annotate src/MoreDep.v @ 94:affdf00759d8

Red-black insert
author Adam Chlipala <adamc@hcoop.net>
date Tue, 07 Oct 2008 20:15:12 -0400
parents a08e82c646a5
children 7804f9d5249f
rev   line source
adamc@83 1 (* Copyright (c) 2008, Adam Chlipala
adamc@83 2 *
adamc@83 3 * This work is licensed under a
adamc@83 4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
adamc@83 5 * Unported License.
adamc@83 6 * The license text is available at:
adamc@83 7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
adamc@83 8 *)
adamc@83 9
adamc@83 10 (* begin hide *)
adamc@85 11 Require Import Arith Bool List.
adamc@83 12
adamc@86 13 Require Import Tactics MoreSpecif.
adamc@83 14
adamc@83 15 Set Implicit Arguments.
adamc@83 16 (* end hide *)
adamc@83 17
adamc@83 18
adamc@83 19 (** %\chapter{More Dependent Types}% *)
adamc@83 20
adamc@83 21 (** Subset types and their relatives help us integrate verification with programming. Though they reorganize the certified programmer's workflow, they tend not to have deep effects on proofs. We write largely the same proofs as we would for classical verification, with some of the structure moved into the programs themselves. It turns out that, when we use dependent types to their full potential, we warp the development and proving process even more than that, picking up "free theorems" to the extent that often a certified program is hardly more complex than its uncertified counterpart in Haskell or ML.
adamc@83 22
adamc@83 23 In particular, we have only scratched the tip of the iceberg that is Coq's inductive definition mechanism. The inductive types we have seen so far have their counterparts in the other proof assistants that we surveyed in Chapter 1. This chapter explores the strange new world of dependent inductive datatypes (that is, dependent inductive types outside [Prop]), a possibility which sets Coq apart from all of the competition not based on type theory. *)
adamc@83 24
adamc@84 25
adamc@84 26 (** * Length-Indexed Lists *)
adamc@84 27
adamc@84 28 (** Many introductions to dependent types start out by showing how to use them to eliminate array bounds checks. When the type of an array tells you how many elements it has, your compiler can detect out-of-bounds dereferences statically. Since we are working in a pure functional language, the next best thing is length-indexed lists, which the following code defines. *)
adamc@84 29
adamc@84 30 Section ilist.
adamc@84 31 Variable A : Set.
adamc@84 32
adamc@84 33 Inductive ilist : nat -> Set :=
adamc@84 34 | Nil : ilist O
adamc@84 35 | Cons : forall n, A -> ilist n -> ilist (S n).
adamc@84 36
adamc@84 37 (** We see that, within its section, [ilist] is given type [nat -> Set]. Previously, every inductive type we have seen has either had plain [Set] as its type or has been a predicate with some type ending in [Prop]. The full generality of inductive definitions lets us integrate the expressivity of predicates directly into our normal programming.
adamc@84 38
adamc@84 39 The [nat] argument to [ilist] tells us the length of the list. The types of [ilist]'s constructors tell us that a [Nil] list has length [O] and that a [Cons] list has length one greater than the length of its sublist. We may apply [ilist] to any natural number, even natural numbers that are only known at runtime. It is this breaking of the %\textit{%#<i>#phase distinction#</i>#%}% that characterizes [ilist] as %\textit{%#<i>#dependently typed#</i>#%}%.
adamc@84 40
adamc@84 41 In expositions of list types, we usually see the length function defined first, but here that would not be a very productive function to code. Instead, let us implement list concatenation.
adamc@84 42
adamc@84 43 [[
adamc@84 44 Fixpoint app n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) {struct ls1} : ilist (n1 + n2) :=
adamc@84 45 match ls1 with
adamc@84 46 | Nil => ls2
adamc@84 47 | Cons _ x ls1' => Cons x (app ls1' ls2)
adamc@84 48 end.
adamc@84 49
adamc@84 50 Coq is not happy with this definition:
adamc@84 51
adamc@84 52 [[
adamc@84 53 The term "ls2" has type "ilist n2" while it is expected to have type
adamc@84 54 "ilist (?14 + n2)"
adamc@84 55 ]]
adamc@84 56
adamc@84 57 We see the return of a problem we have considered before. Without explicit annotations, Coq does not enrich our typing assumptions in the branches of a [match] expression. It is clear that the unification variable [?14] should be resolved to 0 in this context, so that we have [0 + n2] reducing to [n2], but Coq does not realize that. We cannot fix the problem using just the simple [return] clauses we applied in the last chapter. We need to combine a [return] clause with a new kind of annotation, an [in] clause. *)
adamc@84 58
adamc@84 59 Fixpoint app n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) {struct ls1} : ilist (n1 + n2) :=
adamc@84 60 match ls1 in (ilist n1) return (ilist (n1 + n2)) with
adamc@84 61 | Nil => ls2
adamc@84 62 | Cons _ x ls1' => Cons x (app ls1' ls2)
adamc@84 63 end.
adamc@84 64
adamc@84 65 (** This version of [app] passes the type checker. Using [return] alone allowed us to express a dependency of the [match] result type on the %\textit{%#<i>#value#</i>#%}% of the discriminee. What [in] adds to our arsenal is a way of expressing a dependency on the %\textit{%#<i>#type#</i>#%}% of the discriminee. Specifically, the [n1] in the [in] clause above is a %\textit{%#<i>#binding occurrence#</i>#%}% whose scope is the [return] clause.
adamc@84 66
adamc@84 67 We may use [in] clauses only to bind names for the arguments of an inductive type family. That is, each [in] clause must be an inductive type family name applied to a sequence of underscores and variable names of the proper length. The positions for %\textit{%#<i>#parameters#</i>#%}% to the type family must all be underscores. Parameters are those arguments declared with section variables or with entries to the left of the first colon in an inductive definition. They cannot vary depending on which constructor was used to build the discriminee, so Coq prohibits pointless matches on them. It is those arguments defined in the type to the right of the colon that we may name with [in] clauses.
adamc@84 68
adamc@84 69 Our [app] function could be typed in so-called %\textit{%#<i>#stratified#</i>#%}% type systems, which avoid true dependency. We could consider the length indices to lists to live in a separate, compile-time-only universe from the lists themselves. Our next example would be harder to implement in a stratified system. We write an injection function from regular lists to length-indexed lists. A stratified implementation would need to duplicate the definition of lists across compile-time and run-time versions, and the run-time versions would need to be indexed by the compile-time versions. *)
adamc@84 70
adamc@84 71 Fixpoint inject (ls : list A) : ilist (length ls) :=
adamc@84 72 match ls return (ilist (length ls)) with
adamc@84 73 | nil => Nil
adamc@84 74 | h :: t => Cons h (inject t)
adamc@84 75 end.
adamc@84 76
adamc@84 77 (** We can define an inverse conversion and prove that it really is an inverse. *)
adamc@84 78
adamc@84 79 Fixpoint unject n (ls : ilist n) {struct ls} : list A :=
adamc@84 80 match ls with
adamc@84 81 | Nil => nil
adamc@84 82 | Cons _ h t => h :: unject t
adamc@84 83 end.
adamc@84 84
adamc@84 85 Theorem inject_inverse : forall ls, unject (inject ls) = ls.
adamc@84 86 induction ls; crush.
adamc@84 87 Qed.
