant-folding function that optimizes conditionals, removing cases with known-[false] tests and cases that come after known-[true] tests. A function [cfoldCond] implements the heart of this logic. The convoy pattern is used again near the end of the implementation. *)
|
adamc@112
|
694
|
adamc@113
|
695 (* begin thide *)
|
adamc@111
|
696 Section cfoldCond.
|
adamc@111
|
697 Variable t : type'.
|
adamc@111
|
698 Variable default : exp' t.
|
adamc@111
|
699
|
adamc@112
|
700 Fixpoint cfoldCond (n : nat)
|
adamc@215
|
701 : (ffin n -> exp' Bool) -> (ffin n -> exp' t) -> exp' t :=
|
adamc@215
|
702 match n with
|
adamc@111
|
703 | O => fun _ _ => default
|
adamc@111
|
704 | S n' => fun tests bodies =>
|
adamc@204
|
705 match tests None return _ with
|
adamc@111
|
706 | BConst true => bodies None
|
adamc@111
|
707 | BConst false => cfoldCond n'
|
adamc@111
|
708 (fun idx => tests (Some idx))
|
adamc@111
|
709 (fun idx => bodies (Some idx))
|
adamc@111
|
710 | _ =>
|
adamc@111
|
711 let e := cfoldCond n'
|
adamc@111
|
712 (fun idx => tests (Some idx))
|
adamc@111
|
713 (fun idx => bodies (Some idx)) in
|
adamc@112
|
714 match e in exp' t return exp' t -> exp' t with
|
adamc@112
|
715 | Cond n _ tests' bodies' default' => fun body =>
|
adamc@111
|
716 Cond
|
adamc@111
|
717 (S n)
|
adamc@111
|
718 (fun idx => match idx with
|
adamc@112
|
719 | None => tests None
|
adamc@111
|
720 | Some idx => tests' idx
|
adamc@111
|
721 end)
|
adamc@111
|
722 (fun idx => match idx with
|
adamc@111
|
723 | None => body
|
adamc@111
|
724 | Some idx => bodies' idx
|
adamc@111
|
725 end)
|
adamc@111
|
726 default'
|
adamc@112
|
727 | e => fun body =>
|
adamc@111
|
728 Cond
|
adamc@111
|
729 1
|
adamc@112
|
730 (fun _ => tests None)
|
adamc@111
|
731 (fun _ => body)
|
adamc@111
|
732 e
|
adamc@112
|
733 end (bodies None)
|
adamc@111
|
734 end
|
adamc@111
|
735 end.
|
adamc@111
|
736 End cfoldCond.
|
adamc@111
|
737
|
adamc@111
|
738 Implicit Arguments cfoldCond [t n].
|
adamc@113
|
739 (* end thide *)
|
adamc@111
|
740
|
adamc@112
|
741 (** Like for the interpreters, most of the action was in this helper function, and [cfold] itself is easy to write. *)
|
adamc@112
|
742
|
adamc@215
|
743 Fixpoint cfold t (e : exp' t) : exp' t :=
|
adamc@215
|
744 match e with
|
adamc@111
|
745 | NConst n => NConst n
|
adamc@111
|
746 | Plus e1 e2 =>
|
adamc@111
|
747 let e1' := cfold e1 in
|
adamc@111
|
748 let e2' := cfold e2 in
|
adamc@204
|
749 match e1', e2' return _ with
|
adamc@111
|
750 | NConst n1, NConst n2 => NConst (n1 + n2)
|
adamc@111
|
751 | _, _ => Plus e1' e2'
|
adamc@111
|
752 end
|
adamc@111
|
753 | Eq e1 e2 =>
|
adamc@111
|
754 let e1' := cfold e1 in
|
adamc@111
|
755 let e2' := cfold e2 in
|
adamc@204
|
756 match e1', e2' return _ with
|
adamc@111
|
757 | NConst n1, NConst n2 => BConst (if eq_nat_dec n1 n2 then true else false)
|
adamc@111
|
758 | _, _ => Eq e1' e2'
|
adamc@111
|
759 end
|
adamc@111
|
760
|
adamc@111
|
761 | BConst b => BConst b
|
adamc@111
|
762 | Cond _ _ tests bodies default =>
|
adamc@113
|
763 (* begin thide *)
|
adamc@111
|
764 cfoldCond
|
adamc@111
|
765 (cfold default)
|
adamc@111
|
766 (fun idx => cfold (tests idx))
|
adamc@111
|
767 (fun idx => cfold (bodies idx))
|
adamc@113
|
768 (* end thide *)
|
adamc@111
|
769 end.
