adamc@216
|
1 (* Copyright (c) 2008-2009, Adam Chlipala
|
adamc@114
|
2 *
|
adamc@114
|
3 * This work is licensed under a
|
adamc@114
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@114
|
5 * Unported License.
|
adamc@114
|
6 * The license text is available at:
|
adamc@114
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@114
|
8 *)
|
adamc@114
|
9
|
adamc@114
|
10 (* Dependent list types presented in Chapter 8 *)
|
adamc@114
|
11
|
adam@314
|
12 Require Import Arith List CpdtTactics.
|
adamc@114
|
13
|
adamc@114
|
14 Set Implicit Arguments.
|
adamc@114
|
15
|
adamc@114
|
16
|
adamc@114
|
17 Section ilist.
|
adamc@123
|
18 Variable A : Type.
|
adamc@114
|
19
|
adamc@216
|
20 Inductive ilist : nat -> Type :=
|
adamc@216
|
21 | INil : ilist O
|
adamc@216
|
22 | ICons : forall n, A -> ilist n -> ilist (S n).
|
adamc@114
|
23
|
adamc@216
|
24 Definition hd n (ls : ilist (S n)) :=
|
adamc@216
|
25 match ls in ilist n' return match n' with
|
adamc@216
|
26 | O => unit
|
adamc@216
|
27 | S _ => A
|
adamc@216
|
28 end with
|
adamc@216
|
29 | INil => tt
|
adamc@216
|
30 | ICons _ x _ => x
|
adamc@216
|
31 end.
|
adamc@216
|
32 Definition tl n (ls : ilist (S n)) :=
|
adamc@216
|
33 match ls in ilist n' return match n' with
|
adamc@216
|
34 | O => unit
|
adamc@216
|
35 | S n => ilist n
|
adamc@216
|
36 end with
|
adamc@216
|
37 | INil => tt
|
adamc@216
|
38 | ICons _ _ ls' => ls'
|
adamc@114
|
39 end.
|
adamc@114
|
40
|
adamc@216
|
41 Inductive fin : nat -> Set :=
|
adamc@216
|
42 | First : forall n, fin (S n)
|
adamc@216
|
43 | Next : forall n, fin n -> fin (S n).
|
adamc@216
|
44
|
adamc@216
|
45 Fixpoint get n (ls : ilist n) : fin n -> A :=
|
adamc@216
|
46 match ls with
|
adamc@216
|
47 | INil => fun idx =>
|
adamc@216
|
48 match idx in fin n' return (match n' with
|
adamc@216
|
49 | O => A
|
adamc@216
|
50 | S _ => unit
|
adamc@216
|
51 end) with
|
adamc@216
|
52 | First _ => tt
|
adamc@216
|
53 | Next _ _ => tt
|
adamc@114
|
54 end
|
adamc@216
|
55 | ICons _ x ls' => fun idx =>
|
adamc@216
|
56 match idx in fin n' return (fin (pred n') -> A) -> A with
|
adamc@216
|
57 | First _ => fun _ => x
|
adamc@216
|
58 | Next _ idx' => fun get_ls' => get_ls' idx'
|
adamc@216
|
59 end (get ls')
|
adamc@114
|
60 end.
|
adamc@149
|
61
|
adamc@149
|
62 Section everywhere.
|
adamc@149
|
63 Variable x : A.
|
adamc@149
|
64
|
adamc@149
|
65 Fixpoint everywhere (n : nat) : ilist n :=
|
adamc@216
|
66 match n with
|
adamc@216
|
67 | O => INil
|
adamc@216
|
68 | S n' => ICons x (everywhere n')
|
adamc@149
|
69 end.
|
adamc@149
|
70 End everywhere.
|
adamc@149
|
71
|
adamc@149
|
72 Section singleton.
|
adamc@149
|
73 Variables x default : A.
|
adamc@149
|
74
|
adamc@216
|
75 Fixpoint singleton (n m : nat) : ilist n :=
|
adamc@216
|
76 match n with
|
adamc@216
|
77 | O => INil
|
adamc@149
|
78 | S n' =>
|
adamc@149
|
79 match m with
|
adamc@216
|
80 | O => ICons x (everywhere default n')
|
adamc@216
|
81 | S m' => ICons default (singleton n' m')
|
adamc@149
|
82 end
|
adamc@149
|
83 end.