adamc@84 88
adamc@84 89 (** Now let us attempt a function that is surprisingly tricky to write. In ML, the list head function raises an exception when passed an empty list. With length-indexed lists, we can rule out such invalid calls statically, and here is a first attempt at doing so.
adamc@84 90
adamc@84 91 [[
adamc@84 92 Definition hd n (ls : ilist (S n)) : A :=
adamc@84 93 match ls with
adamc@84 94 | Nil => ???
adamc@84 95 | Cons _ h _ => h
adamc@84 96 end.
adamc@84 97
adamc@84 98 It is not clear what to write for the [Nil] case, so we are stuck before we even turn our function over to the type checker. We could try omitting the [Nil] case:
adamc@84 99
adamc@84 100 [[
adamc@84 101 Definition hd n (ls : ilist (S n)) : A :=
adamc@84 102 match ls with
adamc@84 103 | Cons _ h _ => h
adamc@84 104 end.
adamc@84 105
adamc@84 106 [[
adamc@84 107 Error: Non exhaustive pattern-matching: no clause found for pattern Nil
adamc@84 108 ]]
adamc@84 109
adamc@84 110 Unlike in ML, we cannot use inexhaustive pattern matching, becuase there is no conception of a %\texttt{%#<tt>#Match#</tt>#%}% exception to be thrown. We might try using an [in] clause somehow.
adamc@84 111
adamc@84 112 [[
adamc@84 113 Definition hd n (ls : ilist (S n)) : A :=
adamc@84 114 match ls in (ilist (S n)) with
adamc@84 115 | Cons _ h _ => h
adamc@84 116 end.
adamc@84 117
adamc@84 118 [[
adamc@84 119 Error: The reference n was not found in the current environment
adamc@84 120 ]]
adamc@84 121
adamc@84 122 In this and other cases, we feel like we want [in] clauses with type family arguments that are not variables. Unfortunately, Coq only supports variables in those positions. A completely general mechanism could only be supported with a solution to the problem of higher-order unification, which is undecidable. There %\textit{%#<i>#are#</i>#%}% useful heuristics for handling non-variable indices which are gradually making their way into Coq, but we will spend some time in this and the next few chapters on effective pattern matching on dependent types using only the primitive [match] annotations.
adamc@84 123
adamc@84 124 Our final, working attempt at [hd] uses an auxiliary function and a surprising [return] annotation. *)
adamc@84 125
adamc@84 126 Definition hd' n (ls : ilist n) :=
adamc@84 127 match ls in (ilist n) return (match n with O => unit | S _ => A end) with
adamc@84 128 | Nil => tt
adamc@84 129 | Cons _ h _ => h
adamc@84 130 end.
adamc@84 131
adamc@84 132 Definition hd n (ls : ilist (S n)) : A := hd' ls.
adamc@84 133
adamc@84 134 (** We annotate our main [match] with a type that is itself a [match]. We write that the function [hd'] returns [unit] when the list is empty and returns the carried type [A] in all other cases. In the definition of [hd], we just call [hd']. Because the index of [ls] is known to be nonzero, the type checker reduces the [match] in the type of [hd'] to [A]. *)
adamc@84 135
adamc@84 136 End ilist.
adamc@85 137
adamc@85 138
adamc@85 139 (** * A Tagless Interpreter *)
adamc@85 140
adamc@85 141 (** A favorite example for motivating the power of functional programming is implementation of a simple expression language interpreter. In ML and Haskell, such interpreters are often implemented using an algebraic datatype of values, where at many points it is checked that a value was built with the right constructor of the value type. With dependent types, we can implement a %\textit{%#<i>#tagless#</i>#%}% interpreter that both removes this source of runtime ineffiency and gives us more confidence that our implementation is correct. *)
adamc@85 142
adamc@85 143 Inductive type : Set :=
adamc@85 144 | Nat : type
adamc@85 145 | Bool : type
adamc@85 146 | Prod : type -> type -> type.
adamc@85 147
adamc@85 148 Inductive exp : type -> Set :=
adamc@85 149 | NConst : nat -> exp Nat
adamc@85 150 | Plus : exp Nat -> exp Nat -> exp Nat
adamc@85 151 | Eq : exp Nat -> exp Nat -> exp Bool
adamc@85 152
adamc@85 153 | BConst : bool -> exp Bool
adamc@85 154 | And : exp Bool -> exp Bool -> exp Bool
adamc@85 155 | If : forall t, exp Bool -> exp t -> exp t -> exp t
adamc@85 156
adamc@85 157 | Pair : forall t1 t2, exp t1 -> exp t2 -> exp (Prod t1 t2)
adamc@85 158 | Fst : forall t1 t2, exp (Prod t1 t2) -> exp t1
adamc@85 159 | Snd : forall t1 t2, exp (Prod t1 t2) -> exp t2.
adamc@85 160
adamc@85 161 (** We have a standard algebraic datatype [type], defining a type language of naturals, booleans, and product (pair) types. Then we have the indexed inductive type [exp], where the argument to [exp] tells us the encoded type of an expression. In effect, we are defining the typing rules for expressions simultaneously with the syntax.
adamc@85 162
adamc@85 163 We can give types and expressions semantics in a new style, based critically on the chance for %\textit{%#<i>#type-level computation#</i>#%}%. *)
adamc@85 164
adamc@85 165 Fixpoint typeDenote (t : type) : Set :=
adamc@85 166 match t with
adamc@85 167 | Nat => nat
adamc@85 168 | Bool => bool
adamc@85 169 | Prod t1 t2 => typeDenote t1 * typeDenote t2
adamc@85 170 end%type.
adamc@85 171
adamc@85 172 (** [typeDenote] compiles types of our object language into "native" Coq types. It is deceptively easy to implement. The only new thing we see is the [%type] annotation, which tells Coq to parse the [match] expression using the notations associated with types. Without this annotation, the [*] would be interpreted as multiplication on naturals, rather than as the product type constructor. [type] is one example of an identifer bound to a %\textit{%#<i>#notation scope#</i>#%}%. We will deal more explicitly with notations and notation scopes in later chapters.
adamc@85 173
adamc@85 174 We can define a function [expDenote] that is typed in terms of [typeDenote]. *)
adamc@85 175
adamc@85 176 Fixpoint expDenote t (e : exp t) {struct e} : typeDenote t :=
adamc@85 177 match e in (exp t) return (typeDenote t) with
adamc@85 178 | NConst n => n
adamc@85 179 | Plus e1 e2 => expDenote e1 + expDenote e2
adamc@85 180 | Eq e1 e2 => if eq_nat_dec (expDenote e1) (expDenote e2) then true else false
adamc@85 181
adamc@85 182 | BConst b => b
adamc@85 183 | And e1 e2 => expDenote e1 && expDenote e2
adamc@85 184 | If _ e' e1 e2 => if expDenote e' then expDenote e1 else expDenote e2
adamc@85 185
adamc@85 186 | Pair _ _ e1 e2 => (expDenote e1, expDenote e2)
adamc@85 187 | Fst _ _ e' => fst (expDenote e')
adamc@85 188 | Snd _ _ e' => snd (expDenote e')
adamc@85 189 end.
