annotate src/Subset.v @ 423:d3a40c044ab4

Pass through Subset, to incorporate new coqdoc features
author Adam Chlipala <adam@chlipala.net>
date Wed, 25 Jul 2012 17:03:33 -0400
parents 1edeec5d5d0c
children 5f25705a10ea
rev   line source
adam@380 1 (* Copyright (c) 2008-2012, Adam Chlipala
adamc@70 2 *
adamc@70 3 * This work is licensed under a
adamc@70 4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
adamc@70 5 * Unported License.
adamc@70 6 * The license text is available at:
adamc@70 7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
adamc@70 8 *)
adamc@70 9
adamc@70 10 (* begin hide *)
adamc@70 11 Require Import List.
adamc@70 12
adam@314 13 Require Import CpdtTactics.
adamc@70 14
adamc@70 15 Set Implicit Arguments.
adamc@70 16 (* end hide *)
adamc@70 17
adam@403 18 (** printing <-- $\longleftarrow$ *)
adam@403 19
adamc@70 20
adamc@74 21 (** %\part{Programming with Dependent Types}
adamc@74 22
adamc@74 23 \chapter{Subset Types and Variations}% *)
adamc@70 24
adam@423 25 (** So far, we have seen many examples of what we might call "classical program verification." We write programs, write their specifications, and then prove that the programs satisfy their specifications. The programs that we have written in Coq have been normal functional programs that we could just as well have written in Haskell or ML. In this chapter, we start investigating uses of%\index{dependent types}% _dependent types_ to integrate programming, specification, and proving into a single phase. The techniques we will learn make it possible to reduce the cost of program verification dramatically. *)
adamc@70 26
adamc@70 27
adamc@70 28 (** * Introducing Subset Types *)
adamc@70 29
adamc@70 30 (** Let us consider several ways of implementing the natural number predecessor function. We start by displaying the definition from the standard library: *)
adamc@70 31
adam@423 32 (* begin hide *)
adam@423 33 Definition foo := pred.
adam@423 34 (* end hide *)
adam@423 35
adamc@70 36 Print pred.
adamc@212 37 (** %\vspace{-.15in}% [[
adamc@70 38 pred = fun n : nat => match n with
adamc@70 39 | 0 => 0
adamc@70 40 | S u => u
adamc@70 41 end
adamc@70 42 : nat -> nat
adamc@212 43
adamc@212 44 ]]
adamc@70 45
adam@335 46 We can use a new command, %\index{Vernacular commands!Extraction}\index{program extraction}\index{extraction|see{program extraction}}%[Extraction], to produce an %\index{OCaml}%OCaml version of this function. *)
adamc@70 47
adamc@70 48 Extraction pred.
adamc@70 49
adamc@70 50 (** %\begin{verbatim}
adamc@70 51 (** val pred : nat -> nat **)
adamc@70 52
adamc@70 53 let pred = function
adamc@70 54 | O -> O
adamc@70 55 | S u -> u
adamc@70 56 \end{verbatim}%
adamc@70 57
adamc@70 58 #<pre>
adamc@70 59 (** val pred : nat -> nat **)
adamc@70 60
adamc@70 61 let pred = function
adamc@70 62 | O -> O
adamc@70 63 | S u -> u
adamc@70 64 </pre># *)
adamc@70 65
adamc@70 66 (** Returning 0 as the predecessor of 0 can come across as somewhat of a hack. In some situations, we might like to be sure that we never try to take the predecessor of 0. We can enforce this by giving [pred] a stronger, dependent type. *)
adamc@70 67
adamc@70 68 Lemma zgtz : 0 > 0 -> False.
adamc@70 69 crush.
adamc@70 70 Qed.
adamc@70 71
adamc@70 72 Definition pred_strong1 (n : nat) : n > 0 -> nat :=
adamc@212 73 match n with
adamc@70 74 | O => fun pf : 0 > 0 => match zgtz pf with end
adamc@70 75 | S n' => fun _ => n'
adamc@70 76 end.
adamc@70 77
adam@398 78 (** We expand the type of [pred] to include a _proof_ that its argument [n] is greater than 0. When [n] is 0, we use the proof to derive a contradiction, which we can use to build a value of any type via a vacuous pattern match. When [n] is a successor, we have no need for the proof and just return the answer. The proof argument can be said to have a _dependent_ type, because its type depends on the _value_ of the argument [n].
adamc@70 79
adam@398 80 Coq's [Eval] command can execute particular invocations of [pred_strong1] just as easily as it can execute more traditional functional programs. Note that Coq has decided that argument [n] of [pred_strong1] can be made _implicit_, since it can be deduced from the type of the second argument, so we need not write [n] in function calls. *)
adam@282 81
adam@282 82 Theorem two_gt0 : 2 > 0.
adam@282 83 crush.
adam@282 84 Qed.
adam@282 85
adam@282 86 Eval compute in pred_strong1 two_gt0.
adam@282 87 (** %\vspace{-.15in}% [[
adam@282 88 = 1
adam@282 89 : nat
adam@282 90
adam@282 91 ]]
adam@282 92
adam@294 93 One aspect in particular of the definition of [pred_strong1] may be surprising. We took advantage of [Definition]'s syntactic sugar for defining function arguments in the case of [n], but we bound the proofs later with explicit [fun] expressions. Let us see what happens if we write this function in the way that at first seems most natural.
adamc@70 94
adamc@212 95 [[
adamc@70 96 Definition pred_strong1' (n : nat) (pf : n > 0) : nat :=
adamc@70 97 match n with
adamc@70 98 | O => match zgtz pf with end
adamc@70 99 | S n' => n'
adamc@70 100 end.
