adamc@222
|
1 (* Copyright (c) 2008-2009, Adam Chlipala
|
adamc@152
|
2 *
|
adamc@152
|
3 * This work is licensed under a
|
adamc@152
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@152
|
5 * Unported License.
|
adamc@152
|
6 * The license text is available at:
|
adamc@152
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@152
|
8 *)
|
adamc@152
|
9
|
adamc@152
|
10 (* begin hide *)
|
adamc@156
|
11 Require Import Arith String List.
|
adamc@152
|
12
|
adamc@152
|
13 Require Import Tactics.
|
adamc@152
|
14
|
adamc@152
|
15 Set Implicit Arguments.
|
adamc@152
|
16 (* end hide *)
|
adamc@152
|
17
|
adamc@152
|
18
|
adamc@153
|
19 (** %\part{Formalizing Programming Languages and Compilers}
|
adamc@152
|
20
|
adamc@153
|
21 \chapter{First-Order Abstract Syntax}% *)
|
adamc@152
|
22
|
adamc@245
|
23 (** Many people interested in interactive theorem-proving want to prove theorems about programming languages. That domain also provides a good setting for demonstrating how to apply the ideas from the earlier parts of this book. This part introduces some techniques for encoding the syntax and semantics of programming languages, along with some example proofs designed to be as practical as possible, rather than to illustrate basic Coq technique.
|
adamc@245
|
24
|
adamc@245
|
25 To prove anything about a language, we must first formalize the language's syntax. We have a broad design space to choose from, and it makes sense to start with the simplest options, so-called %\textit{%#<i>#first-order#</i>#%}% syntax encodings that do not use dependent types. These encodings are first-order because they do not use Coq function types in a critical way. In this chapter, we consider the most popular first-order encodings, using each to prove a basic type soundness theorem. *)
|
adamc@152
|
26
|
adamc@152
|
27
|
adamc@152
|
28 (** * Concrete Binding *)
|
adamc@152
|
29
|
adamc@245
|
30 (** The most obvious encoding of the syntax of programming languages follows usual context-free grammars literally. We represent variables as strings and include a variable in our AST definition wherever a variable appears in the informal grammar. Concrete binding turns out to involve a surprisingly large amount of menial bookkeeping, especially when we encode higher-order languages with nested binder scopes. This section's example should give a flavor of what is required. *)
|
adamc@245
|
31
|
adamc@152
|
32 Module Concrete.
|
adamc@152
|
33
|
adamc@245
|
34 (** We need our variable type and its decidable equality operation. *)
|
adamc@245
|
35
|
adamc@152
|
36 Definition var := string.
|
adamc@152
|
37 Definition var_eq := string_dec.
|
adamc@152
|
38
|
adamc@245
|
39 (** We will formalize basic simply-typed lambda calculus. The syntax of expressions and types follows what we would write in a context-free grammar. *)
|
adamc@245
|
40
|
adamc@152
|
41 Inductive exp : Set :=
|
adamc@152
|
42 | Const : bool -> exp
|
adamc@152
|
43 | Var : var -> exp
|
adamc@152
|
44 | App : exp -> exp -> exp
|
adamc@152
|
45 | Abs : var -> exp -> exp.
|
adamc@152
|
46
|
adamc@152
|
47 Inductive type : Set :=
|
adamc@152
|
48 | Bool : type
|
adamc@152
|
49 | Arrow : type -> type -> type.
|
adamc@152
|
50
|
adamc@245
|
51 (** It is useful to define a syntax extension that lets us write function types in more standard notation. *)
|
adamc@245
|
52
|
adamc@152
|
53 Infix "-->" := Arrow (right associativity, at level 60).
|
adamc@152
|
54
|
adamc@245
|
55 (** Now we turn to a typing judgment. We will need to define it in terms of typing contexts, which we represent as lists of pairs of variables and types. *)
|
adamc@245
|
56
|
adamc@152
|
57 Definition ctx := list (var * type).
|
adamc@152
|
58
|
adamc@245
|
59 (** The definitions of our judgments will be prettier if we write them using mixfix syntax. To define a judgment for looking up the type of a variable in a context, we first %\textit{%#</i>#reserve#</i>#%}% a notation for the judgment. Reserved notations enable mutually-recursive definition of a judgment and its notation; in this sense, the reservation is like a forward declaration in C. *)
|
adamc@245
|
60
|
adamc@152
|
61 Reserved Notation "G |-v x : t" (no associativity, at level 90, x at next level).
|
adamc@152
|
62
|
adamc@245
|
63 (** Now we define the judgment itself, using a [where] clause to associate a notation definition. *)
|
adamc@245
|
64
|
adamc@152
|
65 Inductive lookup : ctx -> var -> type -> Prop :=
|
adamc@152
|
66 | First : forall x t G,
|
adamc@152
|
67 (x, t) :: G |-v x : t
|
adamc@152
|
68 | Next : forall x t x' t' G,
|
adamc@152
|
69 x <> x'
|
adamc@152
|
70 -> G |-v x : t
|
adamc@152
|
71 -> (x', t') :: G |-v x : t
|
adamc@152
|
72
|
adamc@152
|
73 where "G |-v x : t" := (lookup G x t).
|
adamc@152
|
74
|
adamc@152
|
75 Hint Constructors lookup.
|
adamc@152
|
76
|
adamc@245
|
77 (** The same technique applies to defining the main typing judgment. We use an [at next level] clause to cause the argument [e] of the notation to be parsed at a low enough precedence level. *)
|
adamc@245
|
78
|
adamc@152
|
79 Reserved Notation "G |-e e : t" (no associativity, at level 90, e at next level).
|
adamc@152
|
80
|
adamc@152
|
81 Inductive hasType : ctx -> exp -> type -> Prop :=
|
adamc@152
|
82 | TConst : forall G b,
|
adamc@152
|
83 G |-e Const b : Bool
|
adamc@152
|
84 | TVar : forall G v t,
|
adamc@152
|
85 G |-v v : t
|
adamc@152
|
86 -> G |-e Var v : t
|
adamc@152
|
87 | TApp : forall G e1 e2 dom ran,
|
adamc@152
|
88 G |-e e1 : dom --> ran
|
adamc@152
|
89 -> G |-e e2 : dom
|
adamc@152
|
90 -> G |-e App e1 e2 : ran
|
adamc@152
|
91 | TAbs : forall G x e' dom ran,
|
adamc@152
|
92 (x, dom) :: G |-e e' : ran
|
adamc@152
|
93 -> G |-e Abs x e' : dom --> ran
|
adamc@152
|
94
|
adamc@152
|
95 where "G |-e e : t" := (hasType G e t).
