adamc@83
|
1 (* Copyright (c) 2008, Adam Chlipala
|
adamc@83
|
2 *
|
adamc@83
|
3 * This work is licensed under a
|
adamc@83
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@83
|
5 * Unported License.
|
adamc@83
|
6 * The license text is available at:
|
adamc@83
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@83
|
8 *)
|
adamc@83
|
9
|
adamc@83
|
10 (* begin hide *)
|
adamc@85
|
11 Require Import Arith Bool List.
|
adamc@83
|
12
|
adamc@86
|
13 Require Import Tactics MoreSpecif.
|
adamc@83
|
14
|
adamc@83
|
15 Set Implicit Arguments.
|
adamc@83
|
16 (* end hide *)
|
adamc@83
|
17
|
adamc@83
|
18
|
adamc@83
|
19 (** %\chapter{More Dependent Types}% *)
|
adamc@83
|
20
|
adamc@83
|
21 (** Subset types and their relatives help us integrate verification with programming. Though they reorganize the certified programmer's workflow, they tend not to have deep effects on proofs. We write largely the same proofs as we would for classical verification, with some of the structure moved into the programs themselves. It turns out that, when we use dependent types to their full potential, we warp the development and proving process even more than that, picking up "free theorems" to the extent that often a certified program is hardly more complex than its uncertified counterpart in Haskell or ML.
|
adamc@83
|
22
|
adamc@83
|
23 In particular, we have only scratched the tip of the iceberg that is Coq's inductive definition mechanism. The inductive types we have seen so far have their counterparts in the other proof assistants that we surveyed in Chapter 1. This chapter explores the strange new world of dependent inductive datatypes (that is, dependent inductive types outside [Prop]), a possibility which sets Coq apart from all of the competition not based on type theory. *)
|
adamc@83
|
24
|
adamc@84
|
25
|
adamc@84
|
26 (** * Length-Indexed Lists *)
|
adamc@84
|
27
|
adamc@84
|
28 (** Many introductions to dependent types start out by showing how to use them to eliminate array bounds checks. When the type of an array tells you how many elements it has, your compiler can detect out-of-bounds dereferences statically. Since we are working in a pure functional language, the next best thing is length-indexed lists, which the following code defines. *)
|
adamc@84
|
29
|
adamc@84
|
30 Section ilist.
|
adamc@84
|
31 Variable A : Set.
|
adamc@84
|
32
|
adamc@84
|
33 Inductive ilist : nat -> Set :=
|
adamc@84
|
34 | Nil : ilist O
|
adamc@84
|
35 | Cons : forall n, A -> ilist n -> ilist (S n).
|
adamc@84
|
36
|
adamc@84
|
37 (** We see that, within its section, [ilist] is given type [nat -> Set]. Previously, every inductive type we have seen has either had plain [Set] as its type or has been a predicate with some type ending in [Prop]. The full generality of inductive definitions lets us integrate the expressivity of predicates directly into our normal programming.
|
adamc@84
|
38
|
adamc@84
|
39 The [nat] argument to [ilist] tells us the length of the list. The types of [ilist]'s constructors tell us that a [Nil] list has length [O] and that a [Cons] list has length one greater than the length of its sublist. We may apply [ilist] to any natural number, even natural numbers that are only known at runtime. It is this breaking of the %\textit{%#<i>#phase distinction#</i>#%}% that characterizes [ilist] as %\textit{%#<i>#dependently typed#</i>#%}%.
|
adamc@84
|
40
|
adamc@84
|
41 In expositions of list types, we usually see the length function defined first, but here that would not be a very productive function to code. Instead, let us implement list concatenation.
|
adamc@84
|
42
|
adamc@84
|
43 [[
|
adamc@84
|
44 Fixpoint app n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) {struct ls1} : ilist (n1 + n2) :=
|
adamc@84
|
45 match ls1 with
|
adamc@84
|
46 | Nil => ls2
|
adamc@84
|
47 | Cons _ x ls1' => Cons x (app ls1' ls2)
|
adamc@84
|
48 end.
|
adamc@84
|
49
|
adamc@84
|
50 Coq is not happy with this definition:
|
adamc@84
|
51
|
adamc@84
|
52 [[
|
adamc@84
|
53 The term "ls2" has type "ilist n2" while it is expected to have type
|
adamc@84
|
54 "ilist (?14 + n2)"
|
adamc@84
|
55 ]]
|
adamc@84
|
56
|
adamc@84
|
57 We see the return of a problem we have considered before. Without explicit annotations, Coq does not enrich our typing assumptions in the branches of a [match] expression. It is clear that the unification variable [?14] should be resolved to 0 in this context, so that we have [0 + n2] reducing to [n2], but Coq does not realize that. We cannot fix the problem using just the simple [return] clauses we applied in the last chapter. We need to combine a [return] clause with a new kind of annotation, an [in] clause. *)
|
adamc@84
|
58
|
adamc@84
|
59 Fixpoint app n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) {struct ls1} : ilist (n1 + n2) :=
|
adamc@84
|
60 match ls1 in (ilist n1) return (ilist (n1 + n2)) with
|
adamc@84
|
61 | Nil => ls2
|
adamc@84
|
62 | Cons _ x ls1' => Cons x (app ls1' ls2)
|
adamc@84
|
63 end.
|
adamc@84
|
64
|
adamc@84
|
65 (** This version of [app] passes the type checker. Using [return] alone allowed us to express a dependency of the [match] result type on the %\textit{%#<i>#value#</i>#%}% of the discriminee. What [in] adds to our arsenal is a way of expressing a dependency on the %\textit{%#<i>#type#</i>#%}% of the discriminee. Specifically, the [n1] in the [in] clause above is a %\textit{%#<i>#binding occurrence#</i>#%}% whose scope is the [return] clause.
|
adamc@84
|
66
|
adamc@84
|
67 We may use [in] clauses only to bind names for the arguments of an inductive type family. That is, each [in] clause must be an inductive type family name applied to a sequence of underscores and variable names of the proper length. The positions for %\textit{%#<i>#parameters#</i>#%}% to the type family must all be underscores. Parameters are those arguments declared with section variables or with entries to the left of the first colon in an inductive definition. They cannot vary depending on which constructor was used to build the discriminee, so Coq prohibits pointless matches on them. It is those arguments defined in the type to the right of the colon that we may name with [in] clauses.
|
adamc@84
|
68
|
adamc@84
|
69 Our [app] function could be typed in so-called %\textit{%#<i>#stratified#</i>#%}% type systems, which avoid true dependency. We could consider the length indices to lists to live in a separate, compile-time-only universe from the lists themselves. Our next example would be harder to implement in a stratified system. We write an injection function from regular lists to length-indexed lists. A stratified implementation would need to duplicate the definition of lists across compile-time and run-time versions, and the run-time versions would need to be indexed by the compile-time versions. *)
|
adamc@84
|
70
|
adamc@84
|
71 Fixpoint inject (ls : list A) : ilist (length ls) :=
|
adamc@84
|
72 match ls return (ilist (length ls)) with
|
adamc@84
|
73 | nil => Nil
|
adamc@84
|
74 | h :: t => Cons h (inject t)
|
adamc@84
|
75 end.
|
adamc@84
|
76
|
adamc@84
|
77 (** We can define an inverse conversion and prove that it really is an inverse. *)
|
adamc@84
|
78
|
adamc@84
|
79 Fixpoint unject n (ls : ilist n) {struct ls} : list A :=
|
adamc@84
|
80 match ls with
|
adamc@84
|
81 | Nil => nil
|
adamc@84
|
82 | Cons _ h t => h :: unject t
|
adamc@84
|
83 end.
|
adamc@84
|
84
|
adamc@84
|
85 Theorem inject_inverse : forall ls, unject (inject ls) = ls.
|
adamc@84
|
86 induction ls; crush.
|
adamc@84
|
87 Qed.
|
adamc@84
|
88
|
adamc@84
|
89 (** Now let us attempt a function that is surprisingly tricky to write. In ML, the list head function raises an exception when passed an empty list. With length-indexed lists, we can rule out such invalid calls statically, and here is a first attempt at doing so.
|
adamc@84
|
90
|
adamc@84
|
91 [[
|
adamc@84
|
92 Definition hd n (ls : ilist (S n)) : A :=
|
adamc@84
|
93 match ls with
|
adamc@84
|
94 | Nil => ???
|
adamc@84
|
95 | Cons _ h _ => h
|
adamc@84
|
96 end.
|
adamc@84
|
97
|
adamc@84
|
98 It is not clear what to write for the [Nil] case, so we are stuck before we even turn our function over to the type checker. We could try omitting the [Nil] case:
|
adamc@84
|
99
|
adamc@84
|
100 [[
|
adamc@84
|
101 Definition hd n (ls : ilist (S n)) : A :=
|
adamc@84
|
102 match ls with
|
adamc@84
|
103 | Cons _ h _ => h
|
adamc@84
|
104 end.
|
adamc@84
|
105
|
adamc@84
|
106 [[
|
adamc@84
|
107 Error: Non exhaustive pattern-matching: no clause found for pattern Nil
|
adamc@84
|
108 ]]
|
adamc@84
|
109
|
adamc@84
|
110 Unlike in ML, we cannot use inexhaustive pattern matching, becuase there is no conception of a %\texttt{%#<tt>#Match#</tt>#%}% exception to be thrown. We might try using an [in] clause somehow.