adam@335 101 ]]
adamc@70 102
adam@335 103 <<
adamc@70 104 Error: In environment
adamc@70 105 n : nat
adamc@70 106 pf : n > 0
adamc@70 107 The term "pf" has type "n > 0" while it is expected to have type
adamc@70 108 "0 > 0"
adam@335 109 >>
adamc@70 110
adamc@212 111 The term [zgtz pf] fails to type-check. Somehow the type checker has failed to take into account information that follows from which [match] branch that term appears in. The problem is that, by default, [match] does not let us use such implied information. To get refined typing, we must always rely on [match] annotations, either written explicitly or inferred.
adamc@70 112
adam@398 113 In this case, we must use a [return] annotation to declare the relationship between the _value_ of the [match] discriminee and the _type_ of the result. There is no annotation that lets us declare a relationship between the discriminee and the type of a variable that is already in scope; hence, we delay the binding of [pf], so that we can use the [return] annotation to express the needed relationship.
adamc@70 114
adam@335 115 We are lucky that Coq's heuristics infer the [return] clause (specifically, [return n > 0 -> nat]) for us in this case. *)
adam@335 116
adam@335 117 Definition pred_strong1' (n : nat) : n > 0 -> nat :=
adam@335 118 match n return n > 0 -> nat with
adam@335 119 | O => fun pf : 0 > 0 => match zgtz pf with end
adam@335 120 | S n' => fun _ => n'
adam@335 121 end.
adam@335 122
adam@403 123 (** By making explicit the functional relationship between value [n] and the result type of the [match], we guide Coq toward proper type checking. The clause for this example follows by simple copying of the original annotation on the definition. In general, however, the [match] annotation inference problem is undecidable. The known undecidable problem of%\index{higher-order unification}% _higher-order unification_ %\cite{HOU}% reduces to the [match] type inference problem. Over time, Coq is enhanced with more and more heuristics to get around this problem, but there must always exist [match]es whose types Coq cannot infer without annotations.
adamc@70 124
adamc@70 125 Let us now take a look at the OCaml code Coq generates for [pred_strong1]. *)
adamc@70 126
adamc@70 127 Extraction pred_strong1.
adamc@70 128
adamc@70 129 (** %\begin{verbatim}
adamc@70 130 (** val pred_strong1 : nat -> nat **)
adamc@70 131
adamc@70 132 let pred_strong1 = function
adamc@70 133 | O -> assert false (* absurd case *)
adamc@70 134 | S n' -> n'
adamc@70 135 \end{verbatim}%
adamc@70 136
adamc@70 137 #<pre>
adamc@70 138 (** val pred_strong1 : nat -> nat **)
adamc@70 139
adamc@70 140 let pred_strong1 = function
adamc@70 141 | O -> assert false (* absurd case *)
adamc@70 142 | S n' -> n'
adamc@70 143 </pre># *)
adamc@70 144
adamc@70 145 (** The proof argument has disappeared! We get exactly the OCaml code we would have written manually. This is our first demonstration of the main technically interesting feature of Coq program extraction: program components of type [Prop] are erased systematically.
adamc@70 146
adam@403 147 We can reimplement our dependently typed [pred] based on%\index{subset types}% _subset types_, defined in the standard library with the type family %\index{Gallina terms!sig}%[sig]. *)
adamc@70 148
adam@423 149 (* begin hide *)
adam@423 150 Definition bar := (sig, ex).
adam@423 151 (* end hide *)
adam@423 152
adamc@70 153 Print sig.
adamc@212 154 (** %\vspace{-.15in}% [[
adamc@70 155 Inductive sig (A : Type) (P : A -> Prop) : Type :=
adamc@70 156 exist : forall x : A, P x -> sig P
adamc@212 157
adamc@70 158 ]]
adamc@70 159
adam@335 160 The family [sig] is a Curry-Howard twin of [ex], except that [sig] is in [Type], while [ex] is in [Prop]. That means that [sig] values can survive extraction, while [ex] proofs will always be erased. The actual details of extraction of [sig]s are more subtle, as we will see shortly.
adamc@70 161
adamc@70 162 We rewrite [pred_strong1], using some syntactic sugar for subset types. *)
adamc@70 163
adamc@70 164 Locate "{ _ : _ | _ }".
adamc@212 165 (** %\vspace{-.15in}% [[
adam@335 166 Notation
adamc@70 167 "{ x : A | P }" := sig (fun x : A => P)
adam@302 168 ]]
adam@302 169 *)
adamc@70 170
adamc@70 171 Definition pred_strong2 (s : {n : nat | n > 0}) : nat :=
adamc@70 172 match s with
adamc@70 173 | exist O pf => match zgtz pf with end
adamc@70 174 | exist (S n') _ => n'
adamc@70 175 end.
adamc@70 176
adam@335 177 (** To build a value of a subset type, we use the [exist] constructor, and the details of how to do that follow from the output of our earlier [Print sig] command (where we elided the extra information that parameter [A] is implicit). *)
adam@282 178
adam@282 179 Eval compute in pred_strong2 (exist _ 2 two_gt0).
adam@282 180 (** %\vspace{-.15in}% [[
adam@282 181 = 1
adam@282 182 : nat
adam@302 183 ]]
adam@302 184 *)
adam@282 185
adamc@70 186 Extraction pred_strong2.
adamc@70 187
adamc@70 188 (** %\begin{verbatim}
adamc@70 189 (** val pred_strong2 : nat -> nat **)
adamc@70 190
adamc@70 191 let pred_strong2 = function
adamc@70 192 | O -> assert false (* absurd case *)
adamc@70 193 | S n' -> n'
adamc@70 194 \end{verbatim}%
adamc@70 195
adamc@70 196 #<pre>
adamc@70 197 (** val pred_strong2 : nat -> nat **)
adamc@70 198
adamc@70 199 let pred_strong2 = function
adamc@70 200 | O -> assert false (* absurd case *)
adamc@70 201 | S n' -> n'
adamc@70 202 </pre>#
adamc@70 203
adamc@70 204 We arrive at the same OCaml code as was extracted from [pred_strong1], which may seem surprising at first. The reason is that a value of [sig] is a pair of two pieces, a value and a proof about it. Extraction erases the proof, which reduces the constructor [exist] of [sig] to taking just a single argument. An optimization eliminates uses of datatypes with single constructors taking single arguments, and we arrive back where we started.