|
adamc@149
|
84 End singleton.
|
adamc@149
|
85
|
adamc@149
|
86 Section map2.
|
adamc@149
|
87 Variable f : A -> A -> A.
|
adamc@149
|
88
|
adamc@216
|
89 Fixpoint map2 n (il1 : ilist n) : ilist n -> ilist n :=
|
adamc@216
|
90 match il1 in ilist n return ilist n -> ilist n with
|
adamc@216
|
91 | INil => fun _ => INil
|
adamc@216
|
92 | ICons _ x il1' => fun il2 => ICons (f x (hd il2)) (map2 il1' (tl il2))
|
adamc@149
|
93 end.
|
adamc@149
|
94 End map2.
|
adamc@194
|
95
|
adamc@194
|
96 Section fold.
|
adamc@194
|
97 Variable B : Type.
|
adamc@194
|
98 Variable f : A -> B -> B.
|
adamc@194
|
99 Variable i : B.
|
adamc@194
|
100
|
adamc@216
|
101 Fixpoint foldr n (il : ilist n) : B :=
|
adamc@216
|
102 match il with
|
adamc@216
|
103 | INil => i
|
adamc@216
|
104 | ICons _ x il' => f x (foldr il')
|
adamc@194
|
105 end.
|
adamc@194
|
106 End fold.
|
adamc@114
|
107 End ilist.
|
adamc@114
|
108
|
adamc@216
|
109 Implicit Arguments INil [A].
|
adamc@216
|
110 Implicit Arguments First [n].
|
adamc@114
|
111
|
adamc@196
|
112 Section imap.
|
adamc@196
|
113 Variables A B : Type.
|
adamc@196
|
114 Variable f : A -> B.
|
adamc@196
|
115
|
adamc@216
|
116 Fixpoint imap n (il : ilist A n) : ilist B n :=
|
adamc@216
|
117 match il with
|
adamc@216
|
118 | INil => INil
|
adamc@216
|
119 | ICons _ x il' => ICons (f x) (imap il')
|
adamc@196
|
120 end.
|
adamc@196
|
121 End imap.
|
adamc@196
|
122
|
adamc@114
|
123 Section hlist.
|
adamc@114
|
124 Variable A : Type.
|
adamc@114
|
125 Variable B : A -> Type.
|
adamc@114
|
126
|
adamc@216
|
127 Inductive hlist : list A -> Type :=
|
adamc@216
|
128 | HNil : hlist nil
|
adamc@216
|
129 | HCons : forall (x : A) (ls : list A), B x -> hlist ls -> hlist (x :: ls).
|
adamc@114
|
130
|
adamc@216
|
131 Definition hhd ls (hl : hlist ls) :=
|
adamc@216
|
132 match hl in hlist ls return match ls with
|
adamc@216
|
133 | nil => unit
|
adamc@216
|
134 | x :: _ => B x
|
adamc@216
|
135 end with
|
adamc@216
|
136 | HNil => tt
|
adamc@216
|
137 | HCons _ _ v _ => v
|
adamc@216
|
138 end.
|
adamc@216
|
139
|
adamc@216
|
140 Definition htl ls (hl : hlist ls) :=
|
adamc@216
|
141 match hl in hlist ls return match ls with
|
adamc@216
|
142 | nil => unit
|
adamc@216
|
143 | _ :: ls' => hlist ls'
|
adamc@216
|
144 end with
|
adamc@216
|
145 | HNil => tt
|
adamc@216
|
146 | HCons _ _ _ hl' => hl'
|
adamc@216
|
147 end.
|
adamc@125
|
148
|
adamc@114
|
149 Variable elm : A.
|
adamc@114
|
150
|
adamc@216
|
151 Inductive member : list A -> Type :=
|
adamc@216
|
152 | HFirst : forall ls, member (elm :: ls)
|
adamc@216
|
153 | HNext : forall x ls, member ls -> member (x :: ls).
|
adamc@114
|
154
|
adamc@216
|
155 Fixpoint hget ls (mls : hlist ls) : member ls -> B elm :=
|
adamc@216
|
156 match mls with
|
adamc@216
|
157 | HNil => fun mem =>
|
adamc@216
|
158 match mem in member ls' return (match ls' with
|
adamc@216
|
159 | nil => B elm
|
adamc@216
|
160 | _ :: _ => unit
|
adamc@216
|
161 end) with
|
adamc@216
|
162 | HFirst _ => tt
|
adamc@216
|
163 | HNext _ _ _ => tt
|
adamc@114
|
164 end
|
adamc@216
|
165 | HCons _ _ x mls' => fun mem =>
|
adamc@216
|
166 match mem in member ls' return (match ls' with
|
adamc@216
|
167 | nil => Empty_set
|
adamc@216
|
168 | x' :: ls'' =>
|
adamc@216
|
169 B x' -> (member ls'' -> B elm) -> B elm
|
adamc@216
|
170 end) with
|
adamc@216
|
171 | HFirst _ => fun x _ => x
|
adamc@216
|
172 | HNext _ _ mem' => fun _ get_mls' => get_mls' mem'
|
adamc@216
|
173 end x (hget mls')
|
adamc@114
|
174 end.