adamc@85 190
adamc@85 191 (** Again we find that an [in] annotation is essential for type-checking a function. Besides that, the definition is routine. In fact, it is less complicated than what we would write in ML or Haskell 98, since we do not need to worry about pushing final values in and out of an algebraic datatype. The only unusual thing is the use of an expression of the form [if E then true else false] in the [Eq] case. Remember that [eq_nat_dec] has a rich dependent type, rather than a simple boolean type. Coq's native [if] is overloaded to work on a test of any two-constructor type, so we can use [if] to build a simple boolean from the [sumbool] that [eq_nat_dec] returns.
adamc@85 192
adamc@85 193 We can implement our old favorite, a constant folding function, and prove it correct. It will be useful to write a function [pairOut] that checks if an [exp] of [Prod] type is a pair, returning its two components if so. Unsurprisingly, a first attempt leads to a type error.
adamc@85 194
adamc@85 195 [[
adamc@85 196 Definition pairOut t1 t2 (e : exp (Prod t1 t2)) : option (exp t1 * exp t2) :=
adamc@85 197 match e in (exp (Prod t1 t2)) return option (exp t1 * exp t2) with
adamc@85 198 | Pair _ _ e1 e2 => Some (e1, e2)
adamc@85 199 | _ => None
adamc@85 200 end.
adamc@85 201
adamc@85 202 [[
adamc@85 203 Error: The reference t2 was not found in the current environment
adamc@85 204 ]]
adamc@85 205
adamc@85 206 We run again into the problem of not being able to specify non-variable arguments in [in] clauses. The problem would just be hopeless without a use of an [in] clause, though, since the result type of the [match] depends on an argument to [exp]. Our solution will be to use a more general type, as we did for [hd]. First, we define a type-valued function to use in assigning a type to [pairOut]. *)
adamc@85 207
adamc@85 208 Definition pairOutType (t : type) :=
adamc@85 209 match t with
adamc@85 210 | Prod t1 t2 => option (exp t1 * exp t2)
adamc@85 211 | _ => unit
adamc@85 212 end.
adamc@85 213
adamc@85 214 (** When passed a type that is a product, [pairOutType] returns our final desired type. On any other input type, [pairOutType] returns [unit], since we do not care about extracting components of non-pairs. Now we can write another helper function to provide the default behavior of [pairOut], which we will apply for inputs that are not literal pairs. *)
adamc@85 215
adamc@85 216 Definition pairOutDefault (t : type) :=
adamc@85 217 match t return (pairOutType t) with
adamc@85 218 | Prod _ _ => None
adamc@85 219 | _ => tt
adamc@85 220 end.
adamc@85 221
adamc@85 222 (** Now [pairOut] is deceptively easy to write. *)
adamc@85 223
adamc@85 224 Definition pairOut t (e : exp t) :=
adamc@85 225 match e in (exp t) return (pairOutType t) with
adamc@85 226 | Pair _ _ e1 e2 => Some (e1, e2)
adamc@85 227 | _ => pairOutDefault _
adamc@85 228 end.
adamc@85 229
adamc@85 230 (** There is one important subtlety in this definition. Coq allows us to use convenient ML-style pattern matching notation, but, internally and in proofs, we see that patterns are expanded out completely, matching one level of inductive structure at a time. Thus, the default case in the [match] above expands out to one case for each constructor of [exp] besides [Pair], and the underscore in [pairOutDefault _] is resolved differently in each case. From an ML or Haskell programmer's perspective, what we have here is type inference determining which code is run (returning either [None] or [tt]), which goes beyond what is possible with type inference guiding parametric polymorphism in Hindley-Milner languages, but is similar to what goes on with Haskell type classes.
adamc@85 231
adamc@85 232 With [pairOut] available, we can write [cfold] in a straightforward way. There are really no surprises beyond that Coq verifies that this code has such an expressive type, given the small annotation burden. *)
adamc@85 233
adamc@85 234 Fixpoint cfold t (e : exp t) {struct e} : exp t :=
adamc@85 235 match e in (exp t) return (exp t) with
adamc@85 236 | NConst n => NConst n
adamc@85 237 | Plus e1 e2 =>
adamc@85 238 let e1' := cfold e1 in
adamc@85 239 let e2' := cfold e2 in
adamc@85 240 match e1', e2' with
adamc@85 241 | NConst n1, NConst n2 => NConst (n1 + n2)
adamc@85 242 | _, _ => Plus e1' e2'
adamc@85 243 end
adamc@85 244 | Eq e1 e2 =>
adamc@85 245 let e1' := cfold e1 in
adamc@85 246 let e2' := cfold e2 in
adamc@85 247 match e1', e2' with
adamc@85 248 | NConst n1, NConst n2 => BConst (if eq_nat_dec n1 n2 then true else false)
adamc@85 249 | _, _ => Eq e1' e2'
adamc@85 250 end
adamc@85 251
adamc@85 252 | BConst b => BConst b
adamc@85 253 | And e1 e2 =>
adamc@85 254 let e1' := cfold e1 in
adamc@85 255 let e2' := cfold e2 in
adamc@85 256 match e1', e2' with
adamc@85 257 | BConst b1, BConst b2 => BConst (b1 && b2)
adamc@85 258 | _, _ => And e1' e2'
adamc@85 259 end
adamc@85 260 | If _ e e1 e2 =>
adamc@85 261 let e' := cfold e in
adamc@85 262 match e' with
adamc@85 263 | BConst true => cfold e1
adamc@85 264 | BConst false => cfold e2
adamc@85 265 | _ => If e' (cfold e1) (cfold e2)
adamc@85 266 end
adamc@85 267
adamc@85 268 | Pair _ _ e1 e2 => Pair (cfold e1) (cfold e2)
adamc@85 269 | Fst _ _ e =>
adamc@85 270 let e' := cfold e in
adamc@85 271 match pairOut e' with
adamc@85 272 | Some p => fst p
adamc@85 273 | None => Fst e'
adamc@85 274 end
adamc@85 275 | Snd _ _ e =>
adamc@85 276 let e' := cfold e in
adamc@85 277 match pairOut e' with
adamc@85 278 | Some p => snd p
adamc@85 279 | None => Snd e'
adamc@85 280 end
adamc@85 281 end.
adamc@85 282
adamc@85 283 (** The correctness theorem for [cfold] turns out to be easy to prove, once we get over one serious hurdle. *)
adamc@85 284
adamc@85 285 Theorem cfold_correct : forall t (e : exp t), expDenote e = expDenote (cfold e).
adamc@85 286 induction e; crush.
adamc@85 287
adamc@85 288 (** The first remaining subgoal is:
adamc@85 289
adamc@85 290 [[
adamc@85 291
adamc@85 292 expDenote (cfold e1) + expDenote (cfold e2) =
adamc@85 293 expDenote
adamc@85 294 match cfold e1 with
adamc@85 295 | NConst n1 =>
adamc@85 296 match cfold e2 with
adamc@85 297 | NConst n2 => NConst (n1 + n2)
adamc@85 298 | Plus _ _ => Plus (cfold e1) (cfold e2)
adamc@85 299 | Eq _ _ => Plus (cfold e1) (cfold e2)
adamc@85 300 | BConst _ => Plus (cfold e1) (cfold e2)
adamc@85 301 | And _ _ => Plus (cfold e1) (cfold e2)
adamc@85 302 | If _ _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 303 | Pair _ _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 304 | Fst _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 305 | Snd _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 306 end
adamc@85 307 | Plus _ _ => Plus (cfold e1) (cfold e2)
adamc@85 308 | Eq _ _ => Plus (cfold e1) (cfold e2)
adamc@85 309 | BConst _ => Plus (cfold e1) (cfold e2)
adamc@85 310 | And _ _ => Plus (cfold e1) (cfold e2)
adamc@85 311 | If _ _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 312 | Pair _ _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 313 | Fst _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 314 | Snd _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 315 end
adamc@85 316 ]]
adamc@85 317
adamc@85 318 We would like to do a case analysis on [cfold e1], and we attempt that in the way that has worked so far.