|
adamc@152
|
96
|
adamc@152
|
97 Hint Constructors hasType.
|
adamc@152
|
98
|
adamc@245
|
99 (** It is useful to know that variable lookup results are unchanged by adding extra bindings to the end of a context. *)
|
adamc@245
|
100
|
adamc@155
|
101 Lemma weaken_lookup : forall x t G' G1,
|
adamc@155
|
102 G1 |-v x : t
|
adamc@155
|
103 -> G1 ++ G' |-v x : t.
|
adamc@245
|
104 induction G1 as [ | [? ?] ? ]; crush;
|
adamc@152
|
105 match goal with
|
adamc@152
|
106 | [ H : _ |-v _ : _ |- _ ] => inversion H; crush
|
adamc@152
|
107 end.
|
adamc@152
|
108 Qed.
|
adamc@152
|
109
|
adamc@152
|
110 Hint Resolve weaken_lookup.
|
adamc@152
|
111
|
adamc@245
|
112 (** The same property extends to the full typing judgment. *)
|
adamc@245
|
113
|
adamc@152
|
114 Theorem weaken_hasType' : forall G' G e t,
|
adamc@152
|
115 G |-e e : t
|
adamc@155
|
116 -> G ++ G' |-e e : t.
|
adamc@152
|
117 induction 1; crush; eauto.
|
adamc@152
|
118 Qed.
|
adamc@152
|
119
|
adamc@155
|
120 Theorem weaken_hasType : forall e t,
|
adamc@155
|
121 nil |-e e : t
|
adamc@155
|
122 -> forall G', G' |-e e : t.
|
adamc@155
|
123 intros; change G' with (nil ++ G');
|
adamc@152
|
124 eapply weaken_hasType'; eauto.
|
adamc@152
|
125 Qed.
|
adamc@152
|
126
|
adamc@161
|
127 Hint Resolve weaken_hasType.
|
adamc@152
|
128
|
adamc@245
|
129 (** Much of the inconvenience of first-order encodings comes from the need to treat capture-avoiding substitution explicitly. We must start by defining a substitution function. *)
|
adamc@245
|
130
|
adamc@152
|
131 Section subst.
|
adamc@152
|
132 Variable x : var.
|
adamc@152
|
133 Variable e1 : exp.
|
adamc@152
|
134
|
adamc@245
|
135 (** We are substituting expression [e1] for every free occurrence of [x]. Note that this definition is specialized to the case where [e1] is closed; substitution is substantially more complicated otherwise, potentially involving explicit alpha-variation. Luckily, our example of type safety for a call-by-value semantics only requires this restricted variety of substitution. *)
|
adamc@245
|
136
|
adamc@152
|
137 Fixpoint subst (e2 : exp) : exp :=
|
adamc@152
|
138 match e2 with
|
adamc@246
|
139 | Const _ => e2
|
adamc@246
|
140 | Var x' => if var_eq x' x then e1 else e2
|
adamc@152
|
141 | App e1 e2 => App (subst e1) (subst e2)
|
adamc@246
|
142 | Abs x' e' => Abs x' (if var_eq x' x then e' else subst e')
|
adamc@152
|
143 end.
|
adamc@152
|
144
|
adamc@245
|
145 (** We can prove a few theorems about substitution in well-typed terms, where we assume that [e1] is closed and has type [xt]. *)
|
adamc@245
|
146
|
adamc@152
|
147 Variable xt : type.
|
adamc@152
|
148 Hypothesis Ht' : nil |-e e1 : xt.
|
adamc@152
|
149
|
adamc@245
|
150 (** It is helpful to establish a notation asserting the freshness of a particular variable in a context. *)
|
adamc@245
|
151
|
adamc@157
|
152 Notation "x # G" := (forall t' : type, In (x, t') G -> False) (no associativity, at level 90).
|
adamc@152
|
153
|
adamc@245
|
154 (** To prove type preservation, we will need lemmas proving consequences of variable lookup proofs. *)
|
adamc@245
|
155
|
adamc@157
|
156 Lemma subst_lookup' : forall x' t,
|
adamc@152
|
157 x <> x'
|
adamc@155
|
158 -> forall G1, G1 ++ (x, xt) :: nil |-v x' : t
|
adamc@155
|
159 -> G1 |-v x' : t.
|
adamc@245
|
160 induction G1 as [ | [? ?] ? ]; crush;
|
adamc@152
|
161 match goal with
|
adamc@152
|
162 | [ H : _ |-v _ : _ |- _ ] => inversion H
|
adamc@152
|
163 end; crush.
|
adamc@152
|
164 Qed.
|
adamc@152
|
165
|
adamc@157
|
166 Hint Resolve subst_lookup'.
|
adamc@152
|
167
|
adamc@157
|
168 Lemma subst_lookup : forall x' t G1,
|
adamc@157
|
169 x' # G1
|
adamc@155
|
170 -> G1 ++ (x, xt) :: nil |-v x' : t
|
adamc@155
|
171 -> t = xt.
|
adamc@245
|
172 induction G1 as [ | [? ?] ? ]; crush; eauto;
|
adamc@152
|
173 match goal with
|
adamc@152
|
174 | [ H : _ |-v _ : _ |- _ ] => inversion H
|
adamc@183
|
175 end; crush; (elimtype False; eauto;
|
adamc@183
|
176 match goal with
|
adamc@183
|
177 | [ H : nil |-v _ : _ |- _ ] => inversion H
|
adamc@183
|
178 end)
|
adamc@183
|
179 || match goal with
|
adamc@183
|
180 | [ H : _ |- _ ] => apply H; crush; eauto
|
adamc@183
|
181 end.
|
adamc@152
|
182 Qed.
|
adamc@152
|
183
|
adamc@157
|
184 Implicit Arguments subst_lookup [x' t G1].
|
adamc@152
|
185
|
adamc@245
|
186 (** Another set of lemmas allows us to remove provably unused variables from the ends of typing contexts. *)
|
adamc@245
|
187
|
adamc@155
|
188 Lemma shadow_lookup : forall v t t' G1,
|
adamc@152
|
189 G1 |-v x : t'
|
adamc@155
|
190 -> G1 ++ (x, xt) :: nil |-v v : t
|
adamc@155
|
191 -> G1 |-v v : t.
|
adamc@245
|
192 induction G1 as [ | [? ?] ? ]; crush;
|
adamc@152
|
193 match goal with
|
adamc@152
|
194 | [ H : nil |-v _ : _ |- _ ] => inversion H
|
adamc@152
|
195 | [ H1 : _ |-v _ : _, H2 : _ |-v _ : _ |- _ ] =>
|
adamc@152
|
196 inversion H1; crush; inversion H2; crush
|
adamc@152
|
197 end.