|
adamc@84
|
111
|
adamc@84
|
112 [[
|
adamc@84
|
113 Definition hd n (ls : ilist (S n)) : A :=
|
adamc@84
|
114 match ls in (ilist (S n)) with
|
adamc@84
|
115 | Cons _ h _ => h
|
adamc@84
|
116 end.
|
adamc@84
|
117
|
adamc@84
|
118 [[
|
adamc@84
|
119 Error: The reference n was not found in the current environment
|
adamc@84
|
120 ]]
|
adamc@84
|
121
|
adamc@84
|
122 In this and other cases, we feel like we want [in] clauses with type family arguments that are not variables. Unfortunately, Coq only supports variables in those positions. A completely general mechanism could only be supported with a solution to the problem of higher-order unification, which is undecidable. There %\textit{%#<i>#are#</i>#%}% useful heuristics for handling non-variable indices which are gradually making their way into Coq, but we will spend some time in this and the next few chapters on effective pattern matching on dependent types using only the primitive [match] annotations.
|
adamc@84
|
123
|
adamc@84
|
124 Our final, working attempt at [hd] uses an auxiliary function and a surprising [return] annotation. *)
|
adamc@84
|
125
|
adamc@84
|
126 Definition hd' n (ls : ilist n) :=
|
adamc@84
|
127 match ls in (ilist n) return (match n with O => unit | S _ => A end) with
|
adamc@84
|
128 | Nil => tt
|
adamc@84
|
129 | Cons _ h _ => h
|
adamc@84
|
130 end.
|
adamc@84
|
131
|
adamc@84
|
132 Definition hd n (ls : ilist (S n)) : A := hd' ls.
|
adamc@84
|
133
|
adamc@84
|
134 (** We annotate our main [match] with a type that is itself a [match]. We write that the function [hd'] returns [unit] when the list is empty and returns the carried type [A] in all other cases. In the definition of [hd], we just call [hd']. Because the index of [ls] is known to be nonzero, the type checker reduces the [match] in the type of [hd'] to [A]. *)
|
adamc@84
|
135
|
adamc@84
|
136 End ilist.
|
adamc@85
|
137
|
adamc@85
|
138
|
adamc@85
|
139 (** * A Tagless Interpreter *)
|
adamc@85
|
140
|
adamc@85
|
141 (** A favorite example for motivating the power of functional programming is implementation of a simple expression language interpreter. In ML and Haskell, such interpreters are often implemented using an algebraic datatype of values, where at many points it is checked that a value was built with the right constructor of the value type. With dependent types, we can implement a %\textit{%#<i>#tagless#</i>#%}% interpreter that both removes this source of runtime ineffiency and gives us more confidence that our implementation is correct. *)
|
adamc@85
|
142
|
adamc@85
|
143 Inductive type : Set :=
|
adamc@85
|
144 | Nat : type
|
adamc@85
|
145 | Bool : type
|
adamc@85
|
146 | Prod : type -> type -> type.
|
adamc@85
|
147
|
adamc@85
|
148 Inductive exp : type -> Set :=
|
adamc@85
|
149 | NConst : nat -> exp Nat
|
adamc@85
|
150 | Plus : exp Nat -> exp Nat -> exp Nat
|
adamc@85
|
151 | Eq : exp Nat -> exp Nat -> exp Bool
|
adamc@85
|
152
|
adamc@85
|
153 | BConst : bool -> exp Bool
|
adamc@85
|
154 | And : exp Bool -> exp Bool -> exp Bool
|
adamc@85
|
155 | If : forall t, exp Bool -> exp t -> exp t -> exp t
|
adamc@85
|
156
|
adamc@85
|
157 | Pair : forall t1 t2, exp t1 -> exp t2 -> exp (Prod t1 t2)
|
adamc@85
|
158 | Fst : forall t1 t2, exp (Prod t1 t2) -> exp t1
|
adamc@85
|
159 | Snd : forall t1 t2, exp (Prod t1 t2) -> exp t2.
|
adamc@85
|
160
|
adamc@85
|
161 (** We have a standard algebraic datatype [type], defining a type language of naturals, booleans, and product (pair) types. Then we have the indexed inductive type [exp], where the argument to [exp] tells us the encoded type of an expression. In effect, we are defining the typing rules for expressions simultaneously with the syntax.
|
adamc@85
|
162
|
adamc@85
|
163 We can give types and expressions semantics in a new style, based critically on the chance for %\textit{%#<i>#type-level computation#</i>#%}%. *)
|
adamc@85
|
164
|
adamc@85
|
165 Fixpoint typeDenote (t : type) : Set :=
|
adamc@85
|
166 match t with
|
adamc@85
|
167 | Nat => nat
|
adamc@85
|
168 | Bool => bool
|
adamc@85
|
169 | Prod t1 t2 => typeDenote t1 * typeDenote t2
|
adamc@85
|
170 end%type.
|
adamc@85
|
171
|
adamc@85
|
172 (** [typeDenote] compiles types of our object language into "native" Coq types. It is deceptively easy to implement. The only new thing we see is the [%type] annotation, which tells Coq to parse the [match] expression using the notations associated with types. Without this annotation, the [*] would be interpreted as multiplication on naturals, rather than as the product type constructor. [type] is one example of an identifer bound to a %\textit{%#<i>#notation scope#</i>#%}%. We will deal more explicitly with notations and notation scopes in later chapters.
|
adamc@85
|
173
|
adamc@85
|
174 We can define a function [expDenote] that is typed in terms of [typeDenote]. *)
|
adamc@85
|
175
|
adamc@85
|
176 Fixpoint expDenote t (e : exp t) {struct e} : typeDenote t :=
|
adamc@85
|
177 match e in (exp t) return (typeDenote t) with
|
adamc@85
|
178 | NConst n => n
|
adamc@85
|
179 | Plus e1 e2 => expDenote e1 + expDenote e2
|
adamc@85
|
180 | Eq e1 e2 => if eq_nat_dec (expDenote e1) (expDenote e2) then true else false
|
adamc@85
|
181
|
adamc@85
|
182 | BConst b => b
|
adamc@85
|
183 | And e1 e2 => expDenote e1 && expDenote e2
|
adamc@85
|
184 | If _ e' e1 e2 => if expDenote e' then expDenote e1 else expDenote e2
|
adamc@85
|
185
|
adamc@85
|
186 | Pair _ _ e1 e2 => (expDenote e1, expDenote e2)
|
adamc@85
|
187 | Fst _ _ e' => fst (expDenote e')
|
adamc@85
|
188 | Snd _ _ e' => snd (expDenote e')
|
adamc@85
|
189 end.
|
adamc@85
|
190
|
adamc@85
|
191 (** Again we find that an [in] annotation is essential for type-checking a function. Besides that, the definition is routine. In fact, it is less complicated than what we would write in ML or Haskell 98, since we do not need to worry about pushing final values in and out of an algebraic datatype. The only unusual thing is the use of an expression of the form [if E then true else false] in the [Eq] case. Remember that [eq_nat_dec] has a rich dependent type, rather than a simple boolean type. Coq's native [if] is overloaded to work on a test of any two-constructor type, so we can use [if] to build a simple boolean from the [sumbool] that [eq_nat_dec] returns.
|
adamc@85
|
192
|
adamc@85
|
193 We can implement our old favorite, a constant folding function, and prove it correct. It will be useful to write a function [pairOut] that checks if an [exp] of [Prod] type is a pair, returning its two components if so. Unsurprisingly, a first attempt leads to a type error.
|
adamc@85
|
194
|
adamc@85
|
195 [[
|
adamc@85
|
196 Definition pairOut t1 t2 (e : exp (Prod t1 t2)) : option (exp t1 * exp t2) :=
|
adamc@85
|
197 match e in (exp (Prod t1 t2)) return option (exp t1 * exp t2) with
|
adamc@85
|
198 | Pair _ _ e1 e2 => Some (e1, e2)
|
adamc@85
|
199 | _ => None
|
adamc@85
|
200 end.
|
adamc@85
|
201
|
adamc@85
|
202 [[
|
adamc@85
|
203 Error: The reference t2 was not found in the current environment
|
adamc@85
|
204 ]]
|
adamc@85
|
205
|
adamc@85
|
206 We run again into the problem of not being able to specify non-variable arguments in [in] clauses. The problem would just be hopeless without a use of an [in] clause, though, since the result type of the [match] depends on an argument to [exp]. Our solution will be to use a more general type, as we did for [hd]. First, we define a type-valued function to use in assigning a type to [pairOut]. *)
|
adamc@85
|
207
|
adamc@85
|
208 Definition pairOutType (t : type) :=
|
adamc@85
|
209 match t with
|
adamc@85
|
210 | Prod t1 t2 => option (exp t1 * exp t2)
|
adamc@85
|
211 | _ => unit
|
adamc@85
|
212 end.