adamc@70 205
adamc@70 206 We can continue on in the process of refining [pred]'s type. Let us change its result type to capture that the output is really the predecessor of the input. *)
adamc@70 207
adamc@70 208 Definition pred_strong3 (s : {n : nat | n > 0}) : {m : nat | proj1_sig s = S m} :=
adamc@70 209 match s return {m : nat | proj1_sig s = S m} with
adamc@70 210 | exist 0 pf => match zgtz pf with end
adamc@212 211 | exist (S n') pf => exist _ n' (refl_equal _)
adamc@70 212 end.
adamc@70 213
adam@282 214 Eval compute in pred_strong3 (exist _ 2 two_gt0).
adam@282 215 (** %\vspace{-.15in}% [[
adam@282 216 = exist (fun m : nat => 2 = S m) 1 (refl_equal 2)
adam@282 217 : {m : nat | proj1_sig (exist (lt 0) 2 two_gt0) = S m}
adam@335 218 ]]
adam@302 219 *)
adam@282 220
adam@423 221 (* begin hide *)
adam@423 222 Definition pred_strong := 0.
adam@423 223 (* end hide *)
adam@423 224
adam@335 225 (** The function %\index{Gallina terms!proj1\_sig}%[proj1_sig] extracts the base value from a subset type. It turns out that we need to include an explicit [return] clause here, since Coq's heuristics are not smart enough to propagate the result type that we wrote earlier.
adamc@70 226
adamc@70 227 By now, the reader is probably ready to believe that the new [pred_strong] leads to the same OCaml code as we have seen several times so far, and Coq does not disappoint. *)
adamc@70 228
adamc@70 229 Extraction pred_strong3.
adamc@70 230
adamc@70 231 (** %\begin{verbatim}
adamc@70 232 (** val pred_strong3 : nat -> nat **)
adamc@70 233
adamc@70 234 let pred_strong3 = function
adamc@70 235 | O -> assert false (* absurd case *)
adamc@70 236 | S n' -> n'
adamc@70 237 \end{verbatim}%
adamc@70 238
adamc@70 239 #<pre>
adamc@70 240 (** val pred_strong3 : nat -> nat **)
adamc@70 241
adamc@70 242 let pred_strong3 = function
adamc@70 243 | O -> assert false (* absurd case *)
adamc@70 244 | S n' -> n'
adamc@70 245 </pre>#
adamc@70 246
adam@335 247 We have managed to reach a type that is, in a formal sense, the most expressive possible for [pred]. Any other implementation of the same type must have the same input-output behavior. However, there is still room for improvement in making this kind of code easier to write. Here is a version that takes advantage of tactic-based theorem proving. We switch back to passing a separate proof argument instead of using a subset type for the function's input, because this leads to cleaner code. (Recall that [False_rec] is the [Set]-level induction principle for [False], which can be used to produce a value in any [Set] given a proof of [False].) *)
adamc@70 248
adam@297 249 Definition pred_strong4 : forall n : nat, n > 0 -> {m : nat | n = S m}.
adamc@70 250 refine (fun n =>
adamc@212 251 match n with
adamc@70 252 | O => fun _ => False_rec _ _
adamc@70 253 | S n' => fun _ => exist _ n' _
adamc@70 254 end).
adamc@212 255
adamc@77 256 (* begin thide *)
adam@335 257 (** We build [pred_strong4] using tactic-based proving, beginning with a [Definition] command that ends in a period before a definition is given. Such a command enters the interactive proving mode, with the type given for the new identifier as our proof goal. It may seem strange to change perspective so implicitly between programming and proving, but recall that programs and proofs are two sides of the same coin in Coq, thanks to the Curry-Howard correspondence.
adamc@70 258
adam@423 259 We do most of the work with the %\index{tactics!refine}%[refine] tactic, to which we pass a partial "proof" of the type we are trying to prove. There may be some pieces left to fill in, indicated by underscores. Any underscore that Coq cannot reconstruct with type inference is added as a proof subgoal. In this case, we have two subgoals:
adam@335 260
adam@335 261 %\vspace{.1in} \noindent 2 \coqdockw{subgoals}\vspace{-.1in}%#<tt>2 subgoals</tt>#
adam@335 262 [[
adamc@70 263
adamc@70 264 n : nat
adamc@70 265 _ : 0 > 0
adamc@70 266 ============================
adamc@70 267 False
adam@335 268 ]]
adam@335 269 %\noindent \coqdockw{subgoal} 2 \coqdockw{is}:%#<tt>subgoal 2 is</tt>#
adam@335 270 [[
adamc@70 271 S n' = S n'
adamc@70 272 ]]
adamc@70 273
adamc@70 274 We can see that the first subgoal comes from the second underscore passed to [False_rec], and the second subgoal comes from the second underscore passed to [exist]. In the first case, we see that, though we bound the proof variable with an underscore, it is still available in our proof context. It is hard to refer to underscore-named variables in manual proofs, but automation makes short work of them. Both subgoals are easy to discharge that way, so let us back up and ask to prove all subgoals automatically. *)
adamc@70 275
adamc@70 276 Undo.
adamc@70 277 refine (fun n =>
adamc@212 278 match n with
adamc@70 279 | O => fun _ => False_rec _ _
adamc@70 280 | S n' => fun _ => exist _ n' _
adamc@70 281 end); crush.
adamc@77 282 (* end thide *)
adamc@70 283 Defined.