|
adamc@152
|
198 Qed.
|
adamc@152
|
199
|
adamc@155
|
200 Lemma shadow_hasType' : forall G e t,
|
adamc@152
|
201 G |-e e : t
|
adamc@155
|
202 -> forall G1, G = G1 ++ (x, xt) :: nil
|
adamc@152
|
203 -> forall t'', G1 |-v x : t''
|
adamc@155
|
204 -> G1 |-e e : t.
|
adamc@152
|
205 Hint Resolve shadow_lookup.
|
adamc@152
|
206
|
adamc@152
|
207 induction 1; crush; eauto;
|
adamc@152
|
208 match goal with
|
adamc@245
|
209 | [ H : (?x0, _) :: _ ++ (?x, _) :: _ |-e _ : _ |- _ ] =>
|
adamc@152
|
210 destruct (var_eq x0 x); subst; eauto
|
adamc@152
|
211 end.
|
adamc@155
|
212 Qed.
|
adamc@152
|
213
|
adamc@155
|
214 Lemma shadow_hasType : forall G1 e t t'',
|
adamc@155
|
215 G1 ++ (x, xt) :: nil |-e e : t
|
adamc@152
|
216 -> G1 |-v x : t''
|
adamc@155
|
217 -> G1 |-e e : t.
|
adamc@152
|
218 intros; eapply shadow_hasType'; eauto.
|
adamc@152
|
219 Qed.
|
adamc@152
|
220
|
adamc@152
|
221 Hint Resolve shadow_hasType.
|
adamc@152
|
222
|
adamc@245
|
223 (** Disjointness facts may be extended to larger contexts when the appropriate obligations are met. *)
|
adamc@245
|
224
|
adamc@157
|
225 Lemma disjoint_cons : forall x x' t (G : ctx),
|
adamc@157
|
226 x # G
|
adamc@157
|
227 -> x' <> x
|
adamc@157
|
228 -> x # (x', t) :: G.
|
adamc@157
|
229 firstorder;
|
adamc@157
|
230 match goal with
|
adamc@157
|
231 | [ H : (_, _) = (_, _) |- _ ] => injection H
|
adamc@157
|
232 end; crush.
|
adamc@157
|
233 Qed.
|
adamc@157
|
234
|
adamc@157
|
235 Hint Resolve disjoint_cons.
|
adamc@157
|
236
|
adamc@245
|
237 (** Finally, we arrive at the main theorem about substitution: it preserves typing. *)
|
adamc@245
|
238
|
adamc@152
|
239 Theorem subst_hasType : forall G e2 t,
|
adamc@152
|
240 G |-e e2 : t
|
adamc@155
|
241 -> forall G1, G = G1 ++ (x, xt) :: nil
|
adamc@157
|
242 -> x # G1
|
adamc@155
|
243 -> G1 |-e subst e2 : t.
|
adamc@152
|
244 induction 1; crush;
|
adamc@152
|
245 try match goal with
|
adamc@152
|
246 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@152
|
247 end; crush; eauto 6;
|
adamc@152
|
248 match goal with
|
adamc@157
|
249 | [ H1 : x # _, H2 : _ |-v x : _ |- _ ] =>
|
adamc@157
|
250 rewrite (subst_lookup H1 H2)
|
adamc@152
|
251 end; crush.
|
adamc@152
|
252 Qed.
|
adamc@152
|
253
|
adamc@245
|
254 (** We wrap the last theorem into an easier-to-apply form specialized to closed expressions. *)
|
adamc@245
|
255
|
adamc@152
|
256 Theorem subst_hasType_closed : forall e2 t,
|
adamc@152
|
257 (x, xt) :: nil |-e e2 : t
|
adamc@152
|
258 -> nil |-e subst e2 : t.
|
adamc@155
|
259 intros; eapply subst_hasType; eauto.
|
adamc@152
|
260 Qed.
|
adamc@152
|
261 End subst.
|
adamc@152
|
262
|
adamc@154
|
263 Hint Resolve subst_hasType_closed.
|
adamc@154
|
264
|
adamc@245
|
265 (** A notation for substitution will make the operational semantics easier to read. *)
|
adamc@245
|
266
|
adamc@154
|
267 Notation "[ x ~> e1 ] e2" := (subst x e1 e2) (no associativity, at level 80).
|
adamc@154
|
268
|
adamc@245
|
269 (** To define a call-by-value small-step semantics, we rely on a standard judgment characterizing which expressions are values. *)
|
adamc@245
|
270
|
adamc@154
|
271 Inductive val : exp -> Prop :=
|
adamc@154
|
272 | VConst : forall b, val (Const b)
|
adamc@154
|
273 | VAbs : forall x e, val (Abs x e).
|
adamc@154
|
274
|
adamc@154
|
275 Hint Constructors val.
|
adamc@154
|
276
|
adamc@245
|
277 (** Now the step relation is easy to define. *)
|
adamc@245
|
278
|
adamc@154
|
279 Reserved Notation "e1 ==> e2" (no associativity, at level 90).
|
adamc@154
|
280
|
adamc@154
|
281 Inductive step : exp -> exp -> Prop :=
|
adamc@154
|
282 | Beta : forall x e1 e2,
|
adamc@161
|
283 val e2
|
adamc@161
|
284 -> App (Abs x e1) e2 ==> [x ~> e2] e1
|
adamc@154
|
285 | Cong1 : forall e1 e2 e1',
|
adamc@154
|
286 e1 ==> e1'
|
adamc@154
|
287 -> App e1 e2 ==> App e1' e2
|
adamc@154
|
288 | Cong2 : forall e1 e2 e2',
|
adamc@154
|
289 val e1
|
adamc@154
|
290 -> e2 ==> e2'
|
adamc@154
|
291 -> App e1 e2 ==> App e1 e2'
|
adamc@154
|
292
|
adamc@154
|
293 where "e1 ==> e2" := (step e1 e2).
|
adamc@154
|
294
|
adamc@154
|
295 Hint Constructors step.
|
adamc@154
|
296
|
adamc@245
|
297 (** The progress theorem says that any well-typed expression can take a step. To deal with limitations of the [induction] tactic, we put most of the proof in a lemma whose statement uses the usual trick of introducing extra equality hypotheses. *)
|
adamc@245
|
298
|
adamc@155
|
299 Lemma progress' : forall G e t, G |-e e : t
|
adamc@154
|
300 -> G = nil
|
adamc@154
|
301 -> val e \/ exists e', e ==> e'.