adamc@85 319
adamc@85 320 [[
adamc@85 321 destruct (cfold e1).
adamc@85 322
adamc@85 323 [[
adamc@85 324 User error: e1 is used in hypothesis e
adamc@85 325 ]]
adamc@85 326
adamc@85 327 Coq gives us another cryptic error message. Like so many others, this one basically means that Coq is not able to build some proof about dependent types. It is hard to generate helpful and specific error messages for problems like this, since that would require some kind of understanding of the dependency structure of a piece of code. We will encounter many examples of case-specific tricks for recovering from errors like this one.
adamc@85 328
adamc@85 329 For our current proof, we can use a tactic [dep_destruct] defined in the book [Tactics] module. General elimination/inversion of dependently-typed hypotheses is undecidable, since it must be implemented with [match] expressions that have the restriction on [in] clauses that we have already discussed. [dep_destruct] makes a best effort to handle some common cases. In a future chapter, we will learn about the explicit manipulation of equality proofs that is behind [dep_destruct]'s implementation in Ltac, but for now, we treat it as a useful black box. *)
adamc@85 330
adamc@85 331 dep_destruct (cfold e1).
adamc@85 332
adamc@85 333 (** This successfully breaks the subgoal into 5 new subgoals, one for each constructor of [exp] that could produce an [exp Nat]. Note that [dep_destruct] is successful in ruling out the other cases automatically, in effect automating some of the work that we have done manually in implementing functions like [hd] and [pairOut].
adamc@85 334
adamc@85 335 This is the only new trick we need to learn to complete the proof. We can back up and give a short, automated proof. *)
adamc@85 336
adamc@85 337 Restart.
adamc@85 338
adamc@85 339 induction e; crush;
adamc@85 340 repeat (match goal with
adamc@85 341 | [ |- context[cfold ?E] ] => dep_destruct (cfold E)
adamc@85 342 | [ |- (if ?E then _ else _) = _ ] => destruct E
adamc@85 343 end; crush).
adamc@85 344 Qed.
adamc@86 345
adamc@86 346
adamc@94 347 (** Dependently-Typed Red-Black Trees *)
adamc@94 348
adamc@94 349 Inductive color : Set := Red | Black.
adamc@94 350
adamc@94 351 Inductive rbtree : color -> nat -> Set :=
adamc@94 352 | Leaf : rbtree Black 0
adamc@94 353 | RedNode : forall n, rbtree Black n -> nat-> rbtree Black n -> rbtree Red n
adamc@94 354 | BlackNode : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rbtree Black (S n).
adamc@94 355
adamc@94 356 Inductive rtree : nat -> Set :=
adamc@94 357 | RedNode' : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rtree n.
adamc@94 358
adamc@94 359 Notation "{< x >}" := (existT _ _ x).
adamc@94 360
adamc@94 361 Definition balance1 n (a : rtree n) (data : nat) c2 :=
adamc@94 362 match a in rtree n return rbtree c2 n -> { c : color & rbtree c (S n) } with
adamc@94 363 | RedNode' _ _ _ t1 y t2 =>
adamc@94 364 match t1 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with
adamc@94 365 | RedNode _ a x b => fun c d => {<RedNode (BlackNode a x b) y (BlackNode c data d)>}
adamc@94 366 | t1' => fun t2 =>
adamc@94 367 match t2 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with
adamc@94 368 | RedNode _ b x c => fun a d => {<RedNode (BlackNode a y b) x (BlackNode c data d)>}
adamc@94 369 | b => fun a t => {<BlackNode a data b>}
adamc@94 370 end t1'
adamc@94 371 end t2
adamc@94 372 end.
adamc@94 373
adamc@94 374 Definition balance2 n (a : rtree n) (data : nat) c2 :=
adamc@94 375 match a in rtree n return rbtree c2 n -> { c : color & rbtree c (S n) } with
adamc@94 376 | RedNode' _ _ _ t1 z t2 =>
adamc@94 377 match t1 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with
adamc@94 378 | RedNode _ b y c => fun d a => {<RedNode (BlackNode a data b) y (BlackNode c z d)>}
adamc@94 379 | t1' => fun t2 =>
adamc@94 380 match t2 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with
adamc@94 381 | RedNode _ c z' d => fun b a => {<RedNode (BlackNode a data b) z (BlackNode c z' d)>}
adamc@94 382 | b => fun t a => {<BlackNode a data b>}
adamc@94 383 end t1'
adamc@94 384 end t2
adamc@94 385 end.
adamc@94 386
adamc@94 387 Section insert.
adamc@94 388 Variable x : nat.
adamc@94 389
adamc@94 390 Definition insResult c n :=
adamc@94 391 match c with
adamc@94 392 | Red => rtree n
adamc@94 393 | Black => { c' : color & rbtree c' n }
adamc@94 394 end.
adamc@94 395
adamc@94 396 Fixpoint ins c n (t : rbtree c n) {struct t} : insResult c n :=
adamc@94 397 match t in (rbtree c n) return (insResult c n) with
adamc@94 398 | Leaf => {< RedNode Leaf x Leaf >}
adamc@94 399 | RedNode _ a y b =>
adamc@94 400 if le_lt_dec x y
adamc@94 401 then RedNode' (projT2 (ins a)) y b
adamc@94 402 else RedNode' a y (projT2 (ins b))
adamc@94 403 | BlackNode c1 c2 _ a y b =>
adamc@94 404 if le_lt_dec x y
adamc@94 405 then
adamc@94 406 match c1 return insResult c1 _ -> _ with
adamc@94 407 | Red => fun ins_a => balance1 ins_a y b
adamc@94 408 | _ => fun ins_a => {< BlackNode (projT2 ins_a) y b >}
adamc@94 409 end (ins a)
adamc@94 410 else
adamc@94 411 match c2 return insResult c2 _ -> _ with
adamc@94 412 | Red => fun ins_b => balance2 ins_b y a
adamc@94 413 | _ => fun ins_b => {< BlackNode a y (projT2 ins_b) >}
adamc@94 414 end (ins b)
adamc@94 415 end.
adamc@94 416
adamc@94 417 Definition insertResult c n :=
adamc@94 418 match c with
adamc@94 419 | Red => rbtree Black (S n)
adamc@94 420 | Black => { c' : color & rbtree c' n }
adamc@94 421 end.
adamc@94 422
adamc@94 423 Definition makeBlack c n : insResult c n -> insertResult c n :=
adamc@94 424 match c return insResult c n -> insertResult c n with
adamc@94 425 | Red => fun r =>
adamc@94 426 match r in rtree n return insertResult Red n with
adamc@94 427 | RedNode' _ _ _ a x b => BlackNode a x b
adamc@94 428 end
adamc@94 429 | Black => fun r => r
adamc@94 430 end.
adamc@94 431
adamc@94 432 Implicit Arguments makeBlack [c n].
adamc@94 433
adamc@94 434 Definition insert c n (t : rbtree c n) : insertResult c n :=
adamc@94 435 makeBlack (ins t).
