adamc@216
|
1 (* Copyright (c) 2008-2009, Adam Chlipala
|
adamc@193
|
2 *
|
adamc@193
|
3 * This work is licensed under a
|
adamc@193
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@193
|
5 * Unported License.
|
adamc@193
|
6 * The license text is available at:
|
adamc@193
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@193
|
8 *)
|
adamc@193
|
9
|
adamc@193
|
10 (* begin hide *)
|
adamc@195
|
11 Require Import String List.
|
adamc@193
|
12
|
adamc@193
|
13 Require Import Tactics DepList.
|
adamc@193
|
14
|
adamc@193
|
15 Set Implicit Arguments.
|
adamc@193
|
16 (* end hide *)
|
adamc@193
|
17
|
adamc@193
|
18
|
adamc@193
|
19 (** %\part{Chapters to be Moved Earlier}
|
adamc@193
|
20
|
adamc@193
|
21 \chapter{Generic Programming}% *)
|
adamc@193
|
22
|
adamc@193
|
23 (** TODO: Prose for this chapter *)
|
adamc@193
|
24
|
adamc@193
|
25
|
adamc@195
|
26 (** * Reflecting Datatype Definitions *)
|
adamc@193
|
27
|
adamc@198
|
28 (* EX: Define a reflected representation of simple algebraic datatypes. *)
|
adamc@198
|
29
|
adamc@198
|
30 (* begin thide *)
|
adamc@193
|
31 Record constructor : Type := Con {
|
adamc@193
|
32 nonrecursive : Type;
|
adamc@193
|
33 recursive : nat
|
adamc@193
|
34 }.
|
adamc@193
|
35
|
adamc@193
|
36 Definition datatype := list constructor.
|
adamc@193
|
37
|
adamc@193
|
38 Definition Empty_set_dt : datatype := nil.
|
adamc@193
|
39 Definition unit_dt : datatype := Con unit 0 :: nil.
|
adamc@193
|
40 Definition bool_dt : datatype := Con unit 0 :: Con unit 0 :: nil.
|
adamc@193
|
41 Definition nat_dt : datatype := Con unit 0 :: Con unit 1 :: nil.
|
adamc@193
|
42 Definition list_dt (A : Type) : datatype := Con unit 0 :: Con A 1 :: nil.
|
adamc@198
|
43 (* end thide *)
|
adamc@193
|
44
|
adamc@193
|
45 Section tree.
|
adamc@193
|
46 Variable A : Type.
|
adamc@193
|
47
|
adamc@193
|
48 Inductive tree : Type :=
|
adamc@193
|
49 | Leaf : A -> tree
|
adamc@193
|
50 | Node : tree -> tree -> tree.
|
adamc@193
|
51 End tree.
|
adamc@193
|
52
|
adamc@198
|
53 (* begin thide *)
|
adamc@193
|
54 Definition tree_dt (A : Type) : datatype := Con A 0 :: Con unit 2 :: nil.
|
adamc@193
|
55
|
adamc@193
|
56 Section denote.
|
adamc@193
|
57 Variable T : Type.
|
adamc@193
|
58
|
adamc@193
|
59 Definition constructorDenote (c : constructor) :=
|
adamc@193
|
60 nonrecursive c -> ilist T (recursive c) -> T.
|
adamc@193
|
61
|
adamc@193
|
62 Definition datatypeDenote := hlist constructorDenote.
|
adamc@193
|
63 End denote.
|
adamc@198
|
64 (* end thide *)
|
adamc@193
|
65
|
adamc@193
|
66 Notation "[ ! , ! ~> x ]" := ((fun _ _ => x) : constructorDenote _ (Con _ _)).
|
adamc@193
|
67 Notation "[ v , ! ~> x ]" := ((fun v _ => x) : constructorDenote _ (Con _ _)).
|
adamc@193
|
68 Notation "[ ! , r # n ~> x ]" := ((fun _ r => x) : constructorDenote _ (Con _ n)).
|
adamc@193
|
69 Notation "[ v , r # n ~> x ]" := ((fun v r => x) : constructorDenote _ (Con _ n)).
|
adamc@193
|
70
|
adamc@198
|
71 (* begin thide *)
|
adamc@193
|
72 Definition Empty_set_den : datatypeDenote Empty_set Empty_set_dt :=
|
adamc@216
|
73 HNil.
|
adamc@193
|
74 Definition unit_den : datatypeDenote unit unit_dt :=
|
adamc@216
|
75 [!, ! ~> tt] ::: HNil.