|
adamc@154
|
302 induction 1; crush; eauto;
|
adamc@154
|
303 try match goal with
|
adamc@154
|
304 | [ H : _ |-e _ : _ --> _ |- _ ] => inversion H
|
adamc@154
|
305 end;
|
adamc@245
|
306 match goal with
|
adamc@245
|
307 | [ H : _ |- _ ] => solve [ inversion H; crush; eauto ]
|
adamc@245
|
308 end.
|
adamc@154
|
309 Qed.
|
adamc@154
|
310
|
adamc@155
|
311 Theorem progress : forall e t, nil |-e e : t
|
adamc@155
|
312 -> val e \/ exists e', e ==> e'.
|
adamc@155
|
313 intros; eapply progress'; eauto.
|
adamc@155
|
314 Qed.
|
adamc@155
|
315
|
adamc@245
|
316 (** A similar pattern works for the preservation theorem, which says that any step of execution preserves an expression's type. *)
|
adamc@245
|
317
|
adamc@155
|
318 Lemma preservation' : forall G e t, G |-e e : t
|
adamc@154
|
319 -> G = nil
|
adamc@154
|
320 -> forall e', e ==> e'
|
adamc@155
|
321 -> nil |-e e' : t.
|
adamc@154
|
322 induction 1; inversion 2; crush; eauto;
|
adamc@154
|
323 match goal with
|
adamc@154
|
324 | [ H : _ |-e Abs _ _ : _ |- _ ] => inversion H
|
adamc@154
|
325 end; eauto.
|
adamc@154
|
326 Qed.
|
adamc@154
|
327
|
adamc@155
|
328 Theorem preservation : forall e t, nil |-e e : t
|
adamc@155
|
329 -> forall e', e ==> e'
|
adamc@155
|
330 -> nil |-e e' : t.
|
adamc@155
|
331 intros; eapply preservation'; eauto.
|
adamc@155
|
332 Qed.
|
adamc@155
|
333
|
adamc@152
|
334 End Concrete.
|
adamc@156
|
335
|
adamc@245
|
336 (** This was a relatively simple example, giving only a taste of the proof burden associated with concrete syntax. We were helped by the fact that, with call-by-value semantics, we only need to reason about substitution in closed expressions. There was also no need to alpha-vary an expression. *)
|
adamc@245
|
337
|
adamc@156
|
338
|
adamc@156
|
339 (** * De Bruijn Indices *)
|
adamc@156
|
340
|
adamc@245
|
341 (** De Bruijn indices are much more popular than concrete syntax. This technique provides a %\textit{%#<i>#canonical#</i>#%}% representation of syntax, where any two alpha-equivalent expressions have syntactically equal encodings, removing the need for explicit reasoning about alpha conversion. Variables are represented as natural numbers, where variable [n] denotes a reference to the [n]th closest enclosing binder. Because variable references in effect point to binders, there is no need to label binders, such as function abstraction, with variables. *)
|
adamc@245
|
342
|
adamc@156
|
343 Module DeBruijn.
|
adamc@156
|
344
|
adamc@156
|
345 Definition var := nat.
|
adamc@156
|
346 Definition var_eq := eq_nat_dec.
|
adamc@156
|
347
|
adamc@156
|
348 Inductive exp : Set :=
|
adamc@156
|
349 | Const : bool -> exp
|
adamc@156
|
350 | Var : var -> exp
|
adamc@156
|
351 | App : exp -> exp -> exp
|
adamc@156
|
352 | Abs : exp -> exp.
|
adamc@156
|
353
|
adamc@156
|
354 Inductive type : Set :=
|
adamc@156
|
355 | Bool : type
|
adamc@156
|
356 | Arrow : type -> type -> type.
|
adamc@156
|
357
|
adamc@156
|
358 Infix "-->" := Arrow (right associativity, at level 60).
|
adamc@156
|
359
|
adamc@245
|
360 (** The definition of typing proceeds much the same as in the last section. Since variables are numbers, contexts can be simple lists of types. This makes it possible to write the lookup judgment without mentioning inequality of variables. *)
|
adamc@245
|
361
|
adamc@156
|
362 Definition ctx := list type.
|
adamc@156
|
363
|
adamc@156
|
364 Reserved Notation "G |-v x : t" (no associativity, at level 90, x at next level).
|
adamc@156
|
365
|
adamc@156
|
366 Inductive lookup : ctx -> var -> type -> Prop :=
|
adamc@156
|
367 | First : forall t G,
|
adamc@156
|
368 t :: G |-v O : t
|
adamc@156
|
369 | Next : forall x t t' G,
|
adamc@156
|
370 G |-v x : t
|
adamc@156
|
371 -> t' :: G |-v S x : t
|
adamc@156
|
372
|
adamc@156
|
373 where "G |-v x : t" := (lookup G x t).
|
adamc@156
|
374
|
adamc@156
|
375 Hint Constructors lookup.
|
adamc@156
|
376
|
adamc@156
|
377 Reserved Notation "G |-e e : t" (no associativity, at level 90, e at next level).
|
adamc@156
|
378
|
adamc@156
|
379 Inductive hasType : ctx -> exp -> type -> Prop :=
|
adamc@156
|
380 | TConst : forall G b,
|
adamc@156
|
381 G |-e Const b : Bool
|
adamc@156
|
382 | TVar : forall G v t,
|
adamc@156
|
383 G |-v v : t
|
adamc@156
|
384 -> G |-e Var v : t
|
adamc@156
|
385 | TApp : forall G e1 e2 dom ran,
|
adamc@156
|
386 G |-e e1 : dom --> ran
|
adamc@156
|
387 -> G |-e e2 : dom
|
adamc@156
|
388 -> G |-e App e1 e2 : ran
|
adamc@156
|
389 | TAbs : forall G e' dom ran,
|
adamc@156
|
390 dom :: G |-e e' : ran
|
adamc@156
|
391 -> G |-e Abs e' : dom --> ran
|
adamc@156
|
392
|
adamc@156
|
393 where "G |-e e : t" := (hasType G e t).
|
adamc@156
|
394
|
adamc@245
|
395 (** In the [hasType] case for function abstraction, there is no need to choose a variable name. We simply push the function domain type onto the context [G]. *)
|
adamc@245
|
396
|
adamc@156
|
397 Hint Constructors hasType.
|
adamc@156
|
398
|
adamc@245
|
399 (** We prove roughly the same weakening theorems as before. *)
|
adamc@245
|
400
|
adamc@156
|
401 Lemma weaken_lookup : forall G' v t G,
|
adamc@156
|
402 G |-v v : t
|
adamc@156
|
403 -> G ++ G' |-v v : t.