adamc@94 436
adamc@94 437 Fixpoint present c n (t : rbtree c n) {struct t} : bool :=
adamc@94 438 match t with
adamc@94 439 | Leaf => false
adamc@94 440 | RedNode _ a y b =>
adamc@94 441 if eq_nat_dec x y
adamc@94 442 then true
adamc@94 443 else if le_lt_dec x y
adamc@94 444 then present a
adamc@94 445 else present b
adamc@94 446 | BlackNode _ _ _ a y b =>
adamc@94 447 if eq_nat_dec x y
adamc@94 448 then true
adamc@94 449 else if le_lt_dec x y
adamc@94 450 then present a
adamc@94 451 else present b
adamc@94 452 end.
adamc@94 453
adamc@94 454 Definition rpresent n (t : rtree n) : bool :=
adamc@94 455 match t with
adamc@94 456 | RedNode' _ _ _ a y b =>
adamc@94 457 if eq_nat_dec x y
adamc@94 458 then true
adamc@94 459 else if le_lt_dec x y
adamc@94 460 then present a
adamc@94 461 else present b
adamc@94 462 end.
adamc@94 463 End insert.
adamc@94 464
adamc@94 465
adamc@94 466 Require Import Max Min.
adamc@94 467
adamc@94 468 Section depth.
adamc@94 469 Variable f : nat -> nat -> nat.
adamc@94 470
adamc@94 471 Fixpoint depth c n (t : rbtree c n) {struct t} : nat :=
adamc@94 472 match t with
adamc@94 473 | Leaf => 0
adamc@94 474 | RedNode _ t1 _ t2 => S (f (depth t1) (depth t2))
adamc@94 475 | BlackNode _ _ _ t1 _ t2 => S (f (depth t1) (depth t2))
adamc@94 476 end.
adamc@94 477 End depth.
adamc@94 478
adamc@94 479 Theorem depth_min : forall c n (t : rbtree c n), depth min t >= n.
adamc@94 480 induction t; crush;
adamc@94 481 match goal with
adamc@94 482 | [ |- context[min ?X ?Y] ] => destruct (min_dec X Y)
adamc@94 483 end; crush.
adamc@94 484 Qed.
adamc@94 485
adamc@94 486 Lemma depth_max' : forall c n (t : rbtree c n), match c with
adamc@94 487 | Red => depth max t <= 2 * n + 1
adamc@94 488 | Black => depth max t <= 2 * n
adamc@94 489 end.
adamc@94 490 induction t; crush;
adamc@94 491 match goal with
adamc@94 492 | [ |- context[max ?X ?Y] ] => destruct (max_dec X Y)
adamc@94 493 end; crush.
adamc@94 494
adamc@94 495 destruct c1; crush.
adamc@94 496 destruct c2; crush.
adamc@94 497 Qed.
adamc@94 498
adamc@94 499 Theorem depth_max : forall c n (t : rbtree c n), depth max t <= 2 * n + 1.
adamc@94 500 intros; generalize (depth_max' t); destruct c; crush.
adamc@94 501 Qed.
adamc@94 502
adamc@94 503 Theorem balanced : forall c n (t : rbtree c n), 2 * depth min t + 1 >= depth max t.
adamc@94 504 intros; generalize (depth_min t); generalize (depth_max t); crush.
adamc@94 505 Qed.
adamc@94 506
adamc@94 507
adamc@86 508 (** * A Certified Regular Expression Matcher *)
adamc@86 509
adamc@93 510 (** Another interesting example is regular expressions with dependent types that express which predicates over strings particular regexps implement. We can then assign a dependent type to a regular expression matching function, guaranteeing that it always decides the string property that we expect it to decide.
adamc@93 511
adamc@93 512 Before defining the syntax of expressions, it is helpful to define an inductive type capturing the meaning of the Kleene star. We use Coq's string support, which comes through a combination of the [Strings] library and some parsing notations built into Coq. Operators like [++] and functions like [length] that we know from lists are defined again for strings. Notation scopes help us control which versions we want to use in particular contexts. *)
adamc@93 513
adamc@86 514 Require Import Ascii String.
adamc@86 515 Open Scope string_scope.
adamc@86 516
adamc@91 517 Section star.
adamc@91 518 Variable P : string -> Prop.
adamc@91 519
adamc@91 520 Inductive star : string -> Prop :=
adamc@91 521 | Empty : star ""
adamc@91 522 | Iter : forall s1 s2,
adamc@91 523 P s1
adamc@91 524 -> star s2
adamc@91 525 -> star (s1 ++ s2).
adamc@91 526 End star.
adamc@91 527
adamc@93 528 (** Now we can make our first attempt at defining a [regexp] type that is indexed by predicates on strings. Here is a reasonable-looking definition that is restricted to constant characters and concatenation.
adamc@93 529
adamc@93 530 [[
adamc@93 531 Inductive regexp : (string -> Prop) -> Set :=
adamc@93 532 | Char : forall ch : ascii,
adamc@93 533 regexp (fun s => s = String ch "")
adamc@93 534 | Concat : forall (P1 P2 : string -> Prop) (r1 : regexp P1) (r2 : regexp P2),
adamc@93 535 regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2).
adamc@93 536
adamc@93 537 [[
adamc@93 538 User error: Large non-propositional inductive types must be in Type
adamc@93 539 ]]
adamc@93 540
adamc@93 541 What is a large inductive type? In Coq, it is an inductive type that has a constructor which quantifies over some type of type [Type]. We have not worked with [Type] very much to this point. Every term of CIC has a type, including [Set] and [Prop], which are assigned type [Type]. The type [string -> Prop] from the failed definition also has type [Type].
adamc@93 542
adamc@93 543 It turns out that allowing large inductive types in [Set] leads to contradictions when combined with certain kinds of classical logic reasoning. Thus, by default, such types are ruled out. There is a simple fix for our [regexp] definition, which is to place our new type in [Type]. While fixing the problem, we also expand the list of constructors to cover the remaining regular expression operators. *)
adamc@93 544
adamc@89 545 Inductive regexp : (string -> Prop) -> Type :=
adamc@86 546 | Char : forall ch : ascii,
adamc@86 547 regexp (fun s => s = String ch "")
adamc@86 548 | Concat : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
adamc@87 549 regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2)
adamc@87 550 | Or : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
adamc@91 551 regexp (fun s => P1 s \/ P2 s)
adamc@91 552 | Star : forall P (r : regexp P),
adamc@91 553 regexp (star P).
adamc@86 554
adamc@93 555 (** Many theorems about strings are useful for implementing a certified regexp matcher, and few of them are in the [Strings] library. The book source includes statements, proofs, and hint commands for a handful of such omittted theorems. Since they are orthogonal to our use of dependent types, we hide them in the rendered versions of this book. *)
adamc@93 556
adamc@93 557 (* begin hide *)
adamc@86 558 Open Scope specif_scope.
adamc@86 559
adamc@86 560 Lemma length_emp : length "" <= 0.
adamc@86 561 crush.
adamc@86 562 Qed.
adamc@86 563
adamc@86 564 Lemma append_emp : forall s, s = "" ++ s.
adamc@86 565 crush.
adamc@86 566 Qed.
adamc@86 567
adamc@86 568 Ltac substring :=
adamc@86 569 crush;
adamc@86 570 repeat match goal with
adamc@86 571 | [ |- context[match ?N with O => _ | S _ => _ end] ] => destruct N; crush
adamc@86 572 end.