|
adamc@85
|
213
|
adamc@85
|
214 (** When passed a type that is a product, [pairOutType] returns our final desired type. On any other input type, [pairOutType] returns [unit], since we do not care about extracting components of non-pairs. Now we can write another helper function to provide the default behavior of [pairOut], which we will apply for inputs that are not literal pairs. *)
|
adamc@85
|
215
|
adamc@85
|
216 Definition pairOutDefault (t : type) :=
|
adamc@85
|
217 match t return (pairOutType t) with
|
adamc@85
|
218 | Prod _ _ => None
|
adamc@85
|
219 | _ => tt
|
adamc@85
|
220 end.
|
adamc@85
|
221
|
adamc@85
|
222 (** Now [pairOut] is deceptively easy to write. *)
|
adamc@85
|
223
|
adamc@85
|
224 Definition pairOut t (e : exp t) :=
|
adamc@85
|
225 match e in (exp t) return (pairOutType t) with
|
adamc@85
|
226 | Pair _ _ e1 e2 => Some (e1, e2)
|
adamc@85
|
227 | _ => pairOutDefault _
|
adamc@85
|
228 end.
|
adamc@85
|
229
|
adamc@85
|
230 (** There is one important subtlety in this definition. Coq allows us to use convenient ML-style pattern matching notation, but, internally and in proofs, we see that patterns are expanded out completely, matching one level of inductive structure at a time. Thus, the default case in the [match] above expands out to one case for each constructor of [exp] besides [Pair], and the underscore in [pairOutDefault _] is resolved differently in each case. From an ML or Haskell programmer's perspective, what we have here is type inference determining which code is run (returning either [None] or [tt]), which goes beyond what is possible with type inference guiding parametric polymorphism in Hindley-Milner languages, but is similar to what goes on with Haskell type classes.
|
adamc@85
|
231
|
adamc@85
|
232 With [pairOut] available, we can write [cfold] in a straightforward way. There are really no surprises beyond that Coq verifies that this code has such an expressive type, given the small annotation burden. *)
|
adamc@85
|
233
|
adamc@85
|
234 Fixpoint cfold t (e : exp t) {struct e} : exp t :=
|
adamc@85
|
235 match e in (exp t) return (exp t) with
|
adamc@85
|
236 | NConst n => NConst n
|
adamc@85
|
237 | Plus e1 e2 =>
|
adamc@85
|
238 let e1' := cfold e1 in
|
adamc@85
|
239 let e2' := cfold e2 in
|
adamc@85
|
240 match e1', e2' with
|
adamc@85
|
241 | NConst n1, NConst n2 => NConst (n1 + n2)
|
adamc@85
|
242 | _, _ => Plus e1' e2'
|
adamc@85
|
243 end
|
adamc@85
|
244 | Eq e1 e2 =>
|
adamc@85
|
245 let e1' := cfold e1 in
|
adamc@85
|
246 let e2' := cfold e2 in
|
adamc@85
|
247 match e1', e2' with
|
adamc@85
|
248 | NConst n1, NConst n2 => BConst (if eq_nat_dec n1 n2 then true else false)
|
adamc@85
|
249 | _, _ => Eq e1' e2'
|
adamc@85
|
250 end
|
adamc@85
|
251
|
adamc@85
|
252 | BConst b => BConst b
|
adamc@85
|
253 | And e1 e2 =>
|
adamc@85
|
254 let e1' := cfold e1 in
|
adamc@85
|
255 let e2' := cfold e2 in
|
adamc@85
|
256 match e1', e2' with
|
adamc@85
|
257 | BConst b1, BConst b2 => BConst (b1 && b2)
|
adamc@85
|
258 | _, _ => And e1' e2'
|
adamc@85
|
259 end
|
adamc@85
|
260 | If _ e e1 e2 =>
|
adamc@85
|
261 let e' := cfold e in
|
adamc@85
|
262 match e' with
|
adamc@85
|
263 | BConst true => cfold e1
|
adamc@85
|
264 | BConst false => cfold e2
|
adamc@85
|
265 | _ => If e' (cfold e1) (cfold e2)
|
adamc@85
|
266 end
|
adamc@85
|
267
|
adamc@85
|
268 | Pair _ _ e1 e2 => Pair (cfold e1) (cfold e2)
|
adamc@85
|
269 | Fst _ _ e =>
|
adamc@85
|
270 let e' := cfold e in
|
adamc@85
|
271 match pairOut e' with
|
adamc@85
|
272 | Some p => fst p
|
adamc@85
|
273 | None => Fst e'
|
adamc@85
|
274 end
|
adamc@85
|
275 | Snd _ _ e =>
|
adamc@85
|
276 let e' := cfold e in
|
adamc@85
|
277 match pairOut e' with
|
adamc@85
|
278 | Some p => snd p
|
adamc@85
|
279 | None => Snd e'
|
adamc@85
|
280 end
|
adamc@85
|
281 end.
|
adamc@85
|
282
|
adamc@85
|
283 (** The correctness theorem for [cfold] turns out to be easy to prove, once we get over one serious hurdle. *)
|
adamc@85
|
284
|
adamc@85
|
285 Theorem cfold_correct : forall t (e : exp t), expDenote e = expDenote (cfold e).
|
adamc@85
|
286 induction e; crush.
|
adamc@85
|
287
|
adamc@85
|
288 (** The first remaining subgoal is:
|
adamc@85
|
289
|
adamc@85
|
290 [[
|
adamc@85
|
291
|
adamc@85
|
292 expDenote (cfold e1) + expDenote (cfold e2) =
|
adamc@85
|
293 expDenote
|
adamc@85
|
294 match cfold e1 with
|
adamc@85
|
295 | NConst n1 =>
|
adamc@85
|
296 match cfold e2 with
|
adamc@85
|
297 | NConst n2 => NConst (n1 + n2)
|
adamc@85
|
298 | Plus _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
299 | Eq _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
300 | BConst _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
301 | And _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
302 | If _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
303 | Pair _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
304 | Fst _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
305 | Snd _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
306 end
|
adamc@85
|
307 | Plus _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
308 | Eq _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
309 | BConst _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
310 | And _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
311 | If _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
312 | Pair _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
313 | Fst _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
314 | Snd _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
315 end
|
adamc@85
|
316 ]]
|
adamc@85
|
317
|
adamc@85
|
318 We would like to do a case analysis on [cfold e1], and we attempt that in the way that has worked so far.
|
adamc@85
|
319
|
adamc@85
|
320 [[
|
adamc@85
|
321 destruct (cfold e1).
|
adamc@85
|
322
|
adamc@85
|
323 [[
|
adamc@85
|
324 User error: e1 is used in hypothesis e
|
adamc@85
|
325 ]]
|
adamc@85
|
326
|
adamc@85
|
327 Coq gives us another cryptic error message. Like so many others, this one basically means that Coq is not able to build some proof about dependent types. It is hard to generate helpful and specific error messages for problems like this, since that would require some kind of understanding of the dependency structure of a piece of code. We will encounter many examples of case-specific tricks for recovering from errors like this one.
|
adamc@85
|
328
|
adamc@85
|
329 For our current proof, we can use a tactic [dep_destruct] defined in the book [Tactics] module. General elimination/inversion of dependently-typed hypotheses is undecidable, since it must be implemented with [match] expressions that have the restriction on [in] clauses that we have already discussed. [dep_destruct] makes a best effort to handle some common cases. In a future chapter, we will learn about the explicit manipulation of equality proofs that is behind [dep_destruct]'s implementation in Ltac, but for now, we treat it as a useful black box. *)
|
adamc@85
|
330
|
adamc@85
|
331 dep_destruct (cfold e1).
|
adamc@85
|
332
|
adamc@85
|
333 (** This successfully breaks the subgoal into 5 new subgoals, one for each constructor of [exp] that could produce an [exp Nat]. Note that [dep_destruct] is successful in ruling out the other cases automatically, in effect automating some of the work that we have done manually in implementing functions like [hd] and [pairOut].
|
adamc@85
|
334
|
adamc@85
|
335 This is the only new trick we need to learn to complete the proof. We can back up and give a short, automated proof. *)
|
adamc@85
|
336
|
adamc@85
|
337 Restart.
|
adamc@85
|
338
|
adamc@85
|
339 induction e; crush;
|
adamc@85
|
340 repeat (match goal with
|
adamc@85
|
341 | [ |- context[cfold ?E] ] => dep_destruct (cfold E)
|
adamc@85
|
342 | [ |- (if ?E then _ else _) = _ ] => destruct E
|
adamc@85
|
343 end; crush).
|
adamc@85
|
344 Qed.
|
adamc@86
|
345
|
adamc@86
|
346
|
adamc@94
|
347 (** Dependently-Typed Red-Black Trees *)
|
adamc@94
|
348
|
adamc@94
|
349 Inductive color : Set := Red | Black.
|
adamc@94
|
350
|
adamc@94
|
351 Inductive rbtree : color -> nat -> Set :=
|
adamc@94
|
352 | Leaf : rbtree Black 0
|
adamc@94
|
353 | RedNode : forall n, rbtree Black n -> nat-> rbtree Black n -> rbtree Red n
|
adamc@94
|
354 | BlackNode : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rbtree Black (S n).