|
adamc@111
|
770
|
adamc@113
|
771 (* begin thide *)
|
adamc@112
|
772 (** To prove our final correctness theorem, it is useful to know that [cfoldCond] preserves expression meanings. This lemma formalizes that property. The proof is a standard mostly-automated one, with the only wrinkle being a guided instantation of the quantifiers in the induction hypothesis. *)
|
adamc@112
|
773
|
adamc@111
|
774 Lemma cfoldCond_correct : forall t (default : exp' t)
|
adamc@215
|
775 n (tests : ffin n -> exp' Bool) (bodies : ffin n -> exp' t),
|
adamc@111
|
776 exp'Denote (cfoldCond default tests bodies)
|
adamc@111
|
777 = exp'Denote (Cond n tests bodies default).
|
adamc@111
|
778 induction n; crush;
|
adamc@111
|
779 match goal with
|
adamc@111
|
780 | [ IHn : forall tests bodies, _, tests : _ -> _, bodies : _ -> _ |- _ ] =>
|
adamc@111
|
781 generalize (IHn (fun idx => tests (Some idx)) (fun idx => bodies (Some idx)));
|
adamc@111
|
782 clear IHn; intro IHn
|
adamc@111
|
783 end;
|
adamc@111
|
784 repeat (match goal with
|
adamc@111
|
785 | [ |- context[match ?E with
|
adamc@111
|
786 | NConst _ => _
|
adamc@111
|
787 | Plus _ _ => _
|
adamc@111
|
788 | Eq _ _ => _
|
adamc@111
|
789 | BConst _ => _
|
adamc@111
|
790 | Cond _ _ _ _ _ => _
|
adamc@111
|
791 end] ] => dep_destruct E
|
adamc@111
|
792 | [ |- context[if ?B then _ else _] ] => destruct B
|
adamc@111
|
793 end; crush).
|
adamc@111
|
794 Qed.
|
adamc@111
|
795
|
adamc@112
|
796 (** It is also useful to know that the result of a call to [cond] is not changed by substituting new tests and bodies functions, so long as the new functions have the same input-output behavior as the old. It turns out that, in Coq, it is not possible to prove in general that functions related in this way are equal. We treat this issue with our discussion of axioms in a later chapter. For now, it suffices to prove that the particular function [cond] is %\textit{%#<i>#extensional#</i>#%}%; that is, it is unaffected by substitution of functions with input-output equivalents. *)
|
adamc@112
|
797
|
adamc@215
|
798 Lemma cond_ext : forall (A : Set) (default : A) n (tests tests' : ffin n -> bool)
|
adamc@215
|
799 (bodies bodies' : ffin n -> A),
|
adamc@111
|
800 (forall idx, tests idx = tests' idx)
|
adamc@111
|
801 -> (forall idx, bodies idx = bodies' idx)
|
adamc@111
|
802 -> cond default tests bodies
|
adamc@111
|
803 = cond default tests' bodies'.
|
adamc@111
|
804 induction n; crush;
|
adamc@111
|
805 match goal with
|
adamc@111
|
806 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@111
|
807 end; crush.
|
adamc@111
|
808 Qed.
|
adamc@111
|
809
|
adamc@112
|
810 (** Now the final theorem is easy to prove. We add our two lemmas as hints and perform standard automation with pattern-matching of subterms to destruct. *)
|
adamc@113
|
811 (* end thide *)
|
adamc@112
|
812
|
adamc@111
|
813 Theorem cfold_correct : forall t (e : exp' t),
|
adamc@111
|
814 exp'Denote (cfold e) = exp'Denote e.
|
adamc@113
|
815 (* begin thide *)
|
adamc@111
|
816 Hint Rewrite cfoldCond_correct : cpdt.
|
adamc@111
|
817 Hint Resolve cond_ext.
|
adamc@111
|
818
|
adamc@111
|
819 induction e; crush;
|
adamc@111
|
820 repeat (match goal with
|
adamc@111
|
821 | [ |- context[cfold ?E] ] => dep_destruct (cfold E)
|
adamc@111
|
822 end; crush).
|
adamc@111
|
823 Qed.
|
adamc@113
|
824 (* end thide *)
|
adamc@115
|
825
|
adamc@115
|
826
|
adamc@215
|
827 (** * Choosing Between Representations *)
|
adamc@215
|
828
|
adamc@215
|
829 (** It is not always clear which of these representation techniques to apply in a particular situation, but I will try to summarize the pros and cons of each.