adamc@86 573
adamc@86 574 Lemma substring_le : forall s n m,
adamc@86 575 length (substring n m s) <= m.
adamc@86 576 induction s; substring.
adamc@86 577 Qed.
adamc@86 578
adamc@86 579 Lemma substring_all : forall s,
adamc@86 580 substring 0 (length s) s = s.
adamc@86 581 induction s; substring.
adamc@86 582 Qed.
adamc@86 583
adamc@86 584 Lemma substring_none : forall s n,
adamc@93 585 substring n 0 s = "".
adamc@86 586 induction s; substring.
adamc@86 587 Qed.
adamc@86 588
adamc@86 589 Hint Rewrite substring_all substring_none : cpdt.
adamc@86 590
adamc@86 591 Lemma substring_split : forall s m,
adamc@86 592 substring 0 m s ++ substring m (length s - m) s = s.
adamc@86 593 induction s; substring.
adamc@86 594 Qed.
adamc@86 595
adamc@86 596 Lemma length_app1 : forall s1 s2,
adamc@86 597 length s1 <= length (s1 ++ s2).
adamc@86 598 induction s1; crush.
adamc@86 599 Qed.
adamc@86 600
adamc@86 601 Hint Resolve length_emp append_emp substring_le substring_split length_app1.
adamc@86 602
adamc@86 603 Lemma substring_app_fst : forall s2 s1 n,
adamc@86 604 length s1 = n
adamc@86 605 -> substring 0 n (s1 ++ s2) = s1.
adamc@86 606 induction s1; crush.
adamc@86 607 Qed.
adamc@86 608
adamc@86 609 Lemma substring_app_snd : forall s2 s1 n,
adamc@86 610 length s1 = n
adamc@86 611 -> substring n (length (s1 ++ s2) - n) (s1 ++ s2) = s2.
adamc@86 612 Hint Rewrite <- minus_n_O : cpdt.
adamc@86 613
adamc@86 614 induction s1; crush.
adamc@86 615 Qed.
adamc@86 616
adamc@91 617 Hint Rewrite substring_app_fst substring_app_snd using (trivial; fail) : cpdt.
adamc@93 618 (* end hide *)
adamc@93 619
adamc@93 620 (** A few auxiliary functions help us in our final matcher definition. The function [split] will be used to implement the regexp concatenation case. *)
adamc@86 621
adamc@86 622 Section split.
adamc@86 623 Variables P1 P2 : string -> Prop.
adamc@91 624 Variable P1_dec : forall s, {P1 s} + { ~P1 s}.
adamc@91 625 Variable P2_dec : forall s, {P2 s} + { ~P2 s}.
adamc@93 626 (** We require a choice of two arbitrary string predicates and functions for deciding them. *)
adamc@86 627
adamc@86 628 Variable s : string.
adamc@93 629 (** Our computation will take place relative to a single fixed string, so it is easiest to make it a [Variable], rather than an explicit argument to our functions. *)
adamc@93 630
adamc@93 631 (** [split'] is the workhorse behind [split]. It searches through the possible ways of splitting [s] into two pieces, checking the two predicates against each such pair. [split'] progresses right-to-left, from splitting all of [s] into the first piece to splitting all of [s] into the second piece. It takes an extra argument, [n], which specifies how far along we are in this search process. *)
adamc@86 632
adamc@86 633 Definition split' (n : nat) : n <= length s
adamc@86 634 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
adamc@86 635 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~P1 s1 \/ ~P2 s2}.
adamc@86 636 refine (fix F (n : nat) : n <= length s
adamc@86 637 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
adamc@86 638 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~P1 s1 \/ ~P2 s2} :=
adamc@86 639 match n return n <= length s
adamc@86 640 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
adamc@86 641 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~P1 s1 \/ ~P2 s2} with
adamc@86 642 | O => fun _ => Reduce (P1_dec "" && P2_dec s)
adamc@93 643 | S n' => fun _ => (P1_dec (substring 0 (S n') s)
adamc@93 644 && P2_dec (substring (S n') (length s - S n') s))
adamc@86 645 || F n' _
adamc@86 646 end); clear F; crush; eauto 7;
adamc@86 647 match goal with
adamc@86 648 | [ _ : length ?S <= 0 |- _ ] => destruct S
adamc@86 649 | [ _ : length ?S' <= S ?N |- _ ] =>
adamc@86 650 generalize (eq_nat_dec (length S') (S N)); destruct 1
adamc@86 651 end; crush.
adamc@86 652 Defined.
adamc@86 653
adamc@93 654 (** There is one subtle point in the [split'] code that is worth mentioning. The main body of the function is a [match] on [n]. In the case where [n] is known to be [S n'], we write [S n'] in several places where we might be tempted to write [n]. However, without further work to craft proper [match] annotations, the type-checker does not use the equality between [n] and [S n']. Thus, it is common to see patterns repeated in [match] case bodies in dependently-typed Coq code. We can at least use a [let] expression to avoid copying the pattern more than once, replacing the first case body with:
adamc@93 655
adamc@93 656 [[
adamc@93 657
adamc@93 658 | S n' => fun _ => let n := S n' in
adamc@93 659 (P1_dec (substring 0 n s)
adamc@93 660 && P2_dec (substring n (length s - n) s))
adamc@93 661 || F n' _
adamc@93 662 ]]
adamc@93 663
adamc@93 664 [split] itself is trivial to implement in terms of [split']. We just ask [split'] to begin its search with [n = length s]. *)
adamc@93 665
adamc@86 666 Definition split : {exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2}
adamc@86 667 + {forall s1 s2, s = s1 ++ s2 -> ~P1 s1 \/ ~P2 s2}.
adamc@86 668 refine (Reduce (split' (n := length s) _)); crush; eauto.
adamc@86 669 Defined.
adamc@86 670 End split.
adamc@86 671
adamc@86 672 Implicit Arguments split [P1 P2].
adamc@86 673
adamc@93 674 (* begin hide *)
adamc@91 675 Lemma app_empty_end : forall s, s ++ "" = s.
adamc@91 676 induction s; crush.
adamc@91 677 Qed.
adamc@91 678
adamc@91 679 Hint Rewrite app_empty_end : cpdt.
adamc@91 680
adamc@91 681 Lemma substring_self : forall s n,
adamc@91 682 n <= 0
adamc@91 683 -> substring n (length s - n) s = s.
adamc@91 684 induction s; substring.
adamc@91 685 Qed.
adamc@91 686
adamc@91 687 Lemma substring_empty : forall s n m,
adamc@91 688 m <= 0
adamc@91 689 -> substring n m s = "".
adamc@91 690 induction s; substring.
adamc@91 691 Qed.
adamc@91 692
adamc@91 693 Hint Rewrite substring_self substring_empty using omega : cpdt.
adamc@91 694
adamc@91 695 Lemma substring_split' : forall s n m,
adamc@91 696 substring n m s ++ substring (n + m) (length s - (n + m)) s
adamc@91 697 = substring n (length s - n) s.
adamc@91 698 Hint Rewrite substring_split : cpdt.
adamc@91 699
adamc@91 700 induction s; substring.
adamc@91 701 Qed.
adamc@91 702
adamc@91 703 Lemma substring_stack : forall s n2 m1 m2,
adamc@91 704 m1 <= m2
adamc@91 705 -> substring 0 m1 (substring n2 m2 s)
adamc@91 706 = substring n2 m1 s.