|
adamc@94
|
355
|
adamc@95
|
356 Require Import Max Min.
|
adamc@95
|
357
|
adamc@95
|
358 Section depth.
|
adamc@95
|
359 Variable f : nat -> nat -> nat.
|
adamc@95
|
360
|
adamc@95
|
361 Fixpoint depth c n (t : rbtree c n) {struct t} : nat :=
|
adamc@95
|
362 match t with
|
adamc@95
|
363 | Leaf => 0
|
adamc@95
|
364 | RedNode _ t1 _ t2 => S (f (depth t1) (depth t2))
|
adamc@95
|
365 | BlackNode _ _ _ t1 _ t2 => S (f (depth t1) (depth t2))
|
adamc@95
|
366 end.
|
adamc@95
|
367 End depth.
|
adamc@95
|
368
|
adamc@95
|
369 Theorem depth_min : forall c n (t : rbtree c n), depth min t >= n.
|
adamc@95
|
370 induction t; crush;
|
adamc@95
|
371 match goal with
|
adamc@95
|
372 | [ |- context[min ?X ?Y] ] => destruct (min_dec X Y)
|
adamc@95
|
373 end; crush.
|
adamc@95
|
374 Qed.
|
adamc@95
|
375
|
adamc@95
|
376 Lemma depth_max' : forall c n (t : rbtree c n), match c with
|
adamc@95
|
377 | Red => depth max t <= 2 * n + 1
|
adamc@95
|
378 | Black => depth max t <= 2 * n
|
adamc@95
|
379 end.
|
adamc@95
|
380 induction t; crush;
|
adamc@95
|
381 match goal with
|
adamc@95
|
382 | [ |- context[max ?X ?Y] ] => destruct (max_dec X Y)
|
adamc@95
|
383 end; crush.
|
adamc@95
|
384
|
adamc@95
|
385 destruct c1; crush.
|
adamc@95
|
386 destruct c2; crush.
|
adamc@95
|
387 Qed.
|
adamc@95
|
388
|
adamc@95
|
389 Theorem depth_max : forall c n (t : rbtree c n), depth max t <= 2 * n + 1.
|
adamc@95
|
390 intros; generalize (depth_max' t); destruct c; crush.
|
adamc@95
|
391 Qed.
|
adamc@95
|
392
|
adamc@95
|
393 Theorem balanced : forall c n (t : rbtree c n), 2 * depth min t + 1 >= depth max t.
|
adamc@95
|
394 intros; generalize (depth_min t); generalize (depth_max t); crush.
|
adamc@95
|
395 Qed.
|
adamc@95
|
396
|
adamc@95
|
397
|
adamc@94
|
398 Inductive rtree : nat -> Set :=
|
adamc@94
|
399 | RedNode' : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rtree n.
|
adamc@94
|
400
|
adamc@96
|
401 Section present.
|
adamc@96
|
402 Variable x : nat.
|
adamc@96
|
403
|
adamc@96
|
404 Fixpoint present c n (t : rbtree c n) {struct t} : Prop :=
|
adamc@96
|
405 match t with
|
adamc@96
|
406 | Leaf => False
|
adamc@96
|
407 | RedNode _ a y b => present a \/ x = y \/ present b
|
adamc@96
|
408 | BlackNode _ _ _ a y b => present a \/ x = y \/ present b
|
adamc@96
|
409 end.
|
adamc@96
|
410
|
adamc@96
|
411 Definition rpresent n (t : rtree n) : Prop :=
|
adamc@96
|
412 match t with
|
adamc@96
|
413 | RedNode' _ _ _ a y b => present a \/ x = y \/ present b
|
adamc@96
|
414 end.
|
adamc@96
|
415 End present.
|
adamc@96
|
416
|
adamc@94
|
417 Notation "{< x >}" := (existT _ _ x).
|
adamc@94
|
418
|
adamc@94
|
419 Definition balance1 n (a : rtree n) (data : nat) c2 :=
|
adamc@94
|
420 match a in rtree n return rbtree c2 n -> { c : color & rbtree c (S n) } with
|
adamc@94
|
421 | RedNode' _ _ _ t1 y t2 =>
|
adamc@94
|
422 match t1 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with
|
adamc@94
|
423 | RedNode _ a x b => fun c d => {<RedNode (BlackNode a x b) y (BlackNode c data d)>}
|
adamc@94
|
424 | t1' => fun t2 =>
|
adamc@94
|
425 match t2 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with
|
adamc@94
|
426 | RedNode _ b x c => fun a d => {<RedNode (BlackNode a y b) x (BlackNode c data d)>}
|
adamc@95
|
427 | b => fun a t => {<BlackNode (RedNode a y b) data t>}
|
adamc@94
|
428 end t1'
|
adamc@94
|
429 end t2
|
adamc@94
|
430 end.
|
adamc@94
|
431
|
adamc@94
|
432 Definition balance2 n (a : rtree n) (data : nat) c2 :=
|
adamc@94
|
433 match a in rtree n return rbtree c2 n -> { c : color & rbtree c (S n) } with
|
adamc@94
|
434 | RedNode' _ _ _ t1 z t2 =>
|
adamc@94
|
435 match t1 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with
|
adamc@94
|
436 | RedNode _ b y c => fun d a => {<RedNode (BlackNode a data b) y (BlackNode c z d)>}
|
adamc@94
|
437 | t1' => fun t2 =>
|
adamc@94
|
438 match t2 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with
|
adamc@94
|
439 | RedNode _ c z' d => fun b a => {<RedNode (BlackNode a data b) z (BlackNode c z' d)>}
|
adamc@95
|
440 | b => fun a t => {<BlackNode t data (RedNode a z b)>}
|
adamc@94
|
441 end t1'
|
adamc@94
|
442 end t2
|
adamc@94
|
443 end.
|
adamc@94
|
444
|
adamc@94
|
445 Section insert.
|
adamc@94
|
446 Variable x : nat.
|
adamc@94
|
447
|
adamc@94
|
448 Definition insResult c n :=
|
adamc@94
|
449 match c with
|
adamc@94
|
450 | Red => rtree n
|
adamc@94
|
451 | Black => { c' : color & rbtree c' n }
|
adamc@94
|
452 end.
|
adamc@94
|
453
|
adamc@94
|
454 Fixpoint ins c n (t : rbtree c n) {struct t} : insResult c n :=
|
adamc@94
|
455 match t in (rbtree c n) return (insResult c n) with
|
adamc@94
|
456 | Leaf => {< RedNode Leaf x Leaf >}
|
adamc@94
|
457 | RedNode _ a y b =>
|
adamc@94
|
458 if le_lt_dec x y
|
adamc@94
|
459 then RedNode' (projT2 (ins a)) y b
|
adamc@94
|
460 else RedNode' a y (projT2 (ins b))
|
adamc@94
|
461 | BlackNode c1 c2 _ a y b =>
|
adamc@94
|
462 if le_lt_dec x y
|
adamc@94
|
463 then
|
adamc@94
|
464 match c1 return insResult c1 _ -> _ with
|
adamc@94
|
465 | Red => fun ins_a => balance1 ins_a y b
|
adamc@94
|
466 | _ => fun ins_a => {< BlackNode (projT2 ins_a) y b >}
|
adamc@94
|
467 end (ins a)
|
adamc@94
|
468 else
|
adamc@94
|
469 match c2 return insResult c2 _ -> _ with
|
adamc@94
|
470 | Red => fun ins_b => balance2 ins_b y a
|
adamc@94
|
471 | _ => fun ins_b => {< BlackNode a y (projT2 ins_b) >}
|
adamc@94
|
472 end (ins b)
|
adamc@94
|
473 end.
|
adamc@94
|
474
|
adamc@94
|
475 Definition insertResult c n :=
|
adamc@94
|
476 match c with
|
adamc@94
|
477 | Red => rbtree Black (S n)
|
adamc@94
|
478 | Black => { c' : color & rbtree c' n }
|
adamc@94
|
479 end.
|
adamc@94
|
480
|
adamc@94
|
481 Definition makeBlack c n : insResult c n -> insertResult c n :=
|
adamc@94
|
482 match c return insResult c n -> insertResult c n with
|
adamc@94
|
483 | Red => fun r =>
|
adamc@94
|
484 match r in rtree n return insertResult Red n with
|
adamc@94
|
485 | RedNode' _ _ _ a x b => BlackNode a x b
|
adamc@94
|
486 end
|
adamc@94
|
487 | Black => fun r => r
|
adamc@94
|
488 end.
|
adamc@94
|
489
|
adamc@94
|
490 Implicit Arguments makeBlack [c n].
|
adamc@94
|
491
|
adamc@94
|
492 Definition insert c n (t : rbtree c n) : insertResult c n :=
|
adamc@94
|
493 makeBlack (ins t).
|
adamc@94
|
494
|
adamc@95
|
495 Record rbtree' : Set := Rbtree' {
|
adamc@95
|
496 rtC : color;
|
adamc@95
|
497 rtN : nat;
|
adamc@95
|
498 rtT : rbtree rtC rtN
|
adamc@95
|
499 }.
|
adamc@94
|
500
|
adamc@95
|
501 Section present.
|
adamc@95
|
502 Variable z : nat.
|
adamc@95
|
503
|
adamc@95
|
504 Lemma present_balance1 : forall n (a : rtree n) (y : nat) c2 (b : rbtree c2 n) ,
|
adamc@95
|
505 present z (projT2 (balance1 a y b))
|
adamc@95
|
506 <-> rpresent z a \/ z = y \/ present z b.