|
adamc@125
|
175
|
adamc@216
|
176 Fixpoint happ (ls1 : list A) (hl1 : hlist ls1) : forall ls2, hlist ls2 -> hlist (ls1 ++ ls2) :=
|
adamc@216
|
177 match hl1 in hlist ls1 return forall ls2, hlist ls2 -> hlist (ls1 ++ ls2) with
|
adamc@216
|
178 | HNil => fun _ hl2 => hl2
|
adamc@216
|
179 | HCons _ _ x hl1' => fun _ hl2 => HCons x (happ hl1' hl2)
|
adamc@125
|
180 end.
|
adamc@194
|
181
|
adamc@194
|
182 Variable f : forall x, B x.
|
adamc@194
|
183
|
adamc@194
|
184 Fixpoint hmake (ls : list A) : hlist ls :=
|
adamc@216
|
185 match ls with
|
adamc@216
|
186 | nil => HNil
|
adamc@216
|
187 | x :: ls' => HCons (f x) (hmake ls')
|
adamc@194
|
188 end.
|
adamc@196
|
189
|
adamc@196
|
190 Theorem hget_hmake : forall ls (m : member ls),
|
adamc@196
|
191 hget (hmake ls) m = f elm.
|
adamc@216
|
192 induction ls; crush;
|
adamc@216
|
193 match goal with
|
adamc@216
|
194 | [ |- context[match ?E with HFirst _ => _ | HNext _ _ _ => _ end] ] => dep_destruct E
|
adamc@216
|
195 end; crush.
|
adamc@196
|
196 Qed.
|
adamc@114
|
197 End hlist.
|
adamc@114
|
198
|
adamc@216
|
199 Implicit Arguments HNil [A B].
|
adamc@216
|
200 Implicit Arguments HCons [A B x ls].
|
adamc@194
|
201 Implicit Arguments hmake [A B].
|
adamc@125
|
202
|
adamc@216
|
203 Implicit Arguments HFirst [A elm ls].
|
adamc@216
|
204 Implicit Arguments HNext [A elm x ls].
|
adamc@126
|
205
|
adamc@216
|
206 Infix ":::" := HCons (right associativity, at level 60).
|
adamc@125
|
207 Infix "+++" := happ (right associativity, at level 60).
|
adamc@163
|
208
|
adamc@163
|
209 Section hmap.
|
adamc@163
|
210 Variable A : Type.
|
adamc@163
|
211 Variables B1 B2 : A -> Type.
|
adamc@163
|
212
|
adamc@163
|
213 Variable f : forall x, B1 x -> B2 x.
|
adamc@163
|
214
|
adamc@216
|
215 Fixpoint hmap (ls : list A) (hl : hlist B1 ls) : hlist B2 ls :=
|
adamc@216
|
216 match hl with
|
adamc@216
|
217 | HNil => HNil
|
adamc@216
|
218 | HCons _ _ x hl' => f x ::: hmap hl'
|
adamc@163
|
219 end.
|
adamc@179
|
220
|
adamc@179
|
221 Theorem hmap_happ : forall ls2 (h2 : hlist B1 ls2) ls1 (h1 : hlist B1 ls1),
|
adamc@179
|
222 hmap h1 +++ hmap h2 = hmap (h1 +++ h2).
|
adamc@216
|
223 induction h1; crush.
|
adamc@179
|
224 Qed.
|
adamc@197
|
225
|
adamc@197
|
226 Theorem hget_hmap : forall elm ls (hls : hlist B1 ls) (m : member elm ls),
|
adamc@197
|
227 hget (hmap hls) m = f (hget hls m).
|
adamc@216
|
228 induction hls; crush;
|
adamc@216
|
229 match goal with
|
adamc@216
|
230 | [ |- context[match ?E with HFirst _ => _ | HNext _ _ _ => _ end] ] => dep_destruct E
|
adamc@216
|
231 end; crush.
|
adamc@197
|
232 Qed.
|
adamc@163
|
233 End hmap.
|
adamc@163
|
234
|
adamc@163
|
235 Implicit Arguments hmap [A B1 B2 ls].
|