adamc@91 707 induction s; substring.
adamc@91 708 Qed.
adamc@91 709
adamc@91 710 Ltac substring' :=
adamc@91 711 crush;
adamc@91 712 repeat match goal with
adamc@91 713 | [ |- context[match ?N with O => _ | S _ => _ end] ] => case_eq N; crush
adamc@91 714 end.
adamc@91 715
adamc@91 716 Lemma substring_stack' : forall s n1 n2 m1 m2,
adamc@91 717 n1 + m1 <= m2
adamc@91 718 -> substring n1 m1 (substring n2 m2 s)
adamc@91 719 = substring (n1 + n2) m1 s.
adamc@91 720 induction s; substring';
adamc@91 721 match goal with
adamc@91 722 | [ |- substring ?N1 _ _ = substring ?N2 _ _ ] =>
adamc@91 723 replace N1 with N2; crush
adamc@91 724 end.
adamc@91 725 Qed.
adamc@91 726
adamc@91 727 Lemma substring_suffix : forall s n,
adamc@91 728 n <= length s
adamc@91 729 -> length (substring n (length s - n) s) = length s - n.
adamc@91 730 induction s; substring.
adamc@91 731 Qed.
adamc@91 732
adamc@91 733 Lemma substring_suffix_emp' : forall s n m,
adamc@91 734 substring n (S m) s = ""
adamc@91 735 -> n >= length s.
adamc@91 736 induction s; crush;
adamc@91 737 match goal with
adamc@91 738 | [ |- ?N >= _ ] => destruct N; crush
adamc@91 739 end;
adamc@91 740 match goal with
adamc@91 741 [ |- S ?N >= S ?E ] => assert (N >= E); [ eauto | omega ]
adamc@91 742 end.
adamc@91 743 Qed.
adamc@91 744
adamc@91 745 Lemma substring_suffix_emp : forall s n m,
adamc@92 746 substring n m s = ""
adamc@92 747 -> m > 0
adamc@91 748 -> n >= length s.
adamc@91 749 destruct m as [| m]; [crush | intros; apply substring_suffix_emp' with m; assumption].
adamc@91 750 Qed.
adamc@91 751
adamc@91 752 Hint Rewrite substring_stack substring_stack' substring_suffix
adamc@91 753 using omega : cpdt.
adamc@91 754
adamc@91 755 Lemma minus_minus : forall n m1 m2,
adamc@91 756 m1 + m2 <= n
adamc@91 757 -> n - m1 - m2 = n - (m1 + m2).
adamc@91 758 intros; omega.
adamc@91 759 Qed.
adamc@91 760
adamc@91 761 Lemma plus_n_Sm' : forall n m : nat, S (n + m) = m + S n.
adamc@91 762 intros; omega.
adamc@91 763 Qed.
adamc@91 764
adamc@91 765 Hint Rewrite minus_minus using omega : cpdt.
adamc@93 766 (* end hide *)
adamc@93 767
adamc@93 768 (** One more helper function will come in handy: [dec_star], for implementing another linear search through ways of splitting a string, this time for implementing the Kleene star. *)
adamc@91 769
adamc@91 770 Section dec_star.
adamc@91 771 Variable P : string -> Prop.
adamc@91 772 Variable P_dec : forall s, {P s} + { ~P s}.
adamc@91 773
adamc@93 774 (** Some new lemmas and hints about the [star] type family are useful here. We omit them here; they are included in the book source at this point. *)
adamc@93 775
adamc@93 776 (* begin hide *)
adamc@91 777 Hint Constructors star.
adamc@91 778
adamc@91 779 Lemma star_empty : forall s,
adamc@91 780 length s = 0
adamc@91 781 -> star P s.
adamc@91 782 destruct s; crush.
adamc@91 783 Qed.
adamc@91 784
adamc@91 785 Lemma star_singleton : forall s, P s -> star P s.
adamc@91 786 intros; rewrite <- (app_empty_end s); auto.
adamc@91 787 Qed.
adamc@91 788
adamc@91 789 Lemma star_app : forall s n m,
adamc@91 790 P (substring n m s)
adamc@91 791 -> star P (substring (n + m) (length s - (n + m)) s)
adamc@91 792 -> star P (substring n (length s - n) s).
adamc@91 793 induction n; substring;
adamc@91 794 match goal with
adamc@91 795 | [ H : P (substring ?N ?M ?S) |- _ ] =>
adamc@91 796 solve [ rewrite <- (substring_split S M); auto
adamc@91 797 | rewrite <- (substring_split' S N M); auto ]
adamc@91 798 end.
adamc@91 799 Qed.
adamc@91 800
adamc@91 801 Hint Resolve star_empty star_singleton star_app.
adamc@91 802
adamc@91 803 Variable s : string.
adamc@91 804
adamc@91 805 Lemma star_inv : forall s,
adamc@91 806 star P s
adamc@91 807 -> s = ""
adamc@91 808 \/ exists i, i < length s
adamc@91 809 /\ P (substring 0 (S i) s)
adamc@91 810 /\ star P (substring (S i) (length s - S i) s).
adamc@91 811 Hint Extern 1 (exists i : nat, _) =>
adamc@91 812 match goal with
adamc@91 813 | [ H : P (String _ ?S) |- _ ] => exists (length S); crush
adamc@91 814 end.
adamc@91 815
adamc@91 816 induction 1; [
adamc@91 817 crush
adamc@91 818 | match goal with
adamc@91 819 | [ _ : P ?S |- _ ] => destruct S; crush
adamc@91 820 end
adamc@91 821 ].
adamc@91 822 Qed.
adamc@91 823
adamc@91 824 Lemma star_substring_inv : forall n,
adamc@91 825 n <= length s
adamc@91 826 -> star P (substring n (length s - n) s)
adamc@91 827 -> substring n (length s - n) s = ""
adamc@91 828 \/ exists l, l < length s - n
adamc@91 829 /\ P (substring n (S l) s)
adamc@91 830 /\ star P (substring (n + S l) (length s - (n + S l)) s).
adamc@91 831 Hint Rewrite plus_n_Sm' : cpdt.
adamc@91 832
adamc@91 833 intros;
adamc@91 834 match goal with
adamc@91 835 | [ H : star _ _ |- _ ] => generalize (star_inv H); do 3 crush; eauto
adamc@91 836 end.
adamc@91 837 Qed.
adamc@93 838 (* end hide *)
adamc@93 839
adamc@93 840 (** The function [dec_star''] implements a single iteration of the star. That is, it tries to find a string prefix matching [P], and it calls a parameter function on the remainder of the string. *)
adamc@91 841
adamc@91 842 Section dec_star''.
adamc@91 843 Variable n : nat.
adamc@93 844 (** [n] is the length of the prefix of [s] that we have already processed. *)
adamc@91 845
adamc@91 846 Variable P' : string -> Prop.
adamc@91 847 Variable P'_dec : forall n' : nat, n' > n
adamc@91 848 -> {P' (substring n' (length s - n') s)}
adamc@91 849 + { ~P' (substring n' (length s - n') s)}.