|
adamc@95
|
507 destruct a; crush;
|
adamc@95
|
508 repeat match goal with
|
adamc@95
|
509 | [ H : context[match ?T with
|
adamc@95
|
510 | Leaf => _
|
adamc@95
|
511 | RedNode _ _ _ _ => _
|
adamc@95
|
512 | BlackNode _ _ _ _ _ _ => _
|
adamc@95
|
513 end] |- _ ] => pose T; dep_destruct T; crush
|
adamc@95
|
514 | [ |- context[match ?T with
|
adamc@95
|
515 | Leaf => _
|
adamc@95
|
516 | RedNode _ _ _ _ => _
|
adamc@95
|
517 | BlackNode _ _ _ _ _ _ => _
|
adamc@95
|
518 end] ] => pose T; dep_destruct T; crush
|
adamc@95
|
519 end.
|
adamc@95
|
520 Qed.
|
adamc@95
|
521
|
adamc@95
|
522 Lemma present_balance2 : forall n (a : rtree n) (y : nat) c2 (b : rbtree c2 n) ,
|
adamc@95
|
523 present z (projT2 (balance2 a y b))
|
adamc@95
|
524 <-> rpresent z a \/ z = y \/ present z b.
|
adamc@95
|
525 destruct a; crush;
|
adamc@95
|
526 repeat match goal with
|
adamc@95
|
527 | [ H : context[match ?T with
|
adamc@95
|
528 | Leaf => _
|
adamc@95
|
529 | RedNode _ _ _ _ => _
|
adamc@95
|
530 | BlackNode _ _ _ _ _ _ => _
|
adamc@95
|
531 end] |- _ ] => pose T; dep_destruct T; crush
|
adamc@95
|
532 | [ |- context[match ?T with
|
adamc@95
|
533 | Leaf => _
|
adamc@95
|
534 | RedNode _ _ _ _ => _
|
adamc@95
|
535 | BlackNode _ _ _ _ _ _ => _
|
adamc@95
|
536 end] ] => pose T; dep_destruct T; crush
|
adamc@95
|
537 end.
|
adamc@95
|
538 Qed.
|
adamc@95
|
539
|
adamc@95
|
540 Definition present_insResult c n :=
|
adamc@95
|
541 match c return (rbtree c n -> insResult c n -> Prop) with
|
adamc@95
|
542 | Red => fun t r => rpresent z r <-> z = x \/ present z t
|
adamc@95
|
543 | Black => fun t r => present z (projT2 r) <-> z = x \/ present z t
|
adamc@95
|
544 end.
|
adamc@95
|
545
|
adamc@95
|
546 Theorem present_ins : forall c n (t : rbtree c n),
|
adamc@95
|
547 present_insResult t (ins t).
|
adamc@95
|
548 induction t; crush;
|
adamc@95
|
549 repeat (match goal with
|
adamc@95
|
550 | [ H : context[if ?E then _ else _] |- _ ] => destruct E
|
adamc@95
|
551 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@95
|
552 | [ H : context[match ?C with Red => _ | Black => _ end] |- _ ] => destruct C
|
adamc@95
|
553 end; crush);
|
adamc@95
|
554 try match goal with
|
adamc@95
|
555 | [ H : context[balance1 ?A ?B ?C] |- _ ] =>
|
adamc@95
|
556 generalize (present_balance1 A B C)
|
adamc@95
|
557 end;
|
adamc@95
|
558 try match goal with
|
adamc@95
|
559 | [ H : context[balance2 ?A ?B ?C] |- _ ] =>
|
adamc@95
|
560 generalize (present_balance2 A B C)
|
adamc@95
|
561 end;
|
adamc@95
|
562 try match goal with
|
adamc@95
|
563 | [ |- context[balance1 ?A ?B ?C] ] =>
|
adamc@95
|
564 generalize (present_balance1 A B C)
|
adamc@95
|
565 end;
|
adamc@95
|
566 try match goal with
|
adamc@95
|
567 | [ |- context[balance2 ?A ?B ?C] ] =>
|
adamc@95
|
568 generalize (present_balance2 A B C)
|
adamc@95
|
569 end;
|
adamc@95
|
570 intuition;
|
adamc@95
|
571 match goal with
|
adamc@95
|
572 | [ z : nat, x : nat |- _ ] =>
|
adamc@95
|
573 match goal with
|
adamc@95
|
574 | [ H : z = x |- _ ] => rewrite H in *; clear H
|
adamc@95
|
575 end
|
adamc@95
|
576 end;
|
adamc@95
|
577 tauto.
|
adamc@95
|
578 Qed.
|
adamc@95
|
579
|
adamc@95
|
580 Theorem present_insert_Red : forall n (t : rbtree Red n),
|
adamc@95
|
581 present z (insert t)
|
adamc@95
|
582 <-> (z = x \/ present z t).
|
adamc@95
|
583 unfold insert; inversion t;
|
adamc@95
|
584 generalize (present_ins t); simpl;
|
adamc@95
|
585 dep_destruct (ins t); tauto.
|
adamc@95
|
586 Qed.
|
adamc@95
|
587
|
adamc@95
|
588 Theorem present_insert_Black : forall n (t : rbtree Black n),
|
adamc@95
|
589 present z (projT2 (insert t))
|
adamc@95
|
590 <-> (z = x \/ present z t).
|
adamc@95
|
591 unfold insert; inversion t;
|
adamc@95
|
592 generalize (present_ins t); simpl;
|
adamc@95
|
593 dep_destruct (ins t); tauto.
|
adamc@95
|
594 Qed.
|
adamc@95
|
595 End present.
|
adamc@94
|
596 End insert.
|
adamc@94
|
597
|
adamc@94
|
598
|
adamc@86
|
599 (** * A Certified Regular Expression Matcher *)
|
adamc@86
|
600
|
adamc@93
|
601 (** Another interesting example is regular expressions with dependent types that express which predicates over strings particular regexps implement. We can then assign a dependent type to a regular expression matching function, guaranteeing that it always decides the string property that we expect it to decide.
|
adamc@93
|
602
|
adamc@93
|
603 Before defining the syntax of expressions, it is helpful to define an inductive type capturing the meaning of the Kleene star. We use Coq's string support, which comes through a combination of the [Strings] library and some parsing notations built into Coq. Operators like [++] and functions like [length] that we know from lists are defined again for strings. Notation scopes help us control which versions we want to use in particular contexts. *)
|
adamc@93
|
604
|
adamc@86
|
605 Require Import Ascii String.
|
adamc@86
|
606 Open Scope string_scope.
|
adamc@86
|
607
|
adamc@91
|
608 Section star.
|
adamc@91
|
609 Variable P : string -> Prop.
|
adamc@91
|
610
|
adamc@91
|
611 Inductive star : string -> Prop :=
|
adamc@91
|
612 | Empty : star ""
|
adamc@91
|
613 | Iter : forall s1 s2,
|
adamc@91
|
614 P s1
|
adamc@91
|
615 -> star s2
|
adamc@91
|
616 -> star (s1 ++ s2).
|
adamc@91
|
617 End star.
|
adamc@91
|
618
|
adamc@93
|
619 (** Now we can make our first attempt at defining a [regexp] type that is indexed by predicates on strings. Here is a reasonable-looking definition that is restricted to constant characters and concatenation.
|
adamc@93
|
620
|
adamc@93
|
621 [[
|
adamc@93
|
622 Inductive regexp : (string -> Prop) -> Set :=
|
adamc@93
|
623 | Char : forall ch : ascii,
|
adamc@93
|
624 regexp (fun s => s = String ch "")
|
adamc@93
|
625 | Concat : forall (P1 P2 : string -> Prop) (r1 : regexp P1) (r2 : regexp P2),
|
adamc@93
|
626 regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2).
|
adamc@93
|
627
|
adamc@93
|
628 [[
|
adamc@93
|
629 User error: Large non-propositional inductive types must be in Type
|
adamc@93
|
630 ]]
|
adamc@93
|
631
|
adamc@93
|
632 What is a large inductive type? In Coq, it is an inductive type that has a constructor which quantifies over some type of type [Type]. We have not worked with [Type] very much to this point. Every term of CIC has a type, including [Set] and [Prop], which are assigned type [Type]. The type [string -> Prop] from the failed definition also has type [Type].
|
adamc@93
|
633
|
adamc@93
|
634 It turns out that allowing large inductive types in [Set] leads to contradictions when combined with certain kinds of classical logic reasoning. Thus, by default, such types are ruled out. There is a simple fix for our [regexp] definition, which is to place our new type in [Type]. While fixing the problem, we also expand the list of constructors to cover the remaining regular expression operators. *)
|
adamc@93
|
635
|
adamc@89
|
636 Inductive regexp : (string -> Prop) -> Type :=
|
adamc@86
|
637 | Char : forall ch : ascii,
|
adamc@86
|
638 regexp (fun s => s = String ch "")
|
adamc@86
|
639 | Concat : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
|
adamc@87
|
640 regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2)
|
adamc@87
|
641 | Or : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
|
adamc@91
|
642 regexp (fun s => P1 s \/ P2 s)
|
adamc@91
|
643 | Star : forall P (r : regexp P),
|
adamc@91
|
644 regexp (star P).