|
adamc@193
|
76 Definition bool_den : datatypeDenote bool bool_dt :=
|
adamc@216
|
77 [!, ! ~> true] ::: [!, ! ~> false] ::: HNil.
|
adamc@193
|
78 Definition nat_den : datatypeDenote nat nat_dt :=
|
adamc@216
|
79 [!, ! ~> O] ::: [!, r # 1 ~> S (hd r)] ::: HNil.
|
adamc@193
|
80 Definition list_den (A : Type) : datatypeDenote (list A) (list_dt A) :=
|
adamc@216
|
81 [!, ! ~> nil] ::: [x, r # 1 ~> x :: hd r] ::: HNil.
|
adamc@193
|
82 Definition tree_den (A : Type) : datatypeDenote (tree A) (tree_dt A) :=
|
adamc@216
|
83 [v, ! ~> Leaf v] ::: [!, r # 2 ~> Node (hd r) (hd (tl r))] ::: HNil.
|
adamc@198
|
84 (* end thide *)
|
adamc@194
|
85
|
adamc@195
|
86
|
adamc@195
|
87 (** * Recursive Definitions *)
|
adamc@195
|
88
|
adamc@198
|
89 (* EX: Define a generic [size] function. *)
|
adamc@198
|
90
|
adamc@198
|
91 (* begin thide *)
|
adamc@194
|
92 Definition fixDenote (T : Type) (dt : datatype) :=
|
adamc@194
|
93 forall (R : Type), datatypeDenote R dt -> (T -> R).
|
adamc@194
|
94
|
adamc@194
|
95 Definition size T dt (fx : fixDenote T dt) : T -> nat :=
|
adamc@194
|
96 fx nat (hmake (B := constructorDenote nat) (fun _ _ r => foldr plus 1 r) dt).
|
adamc@194
|
97
|
adamc@194
|
98 Definition Empty_set_fix : fixDenote Empty_set Empty_set_dt :=
|
adamc@194
|
99 fun R _ emp => match emp with end.
|
adamc@194
|
100 Eval compute in size Empty_set_fix.
|
adamc@194
|
101
|
adamc@194
|
102 Definition unit_fix : fixDenote unit unit_dt :=
|
adamc@216
|
103 fun R cases _ => (hhd cases) tt INil.
|
adamc@194
|
104 Eval compute in size unit_fix.
|
adamc@194
|
105
|
adamc@194
|
106 Definition bool_fix : fixDenote bool bool_dt :=
|
adamc@194
|
107 fun R cases b => if b
|
adamc@216
|
108 then (hhd cases) tt INil
|
adamc@216
|
109 else (hhd (htl cases)) tt INil.
|
adamc@194
|
110 Eval compute in size bool_fix.
|
adamc@194
|
111
|
adamc@194
|
112 Definition nat_fix : fixDenote nat nat_dt :=
|
adamc@194
|
113 fun R cases => fix F (n : nat) : R :=
|
adamc@194
|
114 match n with
|
adamc@216
|
115 | O => (hhd cases) tt INil
|
adamc@216
|
116 | S n' => (hhd (htl cases)) tt (ICons (F n') INil)
|
adamc@194
|
117 end.
|
adamc@194
|
118 Eval cbv beta iota delta -[plus] in size nat_fix.
|
adamc@194
|
119
|
adamc@194
|
120 Definition list_fix (A : Type) : fixDenote (list A) (list_dt A) :=
|
adamc@194
|
121 fun R cases => fix F (ls : list A) : R :=
|
adamc@194
|
122 match ls with
|
adamc@216
|
123 | nil => (hhd cases) tt INil
|
adamc@216
|
124 | x :: ls' => (hhd (htl cases)) x (ICons (F ls') INil)
|
adamc@194
|
125 end.
|
adamc@194
|
126 Eval cbv beta iota delta -[plus] in fun A => size (@list_fix A).
|
adamc@194
|
127
|
adamc@194
|
128 Definition tree_fix (A : Type) : fixDenote (tree A) (tree_dt A) :=
|
adamc@194
|
129 fun R cases => fix F (t : tree A) : R :=
|
adamc@194
|
130 match t with
|
adamc@216
|
131 | Leaf x => (hhd cases) x INil
|
adamc@216
|
132 | Node t1 t2 => (hhd (htl cases)) tt (ICons (F t1) (ICons (F t2) INil))
|
adamc@194
|
133 end.