|
adamc@156
|
404 induction 1; crush.
|
adamc@156
|
405 Qed.
|
adamc@156
|
406
|
adamc@156
|
407 Hint Resolve weaken_lookup.
|
adamc@156
|
408
|
adamc@156
|
409 Theorem weaken_hasType' : forall G' G e t,
|
adamc@156
|
410 G |-e e : t
|
adamc@156
|
411 -> G ++ G' |-e e : t.
|
adamc@156
|
412 induction 1; crush; eauto.
|
adamc@156
|
413 Qed.
|
adamc@156
|
414
|
adamc@156
|
415 Theorem weaken_hasType : forall e t,
|
adamc@156
|
416 nil |-e e : t
|
adamc@156
|
417 -> forall G', G' |-e e : t.
|
adamc@156
|
418 intros; change G' with (nil ++ G');
|
adamc@156
|
419 eapply weaken_hasType'; eauto.
|
adamc@156
|
420 Qed.
|
adamc@156
|
421
|
adamc@161
|
422 Hint Resolve weaken_hasType.
|
adamc@156
|
423
|
adamc@156
|
424 Section subst.
|
adamc@156
|
425 Variable e1 : exp.
|
adamc@156
|
426
|
adamc@245
|
427 (** Substitution is easier to define than with concrete syntax. While our old definition needed to use two comparisons for equality of variables, the de Bruijn substitution only needs one comparison. *)
|
adamc@245
|
428
|
adamc@156
|
429 Fixpoint subst (x : var) (e2 : exp) : exp :=
|
adamc@156
|
430 match e2 with
|
adamc@246
|
431 | Const _ => e2
|
adamc@246
|
432 | Var x' => if var_eq x' x then e1 else e2
|
adamc@156
|
433 | App e1 e2 => App (subst x e1) (subst x e2)
|
adamc@156
|
434 | Abs e' => Abs (subst (S x) e')
|
adamc@156
|
435 end.
|
adamc@156
|
436
|
adamc@156
|
437 Variable xt : type.
|
adamc@156
|
438
|
adamc@245
|
439 (** We prove similar theorems about inversion of variable lookup. *)
|
adamc@245
|
440
|
adamc@156
|
441 Lemma subst_eq : forall t G1,
|
adamc@156
|
442 G1 ++ xt :: nil |-v length G1 : t
|
adamc@156
|
443 -> t = xt.
|
adamc@156
|
444 induction G1; inversion 1; crush.
|
adamc@156
|
445 Qed.
|
adamc@156
|
446
|
adamc@156
|
447 Implicit Arguments subst_eq [t G1].
|
adamc@156
|
448
|
adamc@156
|
449 Lemma subst_eq' : forall t G1 x,
|
adamc@156
|
450 G1 ++ xt :: nil |-v x : t
|
adamc@156
|
451 -> x <> length G1
|
adamc@156
|
452 -> G1 |-v x : t.
|
adamc@156
|
453 induction G1; inversion 1; crush;
|
adamc@156
|
454 match goal with
|
adamc@156
|
455 | [ H : nil |-v _ : _ |- _ ] => inversion H
|
adamc@156
|
456 end.
|
adamc@156
|
457 Qed.
|
adamc@156
|
458
|
adamc@156
|
459 Hint Resolve subst_eq'.
|
adamc@156
|
460
|
adamc@156
|
461 Lemma subst_neq : forall v t G1,
|
adamc@156
|
462 G1 ++ xt :: nil |-v v : t
|
adamc@156
|
463 -> v <> length G1
|
adamc@156
|
464 -> G1 |-e Var v : t.
|
adamc@156
|
465 induction G1; inversion 1; crush.
|
adamc@156
|
466 Qed.
|
adamc@156
|
467
|
adamc@156
|
468 Hint Resolve subst_neq.
|
adamc@156
|
469
|
adamc@156
|
470 Hypothesis Ht' : nil |-e e1 : xt.
|
adamc@156
|
471
|
adamc@245
|
472 (** The next lemma is included solely to guide [eauto], which will not apply computational equivalences automatically. *)
|
adamc@245
|
473
|
adamc@156
|
474 Lemma hasType_push : forall dom G1 e' ran,
|
adamc@156
|
475 dom :: G1 |-e subst (length (dom :: G1)) e' : ran
|
adamc@156
|
476 -> dom :: G1 |-e subst (S (length G1)) e' : ran.
|
adamc@156
|
477 trivial.
|
adamc@156
|
478 Qed.
|
adamc@156
|
479
|
adamc@156
|
480 Hint Resolve hasType_push.
|
adamc@156
|
481
|
adamc@245
|
482 (** Finally, we are ready for the main theorem about substitution and typing. *)
|
adamc@245
|
483
|
adamc@156
|
484 Theorem subst_hasType : forall G e2 t,
|
adamc@156
|
485 G |-e e2 : t
|
adamc@156
|
486 -> forall G1, G = G1 ++ xt :: nil
|
adamc@156
|
487 -> G1 |-e subst (length G1) e2 : t.
|
adamc@156
|
488 induction 1; crush;
|
adamc@156
|
489 try match goal with
|
adamc@156
|
490 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@156
|
491 end; crush; eauto 6;
|
adamc@156
|
492 try match goal with
|
adamc@156
|
493 | [ H : _ |-v _ : _ |- _ ] =>
|
adamc@156
|
494 rewrite (subst_eq H)
|
adamc@156
|
495 end; crush.
|
adamc@156
|
496 Qed.
|
adamc@156
|
497
|
adamc@156
|
498 Theorem subst_hasType_closed : forall e2 t,
|
adamc@156
|
499 xt :: nil |-e e2 : t
|
adamc@156
|
500 -> nil |-e subst O e2 : t.
|
adamc@156
|
501 intros; change O with (length (@nil type)); eapply subst_hasType; eauto.
|
adamc@156
|
502 Qed.
|
adamc@156
|
503 End subst.
|
adamc@156
|
504
|
adamc@156
|
505 Hint Resolve subst_hasType_closed.
|
adamc@156
|
506
|
adamc@245
|
507 (** We define the operational semantics much as before. *)
|
adamc@245
|
508
|
adamc@156
|
509 Notation "[ x ~> e1 ] e2" := (subst e1 x e2) (no associativity, at level 80).
|
adamc@156
|
510
|
adamc@156
|
511 Inductive val : exp -> Prop :=
|
adamc@156
|
512 | VConst : forall b, val (Const b)
|
adamc@156
|
513 | VAbs : forall e, val (Abs e).