|
adamc@86
|
645
|
adamc@93
|
646 (** Many theorems about strings are useful for implementing a certified regexp matcher, and few of them are in the [Strings] library. The book source includes statements, proofs, and hint commands for a handful of such omittted theorems. Since they are orthogonal to our use of dependent types, we hide them in the rendered versions of this book. *)
|
adamc@93
|
647
|
adamc@93
|
648 (* begin hide *)
|
adamc@86
|
649 Open Scope specif_scope.
|
adamc@86
|
650
|
adamc@86
|
651 Lemma length_emp : length "" <= 0.
|
adamc@86
|
652 crush.
|
adamc@86
|
653 Qed.
|
adamc@86
|
654
|
adamc@86
|
655 Lemma append_emp : forall s, s = "" ++ s.
|
adamc@86
|
656 crush.
|
adamc@86
|
657 Qed.
|
adamc@86
|
658
|
adamc@86
|
659 Ltac substring :=
|
adamc@86
|
660 crush;
|
adamc@86
|
661 repeat match goal with
|
adamc@86
|
662 | [ |- context[match ?N with O => _ | S _ => _ end] ] => destruct N; crush
|
adamc@86
|
663 end.
|
adamc@86
|
664
|
adamc@86
|
665 Lemma substring_le : forall s n m,
|
adamc@86
|
666 length (substring n m s) <= m.
|
adamc@86
|
667 induction s; substring.
|
adamc@86
|
668 Qed.
|
adamc@86
|
669
|
adamc@86
|
670 Lemma substring_all : forall s,
|
adamc@86
|
671 substring 0 (length s) s = s.
|
adamc@86
|
672 induction s; substring.
|
adamc@86
|
673 Qed.
|
adamc@86
|
674
|
adamc@86
|
675 Lemma substring_none : forall s n,
|
adamc@93
|
676 substring n 0 s = "".
|
adamc@86
|
677 induction s; substring.
|
adamc@86
|
678 Qed.
|
adamc@86
|
679
|
adamc@86
|
680 Hint Rewrite substring_all substring_none : cpdt.
|
adamc@86
|
681
|
adamc@86
|
682 Lemma substring_split : forall s m,
|
adamc@86
|
683 substring 0 m s ++ substring m (length s - m) s = s.
|
adamc@86
|
684 induction s; substring.
|
adamc@86
|
685 Qed.
|
adamc@86
|
686
|
adamc@86
|
687 Lemma length_app1 : forall s1 s2,
|
adamc@86
|
688 length s1 <= length (s1 ++ s2).
|
adamc@86
|
689 induction s1; crush.
|
adamc@86
|
690 Qed.
|
adamc@86
|
691
|
adamc@86
|
692 Hint Resolve length_emp append_emp substring_le substring_split length_app1.
|
adamc@86
|
693
|
adamc@86
|
694 Lemma substring_app_fst : forall s2 s1 n,
|
adamc@86
|
695 length s1 = n
|
adamc@86
|
696 -> substring 0 n (s1 ++ s2) = s1.
|
adamc@86
|
697 induction s1; crush.
|
adamc@86
|
698 Qed.
|
adamc@86
|
699
|
adamc@86
|
700 Lemma substring_app_snd : forall s2 s1 n,
|
adamc@86
|
701 length s1 = n
|
adamc@86
|
702 -> substring n (length (s1 ++ s2) - n) (s1 ++ s2) = s2.
|
adamc@86
|
703 Hint Rewrite <- minus_n_O : cpdt.
|
adamc@86
|
704
|
adamc@86
|
705 induction s1; crush.
|
adamc@86
|
706 Qed.
|
adamc@86
|
707
|
adamc@91
|
708 Hint Rewrite substring_app_fst substring_app_snd using (trivial; fail) : cpdt.
|
adamc@93
|
709 (* end hide *)
|
adamc@93
|
710
|
adamc@93
|
711 (** A few auxiliary functions help us in our final matcher definition. The function [split] will be used to implement the regexp concatenation case. *)
|
adamc@86
|
712
|
adamc@86
|
713 Section split.
|
adamc@86
|
714 Variables P1 P2 : string -> Prop.
|
adamc@91
|
715 Variable P1_dec : forall s, {P1 s} + { ~P1 s}.
|
adamc@91
|
716 Variable P2_dec : forall s, {P2 s} + { ~P2 s}.
|
adamc@93
|
717 (** We require a choice of two arbitrary string predicates and functions for deciding them. *)
|
adamc@86
|
718
|
adamc@86
|
719 Variable s : string.
|
adamc@93
|
720 (** Our computation will take place relative to a single fixed string, so it is easiest to make it a [Variable], rather than an explicit argument to our functions. *)
|
adamc@93
|
721
|
adamc@93
|
722 (** [split'] is the workhorse behind [split]. It searches through the possible ways of splitting [s] into two pieces, checking the two predicates against each such pair. [split'] progresses right-to-left, from splitting all of [s] into the first piece to splitting all of [s] into the second piece. It takes an extra argument, [n], which specifies how far along we are in this search process. *)
|
adamc@86
|
723
|
adamc@86
|
724 Definition split' (n : nat) : n <= length s
|
adamc@86
|
725 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
|
adamc@86
|
726 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~P1 s1 \/ ~P2 s2}.
|
adamc@86
|
727 refine (fix F (n : nat) : n <= length s
|
adamc@86
|
728 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
|
adamc@86
|
729 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~P1 s1 \/ ~P2 s2} :=
|
adamc@86
|
730 match n return n <= length s
|
adamc@86
|
731 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
|
adamc@86
|
732 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~P1 s1 \/ ~P2 s2} with
|
adamc@86
|
733 | O => fun _ => Reduce (P1_dec "" && P2_dec s)
|
adamc@93
|
734 | S n' => fun _ => (P1_dec (substring 0 (S n') s)
|
adamc@93
|
735 && P2_dec (substring (S n') (length s - S n') s))
|
adamc@86
|
736 || F n' _
|
adamc@86
|
737 end); clear F; crush; eauto 7;
|
adamc@86
|
738 match goal with
|
adamc@86
|
739 | [ _ : length ?S <= 0 |- _ ] => destruct S
|
adamc@86
|
740 | [ _ : length ?S' <= S ?N |- _ ] =>
|
adamc@86
|
741 generalize (eq_nat_dec (length S') (S N)); destruct 1
|
adamc@86
|
742 end; crush.
|
adamc@86
|
743 Defined.
|
adamc@86
|
744
|
adamc@93
|
745 (** There is one subtle point in the [split'] code that is worth mentioning. The main body of the function is a [match] on [n]. In the case where [n] is known to be [S n'], we write [S n'] in several places where we might be tempted to write [n]. However, without further work to craft proper [match] annotations, the type-checker does not use the equality between [n] and [S n']. Thus, it is common to see patterns repeated in [match] case bodies in dependently-typed Coq code. We can at least use a [let] expression to avoid copying the pattern more than once, replacing the first case body with:
|
adamc@93
|
746
|
adamc@93
|
747 [[
|
adamc@93
|
748
|
adamc@93
|
749 | S n' => fun _ => let n := S n' in
|
adamc@93
|
750 (P1_dec (substring 0 n s)
|
adamc@93
|
751 && P2_dec (substring n (length s - n) s))
|
adamc@93
|
752 || F n' _
|
adamc@93
|
753 ]]
|
adamc@93
|
754
|
adamc@93
|
755 [split] itself is trivial to implement in terms of [split']. We just ask [split'] to begin its search with [n = length s]. *)
|
adamc@93
|
756
|
adamc@86
|
757 Definition split : {exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2}
|
adamc@86
|
758 + {forall s1 s2, s = s1 ++ s2 -> ~P1 s1 \/ ~P2 s2}.
|
adamc@86
|
759 refine (Reduce (split' (n := length s) _)); crush; eauto.
|
adamc@86
|
760 Defined.
|
adamc@86
|
761 End split.
|
adamc@86
|
762
|
adamc@86
|
763 Implicit Arguments split [P1 P2].
|
adamc@86
|
764
|
adamc@93
|
765 (* begin hide *)
|
adamc@91
|
766 Lemma app_empty_end : forall s, s ++ "" = s.
|
adamc@91
|
767 induction s; crush.
|
adamc@91
|
768 Qed.
|
adamc@91
|
769
|
adamc@91
|
770 Hint Rewrite app_empty_end : cpdt.
|
adamc@91
|
771
|
adamc@91
|
772 Lemma substring_self : forall s n,
|
adamc@91
|
773 n <= 0
|
adamc@91
|
774 -> substring n (length s - n) s = s.
|
adamc@91
|
775 induction s; substring.
|
adamc@91
|
776 Qed.
|
adamc@91
|
777
|
adamc@91
|
778 Lemma substring_empty : forall s n m,
|
adamc@91
|
779 m <= 0
|
adamc@91
|
780 -> substring n m s = "".
|
adamc@91
|
781 induction s; substring.