|
adamc@194
|
134 Eval cbv beta iota delta -[plus] in fun A => size (@tree_fix A).
|
adamc@198
|
135 (* end thide *)
|
adamc@195
|
136
|
adamc@195
|
137
|
adamc@195
|
138 (** ** Pretty-Printing *)
|
adamc@195
|
139
|
adamc@198
|
140 (* EX: Define a generic pretty-printing function. *)
|
adamc@198
|
141
|
adamc@198
|
142 (* begin thide *)
|
adamc@195
|
143 Record print_constructor (c : constructor) : Type := PI {
|
adamc@195
|
144 printName : string;
|
adamc@195
|
145 printNonrec : nonrecursive c -> string
|
adamc@195
|
146 }.
|
adamc@195
|
147
|
adamc@195
|
148 Notation "^" := (PI (Con _ _)).
|
adamc@195
|
149
|
adamc@195
|
150 Definition print_datatype := hlist print_constructor.
|
adamc@195
|
151
|
adamc@195
|
152 Open Local Scope string_scope.
|
adamc@195
|
153
|
adamc@195
|
154 Definition print T dt (pr : print_datatype dt) (fx : fixDenote T dt) : T -> string :=
|
adamc@195
|
155 fx string (hmap (B1 := print_constructor) (B2 := constructorDenote string)
|
adamc@195
|
156 (fun _ pc x r => printName pc ++ "(" ++ printNonrec pc x
|
adamc@195
|
157 ++ foldr (fun s acc => ", " ++ s ++ acc) ")" r) pr).
|
adamc@198
|
158 (* end thide *)
|
adamc@195
|
159
|
adamc@216
|
160 Eval compute in print HNil Empty_set_fix.
|
adamc@216
|
161 Eval compute in print (^ "tt" (fun _ => "") ::: HNil) unit_fix.
|
adamc@195
|
162 Eval compute in print (^ "true" (fun _ => "")
|
adamc@195
|
163 ::: ^ "false" (fun _ => "")
|
adamc@216
|
164 ::: HNil) bool_fix.
|
adamc@195
|
165
|
adamc@195
|
166 Definition print_nat := print (^ "O" (fun _ => "")
|
adamc@195
|
167 ::: ^ "S" (fun _ => "")
|
adamc@216
|
168 ::: HNil) nat_fix.
|
adamc@195
|
169 Eval cbv beta iota delta -[append] in print_nat.
|
adamc@195
|
170 Eval simpl in print_nat 0.
|
adamc@195
|
171 Eval simpl in print_nat 1.
|
adamc@195
|
172 Eval simpl in print_nat 2.
|
adamc@195
|
173
|
adamc@195
|
174 Eval cbv beta iota delta -[append] in fun A (pr : A -> string) =>
|
adamc@195
|
175 print (^ "nil" (fun _ => "")
|
adamc@195
|
176 ::: ^ "cons" pr
|
adamc@216
|
177 ::: HNil) (@list_fix A).
|
adamc@195
|
178 Eval cbv beta iota delta -[append] in fun A (pr : A -> string) =>
|
adamc@195
|
179 print (^ "Leaf" pr
|
adamc@195
|
180 ::: ^ "Node" (fun _ => "")
|
adamc@216
|
181 ::: HNil) (@tree_fix A).
|
adamc@196
|
182
|
adamc@196
|
183
|
adamc@196
|
184 (** ** Mapping *)
|
adamc@196
|
185
|
adamc@198
|
186 (* EX: Define a generic [map] function. *)
|
adamc@198
|
187
|
adamc@198
|
188 (* begin thide *)
|
adamc@196
|
189 Definition map T dt (dd : datatypeDenote T dt) (fx : fixDenote T dt) (f : T -> T) : T -> T :=
|
adamc@196
|
190 fx T (hmap (B1 := constructorDenote T) (B2 := constructorDenote T)
|
adamc@196
|
191 (fun _ c x r => f (c x r)) dd).
|
adamc@198
|
192 (* end thide *)