adamc@70 284
adam@423 285 (** We end the "proof" with %\index{Vernacular commands!Defined}%[Defined] instead of [Qed], so that the definition we constructed remains visible. This contrasts to the case of ending a proof with [Qed], where the details of the proof are hidden afterward. (More formally, [Defined] marks an identifier as%\index{transparent}% _transparent_, allowing it to be unfolded; while [Qed] marks an identifier as%\index{opaque}% _opaque_, preventing unfolding.) Let us see what our proof script constructed. *)
adamc@70 286
adamc@70 287 Print pred_strong4.
adamc@212 288 (** %\vspace{-.15in}% [[
adamc@70 289 pred_strong4 =
adamc@70 290 fun n : nat =>
adamc@70 291 match n as n0 return (n0 > 0 -> {m : nat | n0 = S m}) with
adamc@70 292 | 0 =>
adamc@70 293 fun _ : 0 > 0 =>
adamc@70 294 False_rec {m : nat | 0 = S m}
adamc@70 295 (Bool.diff_false_true
adamc@70 296 (Bool.absurd_eq_true false
adamc@70 297 (Bool.diff_false_true
adamc@70 298 (Bool.absurd_eq_true false (pred_strong4_subproof n _)))))
adamc@70 299 | S n' =>
adamc@70 300 fun _ : S n' > 0 =>
adamc@70 301 exist (fun m : nat => S n' = S m) n' (refl_equal (S n'))
adamc@70 302 end
adamc@70 303 : forall n : nat, n > 0 -> {m : nat | n = S m}
adamc@212 304
adamc@70 305 ]]
adamc@70 306
adam@282 307 We see the code we entered, with some proofs filled in. The first proof obligation, the second argument to [False_rec], is filled in with a nasty-looking proof term that we can be glad we did not enter by hand. The second proof obligation is a simple reflexivity proof. *)
adamc@70 308
adam@282 309 Eval compute in pred_strong4 two_gt0.
adam@282 310 (** %\vspace{-.15in}% [[
adam@282 311 = exist (fun m : nat => 2 = S m) 1 (refl_equal 2)
adam@282 312 : {m : nat | 2 = S m}
adam@282 313 ]]
adam@282 314
adam@335 315 A tactic modifier called %\index{tactics!abstract}%[abstract] can be helpful for producing shorter terms, by automatically abstracting subgoals into named lemmas. *)
adam@335 316
adam@335 317 (* begin thide *)
adam@335 318 Definition pred_strong4' : forall n : nat, n > 0 -> {m : nat | n = S m}.
adam@335 319 refine (fun n =>
adam@335 320 match n with
adam@335 321 | O => fun _ => False_rec _ _
adam@335 322 | S n' => fun _ => exist _ n' _
adam@335 323 end); abstract crush.
adam@335 324 Defined.
adam@335 325
adam@335 326 Print pred_strong4'.
adam@335 327 (* end thide *)
adam@335 328
adam@335 329 (** %\vspace{-.15in}% [[
adam@335 330 pred_strong4' =
adam@335 331 fun n : nat =>
adam@335 332 match n as n0 return (n0 > 0 -> {m : nat | n0 = S m}) with
adam@335 333 | 0 =>
adam@335 334 fun _H : 0 > 0 =>
adam@335 335 False_rec {m : nat | 0 = S m} (pred_strong4'_subproof n _H)
adam@335 336 | S n' =>
adam@335 337 fun _H : S n' > 0 =>
adam@335 338 exist (fun m : nat => S n' = S m) n' (pred_strong4'_subproof0 n _H)
adam@335 339 end
adam@335 340 : forall n : nat, n > 0 -> {m : nat | n = S m}
adam@335 341 ]]
adam@335 342
adam@338 343 We are almost done with the ideal implementation of dependent predecessor. We can use Coq's syntax extension facility to arrive at code with almost no complexity beyond a Haskell or ML program with a complete specification in a comment. In this book, we will not dwell on the details of syntax extensions; the Coq manual gives a straightforward introduction to them. *)
adamc@70 344
adamc@70 345 Notation "!" := (False_rec _ _).
adamc@70 346 Notation "[ e ]" := (exist _ e _).
adamc@70 347
adam@297 348 Definition pred_strong5 : forall n : nat, n > 0 -> {m : nat | n = S m}.
adamc@70 349 refine (fun n =>
adamc@212 350 match n with
adamc@70 351 | O => fun _ => !
adamc@70 352 | S n' => fun _ => [n']
adamc@70 353 end); crush.
adamc@70 354 Defined.
adamc@71 355
adam@282 356 (** By default, notations are also used in pretty-printing terms, including results of evaluation. *)
adam@282 357
adam@282 358 Eval compute in pred_strong5 two_gt0.
adam@282 359 (** %\vspace{-.15in}% [[
adam@282 360 = [1]
adam@282 361 : {m : nat | 2 = S m}
adam@282 362 ]]
adam@282 363
adam@335 364 One other alternative is worth demonstrating. Recent Coq versions include a facility called %\index{Program}%[Program] that streamlines this style of definition. Here is a complete implementation using [Program].%\index{Vernacular commands!Obligation Tactic}\index{Vernacular commands!Program Definition}% *)
adamc@212 365
adamc@212 366 Obligation Tactic := crush.
adamc@212 367
adamc@212 368 Program Definition pred_strong6 (n : nat) (_ : n > 0) : {m : nat | n = S m} :=
adamc@212 369 match n with
adamc@212 370 | O => _
adamc@212 371 | S n' => n'
adamc@212 372 end.
adamc@212 373
adam@335 374 (** Printing the resulting definition of [pred_strong6] yields a term very similar to what we built with [refine]. [Program] can save time in writing programs that use subset types. Nonetheless, [refine] is often just as effective, and [refine] gives you more control over the form the final term takes, which can be useful when you want to prove additional theorems about your definition. [Program] will sometimes insert type casts that can complicate theorem proving. *)
adamc@212 375
adam@282 376 Eval compute in pred_strong6 two_gt0.