|
adamc@91
|
782 Qed.
|
adamc@91
|
783
|
adamc@91
|
784 Hint Rewrite substring_self substring_empty using omega : cpdt.
|
adamc@91
|
785
|
adamc@91
|
786 Lemma substring_split' : forall s n m,
|
adamc@91
|
787 substring n m s ++ substring (n + m) (length s - (n + m)) s
|
adamc@91
|
788 = substring n (length s - n) s.
|
adamc@91
|
789 Hint Rewrite substring_split : cpdt.
|
adamc@91
|
790
|
adamc@91
|
791 induction s; substring.
|
adamc@91
|
792 Qed.
|
adamc@91
|
793
|
adamc@91
|
794 Lemma substring_stack : forall s n2 m1 m2,
|
adamc@91
|
795 m1 <= m2
|
adamc@91
|
796 -> substring 0 m1 (substring n2 m2 s)
|
adamc@91
|
797 = substring n2 m1 s.
|
adamc@91
|
798 induction s; substring.
|
adamc@91
|
799 Qed.
|
adamc@91
|
800
|
adamc@91
|
801 Ltac substring' :=
|
adamc@91
|
802 crush;
|
adamc@91
|
803 repeat match goal with
|
adamc@91
|
804 | [ |- context[match ?N with O => _ | S _ => _ end] ] => case_eq N; crush
|
adamc@91
|
805 end.
|
adamc@91
|
806
|
adamc@91
|
807 Lemma substring_stack' : forall s n1 n2 m1 m2,
|
adamc@91
|
808 n1 + m1 <= m2
|
adamc@91
|
809 -> substring n1 m1 (substring n2 m2 s)
|
adamc@91
|
810 = substring (n1 + n2) m1 s.
|
adamc@91
|
811 induction s; substring';
|
adamc@91
|
812 match goal with
|
adamc@91
|
813 | [ |- substring ?N1 _ _ = substring ?N2 _ _ ] =>
|
adamc@91
|
814 replace N1 with N2; crush
|
adamc@91
|
815 end.
|
adamc@91
|
816 Qed.
|
adamc@91
|
817
|
adamc@91
|
818 Lemma substring_suffix : forall s n,
|
adamc@91
|
819 n <= length s
|
adamc@91
|
820 -> length (substring n (length s - n) s) = length s - n.
|
adamc@91
|
821 induction s; substring.
|
adamc@91
|
822 Qed.
|
adamc@91
|
823
|
adamc@91
|
824 Lemma substring_suffix_emp' : forall s n m,
|
adamc@91
|
825 substring n (S m) s = ""
|
adamc@91
|
826 -> n >= length s.
|
adamc@91
|
827 induction s; crush;
|
adamc@91
|
828 match goal with
|
adamc@91
|
829 | [ |- ?N >= _ ] => destruct N; crush
|
adamc@91
|
830 end;
|
adamc@91
|
831 match goal with
|
adamc@91
|
832 [ |- S ?N >= S ?E ] => assert (N >= E); [ eauto | omega ]
|
adamc@91
|
833 end.
|
adamc@91
|
834 Qed.
|
adamc@91
|
835
|
adamc@91
|
836 Lemma substring_suffix_emp : forall s n m,
|
adamc@92
|
837 substring n m s = ""
|
adamc@92
|
838 -> m > 0
|
adamc@91
|
839 -> n >= length s.
|
adamc@91
|
840 destruct m as [| m]; [crush | intros; apply substring_suffix_emp' with m; assumption].
|
adamc@91
|
841 Qed.
|
adamc@91
|
842
|
adamc@91
|
843 Hint Rewrite substring_stack substring_stack' substring_suffix
|
adamc@91
|
844 using omega : cpdt.
|
adamc@91
|
845
|
adamc@91
|
846 Lemma minus_minus : forall n m1 m2,
|
adamc@91
|
847 m1 + m2 <= n
|
adamc@91
|
848 -> n - m1 - m2 = n - (m1 + m2).
|
adamc@91
|
849 intros; omega.
|
adamc@91
|
850 Qed.
|
adamc@91
|
851
|
adamc@91
|
852 Lemma plus_n_Sm' : forall n m : nat, S (n + m) = m + S n.
|
adamc@91
|
853 intros; omega.
|
adamc@91
|
854 Qed.
|
adamc@91
|
855
|
adamc@91
|
856 Hint Rewrite minus_minus using omega : cpdt.
|
adamc@93
|
857 (* end hide *)
|
adamc@93
|
858
|
adamc@93
|
859 (** One more helper function will come in handy: [dec_star], for implementing another linear search through ways of splitting a string, this time for implementing the Kleene star. *)
|
adamc@91
|
860
|
adamc@91
|
861 Section dec_star.
|
adamc@91
|
862 Variable P : string -> Prop.
|
adamc@91
|
863 Variable P_dec : forall s, {P s} + { ~P s}.
|
adamc@91
|
864
|
adamc@93
|
865 (** Some new lemmas and hints about the [star] type family are useful here. We omit them here; they are included in the book source at this point. *)
|
adamc@93
|
866
|
adamc@93
|
867 (* begin hide *)
|
adamc@91
|
868 Hint Constructors star.
|
adamc@91
|
869
|
adamc@91
|
870 Lemma star_empty : forall s,
|
adamc@91
|
871 length s = 0
|
adamc@91
|
872 -> star P s.
|
adamc@91
|
873 destruct s; crush.
|
adamc@91
|
874 Qed.
|
adamc@91
|
875
|
adamc@91
|
876 Lemma star_singleton : forall s, P s -> star P s.
|
adamc@91
|
877 intros; rewrite <- (app_empty_end s); auto.
|
adamc@91
|
878 Qed.
|
adamc@91
|
879
|
adamc@91
|
880 Lemma star_app : forall s n m,
|
adamc@91
|
881 P (substring n m s)
|
adamc@91
|
882 -> star P (substring (n + m) (length s - (n + m)) s)
|
adamc@91
|
883 -> star P (substring n (length s - n) s).
|
adamc@91
|
884 induction n; substring;
|
adamc@91
|
885 match goal with
|
adamc@91
|
886 | [ H : P (substring ?N ?M ?S) |- _ ] =>
|
adamc@91
|
887 solve [ rewrite <- (substring_split S M); auto
|
adamc@91
|
888 | rewrite <- (substring_split' S N M); auto ]
|
adamc@91
|
889 end.
|
adamc@91
|
890 Qed.
|
adamc@91
|
891
|
adamc@91
|
892 Hint Resolve star_empty star_singleton star_app.
|
adamc@91
|
893
|
adamc@91
|
894 Variable s : string.
|
adamc@91
|
895
|
adamc@91
|
896 Lemma star_inv : forall s,
|
adamc@91
|
897 star P s
|
adamc@91
|
898 -> s = ""
|
adamc@91
|
899 \/ exists i, i < length s
|
adamc@91
|
900 /\ P (substring 0 (S i) s)
|
adamc@91
|
901 /\ star P (substring (S i) (length s - S i) s).
|
adamc@91
|
902 Hint Extern 1 (exists i : nat, _) =>
|
adamc@91
|
903 match goal with
|
adamc@91
|
904 | [ H : P (String _ ?S) |- _ ] => exists (length S); crush
|
adamc@91
|
905 end.
|
adamc@91
|
906
|
adamc@91
|
907 induction 1; [
|
adamc@91
|
908 crush
|
adamc@91
|
909 | match goal with
|
adamc@91
|
910 | [ _ : P ?S |- _ ] => destruct S; crush
|
adamc@91
|
911 end
|
adamc@91
|
912 ].
|
adamc@91
|
913 Qed.
|
adamc@91
|
914
|
adamc@91
|
915 Lemma star_substring_inv : forall n,
|
adamc@91
|
916 n <= length s
|
adamc@91
|
917 -> star P (substring n (length s - n) s)
|
adamc@91
|
918 -> substring n (length s - n) s = ""
|
adamc@91
|
919 \/ exists l, l < length s - n
|
adamc@91
|
920 /\ P (substring n (S l) s)
|
adamc@91
|
921 /\ star P (substring (n + S l) (length s - (n + S l)) s).
|
adamc@91
|
922 Hint Rewrite plus_n_Sm' : cpdt.
|
adamc@91
|
923
|
adamc@91
|
924 intros;
|
adamc@91
|
925 match goal with
|
adamc@91
|
926 | [ H : star _ _ |- _ ] => generalize (star_inv H); do 3 crush; eauto
|
adamc@91
|
927 end.
|
adamc@91
|
928 Qed.
|
adamc@93
|
929 (* end hide *)
|
adamc@93
|
930
|
adamc@93
|
931 (** The function [dec_star''] implements a single iteration of the star. That is, it tries to find a string prefix matching [P], and it calls a parameter function on the remainder of the string. *)
|
adamc@91
|
932
|
adamc@91
|
933 Section dec_star''.
|
adamc@91
|
934 Variable n : nat.
|
adamc@93
|
935 (** [n] is the length of the prefix of [s] that we have already processed. *)
|
adamc@91
|
936
|
adamc@91
|
937 Variable P' : string -> Prop.
|
adamc@91
|
938 Variable P'_dec : forall n' : nat, n' > n
|
adamc@91
|
939 -> {P' (substring n' (length s - n') s)}
|
adamc@91
|
940 + { ~P' (substring n' (length s - n') s)}.