|
adamc@196
|
193
|
adamc@196
|
194 Eval compute in map Empty_set_den Empty_set_fix.
|
adamc@196
|
195 Eval compute in map unit_den unit_fix.
|
adamc@196
|
196 Eval compute in map bool_den bool_fix.
|
adamc@196
|
197 Eval compute in map nat_den nat_fix.
|
adamc@196
|
198 Eval compute in fun A => map (list_den A) (@list_fix A).
|
adamc@196
|
199 Eval compute in fun A => map (tree_den A) (@tree_fix A).
|
adamc@196
|
200
|
adamc@196
|
201 Definition map_nat := map nat_den nat_fix.
|
adamc@196
|
202 Eval simpl in map_nat S 0.
|
adamc@196
|
203 Eval simpl in map_nat S 1.
|
adamc@196
|
204 Eval simpl in map_nat S 2.
|
adamc@196
|
205
|
adamc@196
|
206
|
adamc@196
|
207 (** * Proving Theorems about Recursive Definitions *)
|
adamc@196
|
208
|
adamc@198
|
209 (* begin thide *)
|
adamc@196
|
210 Section ok.
|
adamc@196
|
211 Variable T : Type.
|
adamc@196
|
212 Variable dt : datatype.
|
adamc@196
|
213
|
adamc@196
|
214 Variable dd : datatypeDenote T dt.
|
adamc@196
|
215 Variable fx : fixDenote T dt.
|
adamc@196
|
216
|
adamc@196
|
217 Definition datatypeDenoteOk :=
|
adamc@196
|
218 forall P : T -> Prop,
|
adamc@196
|
219 (forall c (m : member c dt) (x : nonrecursive c) (r : ilist T (recursive c)),
|
adamc@215
|
220 (forall i : fin (recursive c), P (get r i))
|
adamc@196
|
221 -> P ((hget dd m) x r))
|
adamc@196
|
222 -> forall v, P v.
|
adamc@196
|
223
|
adamc@196
|
224 Definition fixDenoteOk :=
|
adamc@196
|
225 forall (R : Type) (cases : datatypeDenote R dt)
|
adamc@196
|
226 c (m : member c dt)
|
adamc@196
|
227 (x : nonrecursive c) (r : ilist T (recursive c)),
|
adamc@216
|
228 fx cases ((hget dd m) x r)
|
adamc@216
|
229 = (hget cases m) x (imap (fx cases) r).
|
adamc@196
|
230 End ok.
|
adamc@196
|
231
|
adamc@196
|
232 Implicit Arguments datatypeDenoteOk [T dt].
|
adamc@196
|
233
|
adamc@196
|
234 Lemma foldr_plus : forall n (ils : ilist nat n),
|
adamc@196
|
235 foldr plus 1 ils > 0.
|
adamc@216
|
236 induction ils; crush.
|
adamc@196
|
237 Qed.
|
adamc@198
|
238 (* end thide *)
|
adamc@196
|
239
|
adamc@197
|
240 Theorem size_positive : forall T dt
|
adamc@197
|
241 (dd : datatypeDenote T dt) (fx : fixDenote T dt)
|
adamc@197
|
242 (dok : datatypeDenoteOk dd) (fok : fixDenoteOk dd fx)
|
adamc@196
|
243 (v : T),
|
adamc@196
|
244 size fx v > 0.
|
adamc@198
|
245 (* begin thide *)
|
adamc@196
|
246 Hint Rewrite hget_hmake : cpdt.
|
adamc@196
|
247 Hint Resolve foldr_plus.
|
adamc@196
|
248
|
adamc@197
|
249 unfold size; intros; pattern v; apply dok; crush.
|
adamc@196
|
250 Qed.
|
adamc@198
|
251 (* end thide *)
|
adamc@197
|
252
|
adamc@197
|
253 Theorem map_id : forall T dt
|
adamc@197
|
254 (dd : datatypeDenote T dt) (fx : fixDenote T dt)
|
adamc@197
|
255 (dok : datatypeDenoteOk dd) (fok : fixDenoteOk dd fx)
|
adamc@197
|
256 (v : T),
|
adamc@197
|
257 map dd fx (fun x => x) v = v.
|
adamc@198
|
258 (* begin thide *)
|
adamc@197
|
259 Hint Rewrite hget_hmap : cpdt.
|
adamc@197
|
260
|
adamc@197
|
261 unfold map; intros; pattern v; apply dok; crush.
|
adamc@197
|
262 match goal with
|
adamc@197
|
263 | [ |- hget _ _ _ ?R1 = hget _ _ _ ?R2 ] => replace R1 with R2
|
adamc@197
|
264 end; crush.
|
adamc@197
|
265
|
adamc@197
|
266 induction (recursive c); crush.
|
adamc@216
|
267 dep_destruct r; reflexivity.
|
adamc@216
|
268 dep_destruct r; crush.
|
adamc@216
|
269 rewrite (H First).
|
adamc@197
|
270 f_equal.
|
adamc@197
|
271 apply IHn; crush.
|
adamc@216
|
272 apply (H (Next i)).
|
adamc@197
|
273 Qed.
|
adamc@198
|
274 (* end thide *)
|