adam@282 377 (** %\vspace{-.15in}% [[
adam@282 378 = [1]
adam@282 379 : {m : nat | 2 = S m}
adam@302 380 ]]
adam@335 381
adam@335 382 In this case, we see that the new definition yields the same computational behavior as before. *)
adam@282 383
adamc@71 384
adamc@71 385 (** * Decidable Proposition Types *)
adamc@71 386
adam@335 387 (** There is another type in the standard library which captures the idea of program values that indicate which of two propositions is true.%\index{Gallina terms!sumbool}% *)
adamc@71 388
adam@423 389 (* begin hide *)
adam@423 390 Definition baz := sumbool.
adam@423 391 (* end hide *)
adam@423 392
adamc@71 393 Print sumbool.
adamc@212 394 (** %\vspace{-.15in}% [[
adamc@71 395 Inductive sumbool (A : Prop) (B : Prop) : Set :=
adamc@71 396 left : A -> {A} + {B} | right : B -> {A} + {B}
adamc@212 397 ]]
adamc@71 398
adamc@212 399 We can define some notations to make working with [sumbool] more convenient. *)
adamc@71 400
adamc@71 401 Notation "'Yes'" := (left _ _).
adamc@71 402 Notation "'No'" := (right _ _).
adamc@71 403 Notation "'Reduce' x" := (if x then Yes else No) (at level 50).
adamc@71 404
adamc@71 405 (** The [Reduce] notation is notable because it demonstrates how [if] is overloaded in Coq. The [if] form actually works when the test expression has any two-constructor inductive type. Moreover, in the [then] and [else] branches, the appropriate constructor arguments are bound. This is important when working with [sumbool]s, when we want to have the proof stored in the test expression available when proving the proof obligations generated in the appropriate branch.
adamc@71 406
adamc@71 407 Now we can write [eq_nat_dec], which compares two natural numbers, returning either a proof of their equality or a proof of their inequality. *)
adamc@71 408
adam@297 409 Definition eq_nat_dec : forall n m : nat, {n = m} + {n <> m}.
adamc@212 410 refine (fix f (n m : nat) : {n = m} + {n <> m} :=
adamc@212 411 match n, m with
adamc@71 412 | O, O => Yes
adamc@71 413 | S n', S m' => Reduce (f n' m')
adamc@71 414 | _, _ => No
adamc@71 415 end); congruence.
adamc@71 416 Defined.
adamc@71 417
adam@282 418 Eval compute in eq_nat_dec 2 2.
adam@282 419 (** %\vspace{-.15in}% [[
adam@282 420 = Yes
adam@282 421 : {2 = 2} + {2 <> 2}
adam@302 422 ]]
adam@302 423 *)
adam@282 424
adam@282 425 Eval compute in eq_nat_dec 2 3.
adam@282 426 (** %\vspace{-.15in}% [[
adam@282 427 = No
adam@341 428 : {2 = 3} + {2 <> 3}
adam@302 429 ]]
adam@302 430 *)
adam@282 431
adam@335 432 (** Note that the [Yes] and [No] notations are hiding proofs establishing the correctness of the outputs.
adam@335 433
adam@335 434 Our definition extracts to reasonable OCaml code. *)
adamc@71 435
adamc@71 436 Extraction eq_nat_dec.
adamc@71 437
adamc@71 438 (** %\begin{verbatim}
adamc@71 439 (** val eq_nat_dec : nat -> nat -> sumbool **)
adamc@71 440
adamc@71 441 let rec eq_nat_dec n m =
adamc@71 442 match n with
adamc@71 443 | O -> (match m with
adamc@71 444 | O -> Left
adamc@71 445 | S n0 -> Right)
adamc@71 446 | S n' -> (match m with
adamc@71 447 | O -> Right
adamc@71 448 | S m' -> eq_nat_dec n' m')
adamc@71 449 \end{verbatim}%
adamc@71 450
adamc@71 451 #<pre>
adamc@71 452 (** val eq_nat_dec : nat -> nat -> sumbool **)
adamc@71 453
adamc@71 454 let rec eq_nat_dec n m =
adamc@71 455 match n with
adamc@71 456 | O -> (match m with
adamc@71 457 | O -> Left
adamc@71 458 | S n0 -> Right)
adamc@71 459 | S n' -> (match m with
adamc@71 460 | O -> Right
adamc@71 461 | S m' -> eq_nat_dec n' m')
adamc@71 462 </pre>#
adamc@71 463
adam@335 464 Proving this kind of decidable equality result is so common that Coq comes with a tactic for automating it.%\index{tactics!decide equality}% *)
adamc@71 465
adamc@71 466 Definition eq_nat_dec' (n m : nat) : {n = m} + {n <> m}.
adamc@71 467 decide equality.
adamc@71 468 Defined.
adamc@71 469
adam@423 470 (** Curious readers can verify that the [decide equality] version extracts to the same OCaml code as our more manual version does. That OCaml code had one undesirable property, which is that it uses <<Left>> and <<Right>> constructors instead of the boolean values built into OCaml. We can fix this, by using Coq's facility for mapping Coq inductive types to OCaml variant types.%\index{Vernacular commands!Extract Inductive}% *)
adamc@71 471
adamc@71 472 Extract Inductive sumbool => "bool" ["true" "false"].
adamc@71 473 Extraction eq_nat_dec'.