|
adamc@215
|
830
|
adamc@215
|
831 Inductive types are often the most pleasant to work with, after someone has spent the time implementing some basic library functions for them, using fancy [match] annotations. Many aspects of Coq's logic and tactic support are specialized to deal with inductive types, and you may miss out if you use alternate encodings.
|
adamc@215
|
832
|
adamc@227
|
833 Recursive types usually involve much less initial effort, but they can be less convenient to use with proof automation. For instance, the [simpl] tactic (which is among the ingredients in [crush]) will sometimes be overzealous in simplifying uses of functions over recursive types. Consider a call [get l f], where variable [l] has type [filist A (S n)]. The type of [l] would be simplified to an explicit pair type. In a proof involving many recursive types, this kind of unhelpful "simplification" can lead to rapid bloat in the sizes of subgoals.
|
adamc@215
|
834
|
adamc@215
|
835 Another disadvantage of recursive types is that they only apply to type families whose indices determine their "skeletons." This is not true for all data structures; a good counterexample comes from the richly-typed programming language syntax types we have used several times so far. The fact that a piece of syntax has type [Nat] tells us nothing about the tree structure of that syntax.
|
adamc@215
|
836
|
adamc@227
|
837 Reflexive encodings of data types are seen relatively rarely. As our examples demonstrated, manipulating index values manually can lead to hard-to-read code. A normal inductive type is generally easier to work with, once someone has gone through the trouble of implementing an induction principle manually with the techniques we studied in Chapter 3. For small developments, avoiding that kind of coding can justify the use of reflexive data structures. There are also some useful instances of co-inductive definitions with nested data structures (e.g., lists of values in the co-inductive type) that can only be deconstructed effectively with reflexive encoding of the nested structures. *)
|
adamc@215
|
838
|
adamc@215
|
839
|
adamc@115
|
840 (** * Exercises *)
|
adamc@115
|
841
|
adamc@116
|
842 (** remove printing * *)
|
adamc@116
|
843
|
adamc@216
|
844 (** Some of the type family definitions and associated functions from this chapter are duplicated in the [DepList] module of the book source. Some of their names have been changed to be more sensible in a general context.
|
adamc@115
|
845
|
adamc@115
|
846 %\begin{enumerate}%#<ol>#
|
adamc@115
|
847
|
adamc@128
|
848 %\item%#<li># Define a tree analogue of [hlist]. That is, define a parameterized type of binary trees with data at their leaves, and define a type family [htree] indexed by trees. The structure of an [htree] mirrors its index tree, with the type of each data element (which only occur at leaves) determined by applying a type function to the corresponding element of the index tree. Define a type standing for all possible paths from the root of a tree to leaves and use it to implement a function [tget] for extracting an element of an [htree] by path. Define a function [htmap2] for "mapping over two trees in parallel." That is, [htmap2] takes in two [htree]s with the same index tree, and it forms a new [htree] with the same index by applying a binary function pointwise.
|
adamc@115
|
849
|
adamc@129
|
850 Repeat this process so that you implement each definition for each of the three definition styles covered in this chapter: inductive, recursive, and index function.#</li>#
|
adamc@116
|
851
|
adamc@130
|
852 %\item%#<li># Write a dependently-typed interpreter for a simple programming language with ML-style pattern-matching, using one of the encodings of heterogeneous lists to represent the different branches of a [case] expression. (There are other ways to represent the same thing, but the point of this exercise is to practice using those heterogeneous list types.) The object language is defined informally by this grammar:
|
adamc@116
|
853
|
adamc@116
|
854 [[
|
adamc@116
|
855 t ::= bool | t + t
|
adamc@116
|
856 p ::= x | b | inl p | inr p
|
adamc@116
|
857 e ::= x | b | inl e | inr e | case e of [p => e]* | _ => e
|
adamc@215
|
858
|
adamc@116
|
859 ]]
|
adamc@116
|
860
|
adamc@116
|
861 [x] stands for a variable, and [b] stands for a boolean constant. The production for [case] expressions means that a pattern-match includes zero or more pairs of patterns and expressions, along with a default case.
|
adamc@116
|
862
|
adamc@117
|
863 Your interpreter should be implemented in the style demonstrated in this chapter. That is, your definition of expressions should use dependent types and de Bruijn indices to combine syntax and typing rules, such that the type of an expression tells the types of variables that are in scope. You should implement a simple recursive function translating types [t] to [Set], and your interpreter should produce values in the image of this translation.#</li>#
|
adamc@116
|
864
|
adamc@115
|
865 #</ol>#%\end{enumerate}% *)
|