|
adamc@156
|
514
|
adamc@156
|
515 Hint Constructors val.
|
adamc@156
|
516
|
adamc@156
|
517 Reserved Notation "e1 ==> e2" (no associativity, at level 90).
|
adamc@156
|
518
|
adamc@156
|
519 Inductive step : exp -> exp -> Prop :=
|
adamc@156
|
520 | Beta : forall e1 e2,
|
adamc@161
|
521 val e2
|
adamc@161
|
522 -> App (Abs e1) e2 ==> [O ~> e2] e1
|
adamc@156
|
523 | Cong1 : forall e1 e2 e1',
|
adamc@156
|
524 e1 ==> e1'
|
adamc@156
|
525 -> App e1 e2 ==> App e1' e2
|
adamc@156
|
526 | Cong2 : forall e1 e2 e2',
|
adamc@156
|
527 val e1
|
adamc@156
|
528 -> e2 ==> e2'
|
adamc@156
|
529 -> App e1 e2 ==> App e1 e2'
|
adamc@156
|
530
|
adamc@156
|
531 where "e1 ==> e2" := (step e1 e2).
|
adamc@156
|
532
|
adamc@156
|
533 Hint Constructors step.
|
adamc@156
|
534
|
adamc@245
|
535 (** Since we have added the right hints, the progress and preservation theorem statements and proofs are exactly the same as in the concrete encoding example. *)
|
adamc@245
|
536
|
adamc@156
|
537 Lemma progress' : forall G e t, G |-e e : t
|
adamc@156
|
538 -> G = nil
|
adamc@156
|
539 -> val e \/ exists e', e ==> e'.
|
adamc@156
|
540 induction 1; crush; eauto;
|
adamc@156
|
541 try match goal with
|
adamc@156
|
542 | [ H : _ |-e _ : _ --> _ |- _ ] => inversion H
|
adamc@156
|
543 end;
|
adamc@156
|
544 repeat match goal with
|
adamc@156
|
545 | [ H : _ |- _ ] => solve [ inversion H; crush; eauto ]
|
adamc@156
|
546 end.
|
adamc@156
|
547 Qed.
|
adamc@156
|
548
|
adamc@156
|
549 Theorem progress : forall e t, nil |-e e : t
|
adamc@156
|
550 -> val e \/ exists e', e ==> e'.
|
adamc@156
|
551 intros; eapply progress'; eauto.
|
adamc@156
|
552 Qed.
|
adamc@156
|
553
|
adamc@156
|
554 Lemma preservation' : forall G e t, G |-e e : t
|
adamc@156
|
555 -> G = nil
|
adamc@156
|
556 -> forall e', e ==> e'
|
adamc@156
|
557 -> nil |-e e' : t.
|
adamc@156
|
558 induction 1; inversion 2; crush; eauto;
|
adamc@156
|
559 match goal with
|
adamc@156
|
560 | [ H : _ |-e Abs _ : _ |- _ ] => inversion H
|
adamc@156
|
561 end; eauto.
|
adamc@156
|
562 Qed.
|
adamc@156
|
563
|
adamc@156
|
564 Theorem preservation : forall e t, nil |-e e : t
|
adamc@156
|
565 -> forall e', e ==> e'
|
adamc@156
|
566 -> nil |-e e' : t.
|
adamc@156
|
567 intros; eapply preservation'; eauto.
|
adamc@156
|
568 Qed.
|
adamc@156
|
569
|
adamc@156
|
570 End DeBruijn.
|
adamc@246
|
571
|
adamc@246
|
572
|
adamc@246
|
573 (** * Locally Nameless Syntax *)
|
adamc@246
|
574
|
adamc@246
|
575 Module LocallyNameless.
|
adamc@246
|
576
|
adamc@246
|
577 Definition free_var := string.
|
adamc@246
|
578 Definition bound_var := nat.
|
adamc@246
|
579
|
adamc@246
|
580 Inductive exp : Set :=
|
adamc@246
|
581 | Const : bool -> exp
|
adamc@246
|
582 | FreeVar : free_var -> exp
|
adamc@246
|
583 | BoundVar : bound_var -> exp
|
adamc@246
|
584 | App : exp -> exp -> exp
|
adamc@246
|
585 | Abs : exp -> exp.
|
adamc@246
|
586
|
adamc@246
|
587 Inductive type : Set :=
|
adamc@246
|
588 | Bool : type
|
adamc@246
|
589 | Arrow : type -> type -> type.
|
adamc@246
|
590
|
adamc@246
|
591 Infix "-->" := Arrow (right associativity, at level 60).
|
adamc@246
|
592
|
adamc@246
|
593 Definition ctx := list (free_var * type).
|
adamc@246
|
594
|
adamc@246
|
595 Reserved Notation "G |-v x : t" (no associativity, at level 90, x at next level).
|
adamc@246
|
596
|
adamc@246
|
597 Reserved Notation "G |-v x : t" (no associativity, at level 90, x at next level).
|
adamc@246
|
598
|
adamc@246
|
599 Inductive lookup : ctx -> free_var -> type -> Prop :=
|
adamc@246
|
600 | First : forall x t G,
|
adamc@246
|
601 (x, t) :: G |-v x : t
|
adamc@246
|
602 | Next : forall x t x' t' G,
|
adamc@246
|
603 x <> x'
|
adamc@246
|
604 -> G |-v x : t
|
adamc@246
|
605 -> (x', t') :: G |-v x : t
|
adamc@246
|
606
|
adamc@246
|
607 where "G |-v x : t" := (lookup G x t).
|
adamc@246
|
608
|
adamc@246
|
609 Hint Constructors lookup.
|
adamc@246
|
610
|
adamc@246
|
611 Reserved Notation "G |-e e : t" (no associativity, at level 90, e at next level).
|
adamc@246
|
612
|
adamc@246
|
613 Section open.
|
adamc@246
|
614 Variable x : free_var.
|
adamc@246
|
615
|
adamc@246
|
616 Fixpoint open (n : bound_var) (e : exp) : exp :=
|
adamc@246
|
617 match e with
|
adamc@246
|
618 | Const _ => e
|
adamc@246
|
619 | FreeVar _ => e
|
adamc@246
|
620 | BoundVar n' =>
|
adamc@246
|
621 if eq_nat_dec n' n
|
adamc@246
|
622 then FreeVar x
|
adamc@246
|
623 else if le_lt_dec n' n
|
adamc@246
|
624 then e
|
adamc@246
|
625 else BoundVar (pred n')
|
adamc@246
|
626 | App e1 e2 => App (open n e1) (open n e2)
|
adamc@246
|
627 | Abs e1 => Abs (open (S n) e1)
|
adamc@246
|
628 end.