adamc@71 474
adamc@71 475 (** %\begin{verbatim}
adamc@71 476 (** val eq_nat_dec' : nat -> nat -> bool **)
adamc@71 477
adamc@71 478 let rec eq_nat_dec' n m0 =
adamc@71 479 match n with
adamc@71 480 | O -> (match m0 with
adamc@71 481 | O -> true
adamc@71 482 | S n0 -> false)
adamc@71 483 | S n0 -> (match m0 with
adamc@71 484 | O -> false
adamc@71 485 | S n1 -> eq_nat_dec' n0 n1)
adamc@71 486 \end{verbatim}%
adamc@71 487
adamc@71 488 #<pre>
adamc@71 489 (** val eq_nat_dec' : nat -> nat -> bool **)
adamc@71 490
adamc@71 491 let rec eq_nat_dec' n m0 =
adamc@71 492 match n with
adamc@71 493 | O -> (match m0 with
adamc@71 494 | O -> true
adamc@71 495 | S n0 -> false)
adamc@71 496 | S n0 -> (match m0 with
adamc@71 497 | O -> false
adamc@71 498 | S n1 -> eq_nat_dec' n0 n1)
adamc@71 499 </pre># *)
adamc@72 500
adamc@72 501 (** %\smallskip%
adamc@72 502
adam@423 503 We can build "smart" versions of the usual boolean operators and put them to good use in certified programming. For instance, here is a [sumbool] version of boolean "or." *)
adamc@72 504
adam@337 505 (* EX: Write a function that decides if an element belongs to a list. *)
adam@337 506
adamc@77 507 (* begin thide *)
adamc@204 508 Notation "x || y" := (if x then Yes else Reduce y).
adamc@72 509
adamc@72 510 (** Let us use it for building a function that decides list membership. We need to assume the existence of an equality decision procedure for the type of list elements. *)
adamc@72 511
adamc@72 512 Section In_dec.
adamc@72 513 Variable A : Set.
adamc@72 514 Variable A_eq_dec : forall x y : A, {x = y} + {x <> y}.
adamc@72 515
adamc@72 516 (** The final function is easy to write using the techniques we have developed so far. *)
adamc@72 517
adamc@212 518 Definition In_dec : forall (x : A) (ls : list A), {In x ls} + {~ In x ls}.
adamc@212 519 refine (fix f (x : A) (ls : list A) : {In x ls} + {~ In x ls} :=
adamc@212 520 match ls with
adamc@72 521 | nil => No
adamc@72 522 | x' :: ls' => A_eq_dec x x' || f x ls'
adamc@72 523 end); crush.
adam@282 524 Defined.
adamc@72 525 End In_dec.
adamc@72 526
adam@282 527 Eval compute in In_dec eq_nat_dec 2 (1 :: 2 :: nil).
adam@282 528 (** %\vspace{-.15in}% [[
adam@282 529 = Yes
adam@282 530 : {In 2 (1 :: 2 :: nil)} + {~ In 2 (1 :: 2 :: nil)}
adam@302 531 ]]
adam@302 532 *)
adam@282 533
adam@282 534 Eval compute in In_dec eq_nat_dec 3 (1 :: 2 :: nil).
adam@282 535 (** %\vspace{-.15in}% [[
adam@282 536 = No
adam@282 537 : {In 3 (1 :: 2 :: nil)} + {~ In 3 (1 :: 2 :: nil)}
adam@302 538 ]]
adam@302 539 *)
adam@282 540
adamc@72 541 (** [In_dec] has a reasonable extraction to OCaml. *)
adamc@72 542
adamc@72 543 Extraction In_dec.
adamc@77 544 (* end thide *)
adamc@72 545
adamc@72 546 (** %\begin{verbatim}
adamc@72 547 (** val in_dec : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 list -> bool **)
adamc@72 548
adamc@72 549 let rec in_dec a_eq_dec x = function
adamc@72 550 | Nil -> false
adamc@72 551 | Cons (x', ls') ->
adamc@72 552 (match a_eq_dec x x' with
adamc@72 553 | true -> true
adamc@72 554 | false -> in_dec a_eq_dec x ls')
adamc@72 555 \end{verbatim}%
adamc@72 556
adamc@72 557 #<pre>
adamc@72 558 (** val in_dec : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 list -> bool **)
adamc@72 559
adamc@72 560 let rec in_dec a_eq_dec x = function
adamc@72 561 | Nil -> false
adamc@72 562 | Cons (x', ls') ->
adamc@72 563 (match a_eq_dec x x' with
adamc@72 564 | true -> true
adamc@72 565 | false -> in_dec a_eq_dec x ls')
adam@403 566 </pre>#
adam@403 567
adam@403 568 This is more or the less code for the corresponding function from the OCaml standard library. *)
adamc@72 569
adamc@72 570
adamc@72 571 (** * Partial Subset Types *)
adamc@72 572
adam@335 573 (** Our final implementation of dependent predecessor used a very specific argument type to ensure that execution could always complete normally. Sometimes we want to allow execution to fail, and we want a more principled way of signaling failure than returning a default value, as [pred] does for [0]. One approach is to define this type family %\index{Gallina terms!maybe}%[maybe], which is a version of [sig] that allows obligation-free failure. *)
adamc@73 574
adamc@89 575 Inductive maybe (A : Set) (P : A -> Prop) : Set :=
adamc@72 576 | Unknown : maybe P
adamc@72 577 | Found : forall x : A, P x -> maybe P.
adamc@72 578
adamc@73 579 (** We can define some new notations, analogous to those we defined for subset types. *)
adamc@73 580
adamc@72 581 Notation "{{ x | P }}" := (maybe (fun x => P)).
adamc@72 582 Notation "??" := (Unknown _).
adam@335 583 Notation "[| x |]" := (Found _ x _).
adamc@72 584
adamc@73 585 (** Now our next version of [pred] is trivial to write. *)
adamc@73 586
adam@297 587 Definition pred_strong7 : forall n : nat, {{m | n = S m}}.
adamc@73 588 refine (fun n =>
adam@380 589 match n return {{m | n = S m}} with
adamc@73 590 | O => ??
adam@335 591 | S n' => [|n'|]
adamc@73 592 end); trivial.
adamc@73 593 Defined.
adamc@73 594
adam@282 595 Eval compute in pred_strong7 2.
adam@282 596 (** %\vspace{-.15in}% [[
adam@335 597 = [|1|]
adam@282 598 : {{m | 2 = S m}}
adam@335 599 ]]
adam@302 600 *)
adam@282 601
adam@282 602 Eval compute in pred_strong7 0.