adamc@93 850 (** When we use [dec_star''], we will instantiate [P'_dec] with a function for continuing the search for more instances of [P] in [s]. *)
adamc@93 851
adamc@93 852 (** Now we come to [dec_star''] itself. It takes as an input a natural [l] that records how much of the string has been searched so far, as we did for [split']. The return type expresses that [dec_star''] is looking for an index into [s] that splits [s] into a nonempty prefix and a suffix, such that the prefix satisfies [P] and the suffix satisfies [P']. *)
adamc@91 853
adamc@91 854 Definition dec_star'' (l : nat)
adamc@91 855 : {exists l', S l' <= l
adamc@91 856 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
adamc@91 857 + {forall l', S l' <= l
adamc@93 858 -> ~P (substring n (S l') s)
adamc@93 859 \/ ~P' (substring (n + S l') (length s - (n + S l')) s)}.
adamc@91 860 refine (fix F (l : nat) : {exists l', S l' <= l
adamc@91 861 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
adamc@91 862 + {forall l', S l' <= l
adamc@93 863 -> ~P (substring n (S l') s)
adamc@93 864 \/ ~P' (substring (n + S l') (length s - (n + S l')) s)} :=
adamc@91 865 match l return {exists l', S l' <= l
adamc@91 866 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
adamc@91 867 + {forall l', S l' <= l ->
adamc@93 868 ~P (substring n (S l') s)
adamc@93 869 \/ ~P' (substring (n + S l') (length s - (n + S l')) s)} with
adamc@91 870 | O => _
adamc@91 871 | S l' =>
adamc@91 872 (P_dec (substring n (S l') s) && P'_dec (n' := n + S l') _)
adamc@91 873 || F l'
adamc@91 874 end); clear F; crush; eauto 7;
adamc@91 875 match goal with
adamc@91 876 | [ H : ?X <= S ?Y |- _ ] => destruct (eq_nat_dec X (S Y)); crush
adamc@91 877 end.
adamc@91 878 Defined.
adamc@91 879 End dec_star''.
adamc@91 880
adamc@93 881 (* begin hide *)
adamc@92 882 Lemma star_length_contra : forall n,
adamc@92 883 length s > n
adamc@92 884 -> n >= length s
adamc@92 885 -> False.
adamc@92 886 crush.
adamc@92 887 Qed.
adamc@92 888
adamc@92 889 Lemma star_length_flip : forall n n',
adamc@92 890 length s - n <= S n'
adamc@92 891 -> length s > n
adamc@92 892 -> length s - n > 0.
adamc@92 893 crush.
adamc@92 894 Qed.
adamc@92 895
adamc@92 896 Hint Resolve star_length_contra star_length_flip substring_suffix_emp.
adamc@93 897 (* end hide *)
adamc@92 898
adamc@93 899 (** The work of [dec_star''] is nested inside another linear search by [dec_star'], which provides the final functionality we need, but for arbitrary suffixes of [s], rather than just for [s] overall. *)
adamc@93 900
adamc@91 901 Definition dec_star' (n n' : nat) : length s - n' <= n
adamc@91 902 -> {star P (substring n' (length s - n') s)}
adamc@93 903 + { ~star P (substring n' (length s - n') s)}.
adamc@91 904 refine (fix F (n n' : nat) {struct n} : length s - n' <= n
adamc@91 905 -> {star P (substring n' (length s - n') s)}
adamc@93 906 + { ~star P (substring n' (length s - n') s)} :=
adamc@91 907 match n return length s - n' <= n
adamc@91 908 -> {star P (substring n' (length s - n') s)}
adamc@93 909 + { ~star P (substring n' (length s - n') s)} with
adamc@91 910 | O => fun _ => Yes
adamc@91 911 | S n'' => fun _ =>
adamc@91 912 le_gt_dec (length s) n'
adamc@91 913 || dec_star'' (n := n') (star P) (fun n0 _ => Reduce (F n'' n0 _)) (length s - n')
adamc@92 914 end); clear F; crush; eauto;
adamc@92 915 match goal with
adamc@92 916 | [ H : star _ _ |- _ ] => apply star_substring_inv in H; crush; eauto
adamc@92 917 end;
adamc@92 918 match goal with
adamc@92 919 | [ H1 : _ < _ - _, H2 : forall l' : nat, _ <= _ - _ -> _ |- _ ] =>
adamc@92 920 generalize (H2 _ (lt_le_S _ _ H1)); tauto
adamc@92 921 end.
adamc@91 922 Defined.
adamc@91 923
adamc@93 924 (** Finally, we have [dec_star]. It has a straightforward implementation. We introduce a spurious match on [s] so that [simpl] will know to reduce calls to [dec_star]. The heuristic that [simpl] uses is only to unfold identifier definitions when doing so would simplify some [match] expression. *)
adamc@93 925
adamc@91 926 Definition dec_star : {star P s} + { ~star P s}.
adamc@91 927 refine (match s with
adamc@91 928 | "" => Reduce (dec_star' (n := length s) 0 _)
adamc@91 929 | _ => Reduce (dec_star' (n := length s) 0 _)
adamc@91 930 end); crush.
adamc@91 931 Defined.
adamc@91 932 End dec_star.
adamc@91 933
adamc@93 934 (* begin hide *)
adamc@86 935 Lemma app_cong : forall x1 y1 x2 y2,
adamc@86 936 x1 = x2
adamc@86 937 -> y1 = y2
adamc@86 938 -> x1 ++ y1 = x2 ++ y2.
adamc@86 939 congruence.
adamc@86 940 Qed.
adamc@86 941
adamc@86 942 Hint Resolve app_cong.
adamc@93 943 (* end hide *)
adamc@93 944
adamc@93 945 (** With these helper functions completed, the implementation of our [matches] function is refreshingly straightforward. We only need one small piece of specific tactic work beyond what [crush] does for us. *)
adamc@86 946
adamc@86 947 Definition matches P (r : regexp P) s : {P s} + { ~P s}.
adamc@86 948 refine (fix F P (r : regexp P) s : {P s} + { ~P s} :=
adamc@86 949 match r with
adamc@86 950 | Char ch => string_dec s (String ch "")
adamc@86 951 | Concat _ _ r1 r2 => Reduce (split (F _ r1) (F _ r2) s)
adamc@87 952 | Or _ _ r1 r2 => F _ r1 s || F _ r2 s
adamc@91 953 | Star _ r => dec_star _ _ _
adamc@86 954 end); crush;
adamc@86 955 match goal with
adamc@86 956 | [ H : _ |- _ ] => generalize (H _ _ (refl_equal _))
adamc@93 957 end; tauto.
adamc@86 958 Defined.
adamc@86 959
adamc@93 960 (* begin hide *)
adamc@86 961 Example hi := Concat (Char "h"%char) (Char "i"%char).
adamc@86 962 Eval simpl in matches hi "hi".
adamc@86 963 Eval simpl in matches hi "bye".
adamc@87 964
adamc@87 965 Example a_b := Or (Char "a"%char) (Char "b"%char).
adamc@87 966 Eval simpl in matches a_b "".
adamc@87 967 Eval simpl in matches a_b "a".
adamc@87 968 Eval simpl in matches a_b "aa".
adamc@87 969 Eval simpl in matches a_b "b".
adamc@91 970
adamc@91 971 Example a_star := Star (Char "a"%char).
adamc@91 972 Eval simpl in matches a_star "".
adamc@91 973 Eval simpl in matches a_star "a".
adamc@91 974 Eval simpl in matches a_star "b".
adamc@91 975 Eval simpl in matches a_star "aa".
adamc@93 976 (* end hide *)