|
adamc@246
|
629 End open.
|
adamc@246
|
630
|
adamc@246
|
631 Inductive notFreeIn (x : free_var) : exp -> Prop :=
|
adamc@246
|
632 | NfConst : forall c, notFreeIn x (Const c)
|
adamc@246
|
633 | NfFreeVar : forall y, y <> x -> notFreeIn x (FreeVar y)
|
adamc@246
|
634 | NfBoundVar : forall y, notFreeIn x (BoundVar y)
|
adamc@246
|
635 | NfApp : forall e1 e2, notFreeIn x e1 -> notFreeIn x e2 -> notFreeIn x (App e1 e2)
|
adamc@246
|
636 | NfAbs : forall e1, (forall y, y <> x -> notFreeIn x (open y O e1)) -> notFreeIn x (Abs e1).
|
adamc@246
|
637
|
adamc@246
|
638 Hint Constructors notFreeIn.
|
adamc@246
|
639
|
adamc@246
|
640 Inductive hasType : ctx -> exp -> type -> Prop :=
|
adamc@246
|
641 | TConst : forall G b,
|
adamc@246
|
642 G |-e Const b : Bool
|
adamc@246
|
643 | TFreeVar : forall G v t,
|
adamc@246
|
644 G |-v v : t
|
adamc@246
|
645 -> G |-e FreeVar v : t
|
adamc@246
|
646 | TApp : forall G e1 e2 dom ran,
|
adamc@246
|
647 G |-e e1 : dom --> ran
|
adamc@246
|
648 -> G |-e e2 : dom
|
adamc@246
|
649 -> G |-e App e1 e2 : ran
|
adamc@246
|
650 | TAbs : forall G e' dom ran,
|
adamc@246
|
651 (forall x, notFreeIn x e' -> (x, dom) :: G |-e open x O e' : ran)
|
adamc@246
|
652 -> G |-e Abs e' : dom --> ran
|
adamc@246
|
653
|
adamc@246
|
654 where "G |-e e : t" := (hasType G e t).
|
adamc@246
|
655
|
adamc@246
|
656 Hint Constructors hasType.
|
adamc@246
|
657
|
adamc@246
|
658 (** We prove roughly the same weakening theorems as before. *)
|
adamc@246
|
659
|
adamc@246
|
660 Lemma weaken_lookup : forall G' v t G,
|
adamc@246
|
661 G |-v v : t
|
adamc@246
|
662 -> G ++ G' |-v v : t.
|
adamc@246
|
663 induction 1; crush.
|
adamc@246
|
664 Qed.
|
adamc@246
|
665
|
adamc@246
|
666 Hint Resolve weaken_lookup.
|
adamc@246
|
667
|
adamc@246
|
668 Theorem weaken_hasType' : forall G' G e t,
|
adamc@246
|
669 G |-e e : t
|
adamc@246
|
670 -> G ++ G' |-e e : t.
|
adamc@246
|
671 induction 1; crush; eauto.
|
adamc@246
|
672 Qed.
|
adamc@246
|
673
|
adamc@246
|
674 Theorem weaken_hasType : forall e t,
|
adamc@246
|
675 nil |-e e : t
|
adamc@246
|
676 -> forall G', G' |-e e : t.
|
adamc@246
|
677 intros; change G' with (nil ++ G');
|
adamc@246
|
678 eapply weaken_hasType'; eauto.
|
adamc@246
|
679 Qed.
|
adamc@246
|
680
|
adamc@246
|
681 Hint Resolve weaken_hasType.
|
adamc@246
|
682
|
adamc@246
|
683 Section subst.
|
adamc@246
|
684 Variable x : free_var.
|
adamc@246
|
685 Variable e1 : exp.
|
adamc@246
|
686
|
adamc@246
|
687 Fixpoint subst (e2 : exp) : exp :=
|
adamc@246
|
688 match e2 with
|
adamc@246
|
689 | Const _ => e2
|
adamc@246
|
690 | FreeVar x' => if string_dec x' x then e1 else e2
|
adamc@246
|
691 | BoundVar _ => e2
|
adamc@246
|
692 | App e1 e2 => App (subst e1) (subst e2)
|
adamc@246
|
693 | Abs e' => Abs (subst e')
|
adamc@246
|
694 end.
|
adamc@246
|
695 End subst.
|
adamc@246
|
696
|
adamc@246
|
697
|
adamc@246
|
698 Notation "[ x ~> e1 ] e2" := (subst x e1 e2) (no associativity, at level 80).
|
adamc@246
|
699
|
adamc@246
|
700 Inductive val : exp -> Prop :=
|
adamc@246
|
701 | VConst : forall b, val (Const b)
|
adamc@246
|
702 | VAbs : forall e, val (Abs e).
|
adamc@246
|
703
|
adamc@246
|
704 Hint Constructors val.
|
adamc@246
|
705
|
adamc@246
|
706 Reserved Notation "e1 ==> e2" (no associativity, at level 90).
|
adamc@246
|
707
|
adamc@246
|
708 Inductive step : exp -> exp -> Prop :=
|
adamc@246
|
709 | Beta : forall x e1 e2,
|
adamc@246
|
710 val e2
|
adamc@246
|
711 -> notFreeIn x e1
|
adamc@246
|
712 -> App (Abs e1) e2 ==> [x ~> e2] (open x O e1)
|
adamc@246
|
713 | Cong1 : forall e1 e2 e1',
|
adamc@246
|
714 e1 ==> e1'
|
adamc@246
|
715 -> App e1 e2 ==> App e1' e2
|
adamc@246
|
716 | Cong2 : forall e1 e2 e2',
|
adamc@246
|
717 val e1
|
adamc@246
|
718 -> e2 ==> e2'
|
adamc@246
|
719 -> App e1 e2 ==> App e1 e2'
|
adamc@246
|
720
|
adamc@246
|
721 where "e1 ==> e2" := (step e1 e2).
|
adamc@246
|
722
|
adamc@246
|
723 Hint Constructors step.
|
adamc@246
|
724
|
adamc@246
|
725 Open Scope string_scope.
|
adamc@246
|
726
|
adamc@246
|
727 Fixpoint vlen (e : exp) : nat :=
|
adamc@246
|
728 match e with
|
adamc@246
|
729 | Const _ => 0
|
adamc@246
|
730 | FreeVar x => String.length x
|
adamc@246
|
731 | BoundVar _ => 0
|
adamc@246
|
732 | App e1 e2 => vlen e1 + vlen e2
|
adamc@246
|
733 | Abs e1 => vlen e1
|
adamc@246
|
734 end.