adam@282 603 (** %\vspace{-.15in}% [[
adam@282 604 = ??
adam@282 605 : {{m | 0 = S m}}
adam@282 606 ]]
adam@282 607
adam@335 608 Because we used [maybe], one valid implementation of the type we gave [pred_strong7] would return [??] in every case. We can strengthen the type to rule out such vacuous implementations, and the type family %\index{Gallina terms!sumor}%[sumor] from the standard library provides the easiest starting point. For type [A] and proposition [B], [A + {B}] desugars to [sumor A B], whose values are either values of [A] or proofs of [B]. *)
adamc@73 609
adam@423 610 (* begin hide *)
adam@423 611 Definition sumor' := sumor.
adam@423 612 (* end hide *)
adam@423 613
adamc@73 614 Print sumor.
adamc@212 615 (** %\vspace{-.15in}% [[
adamc@73 616 Inductive sumor (A : Type) (B : Prop) : Type :=
adamc@73 617 inleft : A -> A + {B} | inright : B -> A + {B}
adam@302 618 ]]
adam@302 619 *)
adamc@73 620
adamc@73 621 (** We add notations for easy use of the [sumor] constructors. The second notation is specialized to [sumor]s whose [A] parameters are instantiated with regular subset types, since this is how we will use [sumor] below. *)
adamc@73 622
adamc@73 623 Notation "!!" := (inright _ _).
adam@335 624 Notation "[|| x ||]" := (inleft _ [x]).
adamc@73 625
adam@335 626 (** Now we are ready to give the final version of possibly failing predecessor. The [sumor]-based type that we use is maximally expressive; any implementation of the type has the same input-output behavior. *)
adamc@73 627
adam@297 628 Definition pred_strong8 : forall n : nat, {m : nat | n = S m} + {n = 0}.
adamc@73 629 refine (fun n =>
adamc@212 630 match n with
adamc@73 631 | O => !!
adam@335 632 | S n' => [||n'||]
adamc@73 633 end); trivial.
adamc@73 634 Defined.
adamc@73 635
adam@282 636 Eval compute in pred_strong8 2.
adam@282 637 (** %\vspace{-.15in}% [[
adam@335 638 = [||1||]
adam@282 639 : {m : nat | 2 = S m} + {2 = 0}
adam@302 640 ]]
adam@302 641 *)
adam@282 642
adam@282 643 Eval compute in pred_strong8 0.
adam@282 644 (** %\vspace{-.15in}% [[
adam@282 645 = !!
adam@282 646 : {m : nat | 0 = S m} + {0 = 0}
adam@302 647 ]]
adam@302 648 *)
adam@282 649
adam@335 650 (** As with our other maximally expressive [pred] function, we arrive at quite simple output values, thanks to notations. *)
adam@335 651
adamc@73 652
adamc@73 653 (** * Monadic Notations *)
adamc@73 654
adam@423 655 (** We can treat [maybe] like a monad%~\cite{Monads}\index{monad}\index{failure monad}%, in the same way that the Haskell <<Maybe>> type is interpreted as a failure monad. Our [maybe] has the wrong type to be a literal monad, but a "bind"-like notation will still be helpful. *)
adamc@73 656
adamc@72 657 Notation "x <- e1 ; e2" := (match e1 with
adamc@72 658 | Unknown => ??
adamc@72 659 | Found x _ => e2
adamc@72 660 end)
adamc@72 661 (right associativity, at level 60).
adamc@72 662
adam@398 663 (** The meaning of [x <- e1; e2] is: First run [e1]. If it fails to find an answer, then announce failure for our derived computation, too. If [e1] _does_ find an answer, pass that answer on to [e2] to find the final result. The variable [x] can be considered bound in [e2].
adamc@73 664
adam@335 665 This notation is very helpful for composing richly typed procedures. For instance, here is a very simple implementation of a function to take the predecessors of two naturals at once. *)
adamc@73 666
adam@337 667 (* EX: Write a function that tries to compute predecessors of two [nat]s at once. *)
adam@337 668
adam@337 669 (* begin thide *)
adam@297 670 Definition doublePred : forall n1 n2 : nat, {{p | n1 = S (fst p) /\ n2 = S (snd p)}}.
adamc@73 671 refine (fun n1 n2 =>
adamc@212 672 m1 <- pred_strong7 n1;
adamc@212 673 m2 <- pred_strong7 n2;
adam@335 674 [|(m1, m2)|]); tauto.
adamc@73 675 Defined.
adam@337 676 (* end thide *)
adamc@73 677
adam@423 678 (** We can build a [sumor] version of the "bind" notation and use it to write a similarly straightforward version of this function. %The operator rendered here as $\longleftarrow$ is noted in the source as a less-than character followed by two hyphens.% *)
adamc@73 679
adamc@73 680 Notation "x <-- e1 ; e2" := (match e1 with
adamc@73 681 | inright _ => !!
adamc@73 682 | inleft (exist x _) => e2
adamc@73 683 end)
adamc@73 684 (right associativity, at level 60).
adamc@73 685
adamc@73 686 (** printing * $\times$ *)
adamc@73 687
adam@337 688 (* EX: Write a more expressively typed version of the last exercise. *)
adam@337 689
adam@337 690 (* begin thide *)
adam@297 691 Definition doublePred' : forall n1 n2 : nat,
adam@297 692 {p : nat * nat | n1 = S (fst p) /\ n2 = S (snd p)}
adamc@73 693 + {n1 = 0 \/ n2 = 0}.
adamc@73 694 refine (fun n1 n2 =>
adamc@212 695 m1 <-- pred_strong8 n1;
adamc@212 696 m2 <-- pred_strong8 n2;
adam@335 697 [||(m1, m2)||]); tauto.
adamc@73 698 Defined.