|
adamc@93
|
941 (** When we use [dec_star''], we will instantiate [P'_dec] with a function for continuing the search for more instances of [P] in [s]. *)
|
adamc@93
|
942
|
adamc@93
|
943 (** Now we come to [dec_star''] itself. It takes as an input a natural [l] that records how much of the string has been searched so far, as we did for [split']. The return type expresses that [dec_star''] is looking for an index into [s] that splits [s] into a nonempty prefix and a suffix, such that the prefix satisfies [P] and the suffix satisfies [P']. *)
|
adamc@91
|
944
|
adamc@91
|
945 Definition dec_star'' (l : nat)
|
adamc@91
|
946 : {exists l', S l' <= l
|
adamc@91
|
947 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
|
adamc@91
|
948 + {forall l', S l' <= l
|
adamc@93
|
949 -> ~P (substring n (S l') s)
|
adamc@93
|
950 \/ ~P' (substring (n + S l') (length s - (n + S l')) s)}.
|
adamc@91
|
951 refine (fix F (l : nat) : {exists l', S l' <= l
|
adamc@91
|
952 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
|
adamc@91
|
953 + {forall l', S l' <= l
|
adamc@93
|
954 -> ~P (substring n (S l') s)
|
adamc@93
|
955 \/ ~P' (substring (n + S l') (length s - (n + S l')) s)} :=
|
adamc@91
|
956 match l return {exists l', S l' <= l
|
adamc@91
|
957 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
|
adamc@91
|
958 + {forall l', S l' <= l ->
|
adamc@93
|
959 ~P (substring n (S l') s)
|
adamc@93
|
960 \/ ~P' (substring (n + S l') (length s - (n + S l')) s)} with
|
adamc@91
|
961 | O => _
|
adamc@91
|
962 | S l' =>
|
adamc@91
|
963 (P_dec (substring n (S l') s) && P'_dec (n' := n + S l') _)
|
adamc@91
|
964 || F l'
|
adamc@91
|
965 end); clear F; crush; eauto 7;
|
adamc@91
|
966 match goal with
|
adamc@91
|
967 | [ H : ?X <= S ?Y |- _ ] => destruct (eq_nat_dec X (S Y)); crush
|
adamc@91
|
968 end.
|
adamc@91
|
969 Defined.
|
adamc@91
|
970 End dec_star''.
|
adamc@91
|
971
|
adamc@93
|
972 (* begin hide *)
|
adamc@92
|
973 Lemma star_length_contra : forall n,
|
adamc@92
|
974 length s > n
|
adamc@92
|
975 -> n >= length s
|
adamc@92
|
976 -> False.
|
adamc@92
|
977 crush.
|
adamc@92
|
978 Qed.
|
adamc@92
|
979
|
adamc@92
|
980 Lemma star_length_flip : forall n n',
|
adamc@92
|
981 length s - n <= S n'
|
adamc@92
|
982 -> length s > n
|
adamc@92
|
983 -> length s - n > 0.
|
adamc@92
|
984 crush.
|
adamc@92
|
985 Qed.
|
adamc@92
|
986
|
adamc@92
|
987 Hint Resolve star_length_contra star_length_flip substring_suffix_emp.
|
adamc@93
|
988 (* end hide *)
|
adamc@92
|
989
|
adamc@93
|
990 (** The work of [dec_star''] is nested inside another linear search by [dec_star'], which provides the final functionality we need, but for arbitrary suffixes of [s], rather than just for [s] overall. *)
|
adamc@93
|
991
|
adamc@91
|
992 Definition dec_star' (n n' : nat) : length s - n' <= n
|
adamc@91
|
993 -> {star P (substring n' (length s - n') s)}
|
adamc@93
|
994 + { ~star P (substring n' (length s - n') s)}.
|
adamc@91
|
995 refine (fix F (n n' : nat) {struct n} : length s - n' <= n
|
adamc@91
|
996 -> {star P (substring n' (length s - n') s)}
|
adamc@93
|
997 + { ~star P (substring n' (length s - n') s)} :=
|
adamc@91
|
998 match n return length s - n' <= n
|
adamc@91
|
999 -> {star P (substring n' (length s - n') s)}
|
adamc@93
|
1000 + { ~star P (substring n' (length s - n') s)} with
|
adamc@91
|
1001 | O => fun _ => Yes
|
adamc@91
|
1002 | S n'' => fun _ =>
|
adamc@91
|
1003 le_gt_dec (length s) n'
|
adamc@91
|
1004 || dec_star'' (n := n') (star P) (fun n0 _ => Reduce (F n'' n0 _)) (length s - n')
|
adamc@92
|
1005 end); clear F; crush; eauto;
|
adamc@92
|
1006 match goal with
|
adamc@92
|
1007 | [ H : star _ _ |- _ ] => apply star_substring_inv in H; crush; eauto
|
adamc@92
|
1008 end;
|
adamc@92
|
1009 match goal with
|
adamc@92
|
1010 | [ H1 : _ < _ - _, H2 : forall l' : nat, _ <= _ - _ -> _ |- _ ] =>
|
adamc@92
|
1011 generalize (H2 _ (lt_le_S _ _ H1)); tauto
|
adamc@92
|
1012 end.
|
adamc@91
|
1013 Defined.
|
adamc@91
|
1014
|
adamc@93
|
1015 (** Finally, we have [dec_star]. It has a straightforward implementation. We introduce a spurious match on [s] so that [simpl] will know to reduce calls to [dec_star]. The heuristic that [simpl] uses is only to unfold identifier definitions when doing so would simplify some [match] expression. *)
|
adamc@93
|
1016
|
adamc@91
|
1017 Definition dec_star : {star P s} + { ~star P s}.
|
adamc@91
|
1018 refine (match s with
|
adamc@91
|
1019 | "" => Reduce (dec_star' (n := length s) 0 _)
|
adamc@91
|
1020 | _ => Reduce (dec_star' (n := length s) 0 _)
|
adamc@91
|
1021 end); crush.
|
adamc@91
|
1022 Defined.
|
adamc@91
|
1023 End dec_star.
|
adamc@91
|
1024
|
adamc@93
|
1025 (* begin hide *)
|
adamc@86
|
1026 Lemma app_cong : forall x1 y1 x2 y2,
|
adamc@86
|
1027 x1 = x2
|
adamc@86
|
1028 -> y1 = y2
|
adamc@86
|
1029 -> x1 ++ y1 = x2 ++ y2.
|
adamc@86
|
1030 congruence.
|
adamc@86
|
1031 Qed.
|
adamc@86
|
1032
|
adamc@86
|
1033 Hint Resolve app_cong.
|
adamc@93
|
1034 (* end hide *)
|
adamc@93
|
1035
|
adamc@93
|
1036 (** With these helper functions completed, the implementation of our [matches] function is refreshingly straightforward. We only need one small piece of specific tactic work beyond what [crush] does for us. *)
|
adamc@86
|
1037
|
adamc@86
|
1038 Definition matches P (r : regexp P) s : {P s} + { ~P s}.
|
adamc@86
|
1039 refine (fix F P (r : regexp P) s : {P s} + { ~P s} :=
|
adamc@86
|
1040 match r with
|
adamc@86
|
1041 | Char ch => string_dec s (String ch "")
|
adamc@86
|
1042 | Concat _ _ r1 r2 => Reduce (split (F _ r1) (F _ r2) s)
|
adamc@87
|
1043 | Or _ _ r1 r2 => F _ r1 s || F _ r2 s
|
adamc@91
|
1044 | Star _ r => dec_star _ _ _
|
adamc@86
|
1045 end); crush;
|
adamc@86
|
1046 match goal with
|
adamc@86
|
1047 | [ H : _ |- _ ] => generalize (H _ _ (refl_equal _))
|
adamc@93
|
1048 end; tauto.
|
adamc@86
|
1049 Defined.
|
adamc@86
|
1050
|
adamc@93
|
1051 (* begin hide *)
|
adamc@86
|
1052 Example hi := Concat (Char "h"%char) (Char "i"%char).
|
adamc@86
|
1053 Eval simpl in matches hi "hi".
|
adamc@86
|
1054 Eval simpl in matches hi "bye".
|
adamc@87
|
1055
|
adamc@87
|
1056 Example a_b := Or (Char "a"%char) (Char "b"%char).
|
adamc@87
|
1057 Eval simpl in matches a_b "".
|
adamc@87
|
1058 Eval simpl in matches a_b "a".
|
adamc@87
|
1059 Eval simpl in matches a_b "aa".
|
adamc@87
|
1060 Eval simpl in matches a_b "b".
|
adamc@91
|
1061
|
adamc@91
|
1062 Example a_star := Star (Char "a"%char).
|
adamc@91
|
1063 Eval simpl in matches a_star "".
|
adamc@91
|
1064 Eval simpl in matches a_star "a".
|
adamc@91
|
1065 Eval simpl in matches a_star "b".
|
adamc@91
|
1066 Eval simpl in matches a_star "aa".
|
adamc@93
|
1067 (* end hide *)
|