|
adamc@246
|
735
|
adamc@246
|
736 Opaque le_lt_dec.
|
adamc@246
|
737
|
adamc@246
|
738 Hint Extern 1 (@eq exp _ _) => f_equal.
|
adamc@246
|
739
|
adamc@246
|
740 Lemma open_comm : forall x1 x2 e n1 n2,
|
adamc@246
|
741 open x1 n1 (open x2 (S n2 + n1) e)
|
adamc@246
|
742 = open x2 (n2 + n1) (open x1 n1 e).
|
adamc@246
|
743 induction e; crush;
|
adamc@246
|
744 repeat (match goal with
|
adamc@246
|
745 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@246
|
746 end; crush).
|
adamc@246
|
747
|
adamc@246
|
748 replace (S (n2 + n1)) with (n2 + S n1); auto.
|
adamc@246
|
749 Qed.
|
adamc@246
|
750
|
adamc@246
|
751 Hint Rewrite plus_0_r : cpdt.
|
adamc@246
|
752
|
adamc@246
|
753 Lemma open_comm0 : forall x1 x2 e n,
|
adamc@246
|
754 open x1 0 (open x2 (S n) e)
|
adamc@246
|
755 = open x2 n (open x1 0 e).
|
adamc@246
|
756 intros; generalize (open_comm x1 x2 e 0 n); crush.
|
adamc@246
|
757 Qed.
|
adamc@246
|
758
|
adamc@246
|
759 Hint Extern 1 (notFreeIn _ (open _ 0 (open _ (S _) _))) => rewrite open_comm0.
|
adamc@246
|
760
|
adamc@246
|
761 Lemma notFreeIn_open : forall x y,
|
adamc@246
|
762 x <> y
|
adamc@246
|
763 -> forall e,
|
adamc@246
|
764 notFreeIn x e
|
adamc@246
|
765 -> forall n, notFreeIn x (open y n e).
|
adamc@246
|
766 induction 2; crush;
|
adamc@246
|
767 repeat (match goal with
|
adamc@246
|
768 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@246
|
769 end; crush).
|
adamc@246
|
770 Qed.
|
adamc@246
|
771
|
adamc@246
|
772 Hint Resolve notFreeIn_open.
|
adamc@246
|
773
|
adamc@246
|
774 Lemma infVar : forall x y, String.length x > String.length y
|
adamc@246
|
775 -> y <> x.
|
adamc@246
|
776 intros; destruct (string_dec x y); intros; subst; crush.
|
adamc@246
|
777 Qed.
|
adamc@246
|
778
|
adamc@246
|
779 Hint Resolve infVar.
|
adamc@246
|
780
|
adamc@246
|
781 Lemma inf' : forall x e, String.length x > vlen e -> notFreeIn x e.
|
adamc@246
|
782 induction e; crush; eauto.
|
adamc@246
|
783 Qed.
|
adamc@246
|
784
|
adamc@246
|
785 Fixpoint primes (n : nat) : string :=
|
adamc@246
|
786 match n with
|
adamc@246
|
787 | O => "x"
|
adamc@246
|
788 | S n' => primes n' ++ "'"
|
adamc@246
|
789 end.
|
adamc@246
|
790
|
adamc@246
|
791 Lemma length_app : forall s2 s1, String.length (s1 ++ s2) = String.length s1 + String.length s2.
|
adamc@246
|
792 induction s1; crush.
|
adamc@246
|
793 Qed.
|
adamc@246
|
794
|
adamc@246
|
795 Hint Rewrite length_app : cpdt.
|
adamc@246
|
796
|
adamc@246
|
797 Lemma length_primes : forall n, String.length (primes n) = S n.
|
adamc@246
|
798 induction n; crush.
|
adamc@246
|
799 Qed.
|
adamc@246
|
800
|
adamc@246
|
801 Hint Rewrite length_primes : cpdt.
|
adamc@246
|
802
|
adamc@246
|
803 Lemma inf : forall e, exists x, notFreeIn x e.
|
adamc@246
|
804 intro; exists (primes (vlen e)); apply inf'; crush.
|
adamc@246
|
805 Qed.
|
adamc@246
|
806
|
adamc@246
|
807 Lemma progress_Abs : forall e1 e2,
|
adamc@246
|
808 val e2
|
adamc@246
|
809 -> exists e', App (Abs e1) e2 ==> e'.
|
adamc@246
|
810 intros; destruct (inf e1); eauto.
|
adamc@246
|
811 Qed.
|
adamc@246
|
812
|
adamc@246
|
813 Hint Resolve progress_Abs.
|
adamc@246
|
814
|
adamc@246
|
815 Lemma progress' : forall G e t, G |-e e : t
|
adamc@246
|
816 -> G = nil
|
adamc@246
|
817 -> val e \/ exists e', e ==> e'.
|
adamc@246
|
818 induction 1; crush; eauto;
|
adamc@246
|
819 try match goal with
|
adamc@246
|
820 | [ H : _ |-e _ : _ --> _ |- _ ] => inversion H
|
adamc@246
|
821 end;
|
adamc@246
|
822 repeat match goal with
|
adamc@246
|
823 | [ H : _ |- _ ] => solve [ inversion H; crush; eauto ]
|
adamc@246
|
824 end.
|
adamc@246
|
825 Qed.
|
adamc@246
|
826
|
adamc@246
|
827 Theorem progress : forall e t, nil |-e e : t
|
adamc@246
|
828 -> val e \/ exists e', e ==> e'.
|
adamc@246
|
829 intros; eapply progress'; eauto.
|
adamc@246
|
830 Qed.
|
adamc@246
|
831
|
adamc@246
|
832 (*Lemma preservation' : forall G e t, G |-e e : t
|
adamc@246
|
833 -> G = nil
|
adamc@246
|
834 -> forall e', e ==> e'
|
adamc@246
|
835 -> nil |-e e' : t.
|
adamc@246
|
836 induction 1; inversion 2; crush; eauto;
|
adamc@246
|
837 match goal with
|
adamc@246
|
838 | [ H : _ |-e Abs _ : _ |- _ ] => inversion H
|
adamc@246
|
839 end; eauto.
|
adamc@246
|
840 Qed.
|
adamc@246
|
841
|
adamc@246
|
842 Theorem preservation : forall e t, nil |-e e : t
|
adamc@246
|
843 -> forall e', e ==> e'
|
adamc@246
|
844 -> nil |-e e' : t.
|
adamc@246
|
845 intros; eapply preservation'; eauto.
|
adamc@246
|
846 Qed.*)
|
adamc@246
|
847
|
adamc@246
|
848 End LocallyNameless.
|