adam@337 699 (* end thide *)
adamc@72 700
adam@392 701 (** This example demonstrates how judicious selection of notations can hide complexities in the rich types of programs. *)
adam@392 702
adamc@72 703
adamc@72 704 (** * A Type-Checking Example *)
adamc@72 705
adam@335 706 (** We can apply these specification types to build a certified type checker for a simple expression language. *)
adamc@75 707
adamc@72 708 Inductive exp : Set :=
adamc@72 709 | Nat : nat -> exp
adamc@72 710 | Plus : exp -> exp -> exp
adamc@72 711 | Bool : bool -> exp
adamc@72 712 | And : exp -> exp -> exp.
adamc@72 713
adamc@75 714 (** We define a simple language of types and its typing rules, in the style introduced in Chapter 4. *)
adamc@75 715
adamc@72 716 Inductive type : Set := TNat | TBool.
adamc@72 717
adamc@72 718 Inductive hasType : exp -> type -> Prop :=
adamc@72 719 | HtNat : forall n,
adamc@72 720 hasType (Nat n) TNat
adamc@72 721 | HtPlus : forall e1 e2,
adamc@72 722 hasType e1 TNat
adamc@72 723 -> hasType e2 TNat
adamc@72 724 -> hasType (Plus e1 e2) TNat
adamc@72 725 | HtBool : forall b,
adamc@72 726 hasType (Bool b) TBool
adamc@72 727 | HtAnd : forall e1 e2,
adamc@72 728 hasType e1 TBool
adamc@72 729 -> hasType e2 TBool
adamc@72 730 -> hasType (And e1 e2) TBool.
adamc@72 731
adamc@75 732 (** It will be helpful to have a function for comparing two types. We build one using [decide equality]. *)
adamc@75 733
adamc@77 734 (* begin thide *)
adamc@75 735 Definition eq_type_dec : forall t1 t2 : type, {t1 = t2} + {t1 <> t2}.
adamc@72 736 decide equality.
adamc@72 737 Defined.
adamc@72 738
adam@423 739 (** Another notation complements the monadic notation for [maybe] that we defined earlier. Sometimes we want to include "assertions" in our procedures. That is, we want to run a decision procedure and fail if it fails; otherwise, we want to continue, with the proof that it produced made available to us. This infix notation captures that idea, for a procedure that returns an arbitrary two-constructor type. *)
adamc@75 740
adamc@73 741 Notation "e1 ;; e2" := (if e1 then e2 else ??)
adamc@73 742 (right associativity, at level 60).
adamc@73 743
adam@335 744 (** With that notation defined, we can implement a [typeCheck] function, whose code is only more complex than what we would write in ML because it needs to include some extra type annotations. Every [[|e|]] expression adds a [hasType] proof obligation, and [crush] makes short work of them when we add [hasType]'s constructors as hints. *)
adamc@77 745 (* end thide *)
adamc@75 746
adam@297 747 Definition typeCheck : forall e : exp, {{t | hasType e t}}.
adamc@77 748 (* begin thide *)
adamc@72 749 Hint Constructors hasType.
adamc@72 750
adamc@72 751 refine (fix F (e : exp) : {{t | hasType e t}} :=
adam@380 752 match e return {{t | hasType e t}} with
adam@335 753 | Nat _ => [|TNat|]
adamc@72 754 | Plus e1 e2 =>
adamc@72 755 t1 <- F e1;
adamc@72 756 t2 <- F e2;
adamc@72 757 eq_type_dec t1 TNat;;
adamc@72 758 eq_type_dec t2 TNat;;
adam@335 759 [|TNat|]
adam@335 760 | Bool _ => [|TBool|]
adamc@72 761 | And e1 e2 =>
adamc@72 762 t1 <- F e1;
adamc@72 763 t2 <- F e2;
adamc@72 764 eq_type_dec t1 TBool;;
adamc@72 765 eq_type_dec t2 TBool;;
adam@335 766 [|TBool|]
adamc@72 767 end); crush.
adamc@77 768 (* end thide *)
adamc@72 769 Defined.
adamc@72 770
adamc@75 771 (** Despite manipulating proofs, our type checker is easy to run. *)
adamc@75 772
adamc@72 773 Eval simpl in typeCheck (Nat 0).
adamc@212 774 (** %\vspace{-.15in}% [[
adam@335 775 = [|TNat|]
adamc@75 776 : {{t | hasType (Nat 0) t}}
adam@302 777 ]]
adam@302 778 *)
adamc@75 779
adamc@72 780 Eval simpl in typeCheck (Plus (Nat 1) (Nat 2)).
adamc@212 781 (** %\vspace{-.15in}% [[
adam@335 782 = [|TNat|]
adamc@75 783 : {{t | hasType (Plus (Nat 1) (Nat 2)) t}}
adam@302 784 ]]
adam@302 785 *)
adamc@75 786
adamc@72 787 Eval simpl in typeCheck (Plus (Nat 1) (Bool false)).
adamc@212 788 (** %\vspace{-.15in}% [[
adamc@75 789 = ??
adamc@75 790 : {{t | hasType (Plus (Nat 1) (Bool false)) t}}
adam@302 791 ]]
adam@302 792 *)
adamc@75 793
adam@335 794 (** The type checker also extracts to some reasonable OCaml code. *)
adamc@75 795
adamc@75 796 Extraction typeCheck.
adamc@75 797
adamc@75 798 (** %\begin{verbatim}
adamc@75 799 (** val typeCheck : exp -> type0 maybe **)
adamc@75 800
adamc@75 801 let rec typeCheck = function
adamc@75 802 | Nat n -> Found TNat
adamc@75 803 | Plus (e1, e2) ->
adamc@75 804 (match typeCheck e1 with
adamc@75 805 | Unknown -> Unknown
adamc@75 806 | Found t1 ->
adamc@75 807 (match typeCheck e2 with
adamc@75 808 | Unknown -> Unknown
adamc@75 809 | Found t2 ->
adamc@75 810 (match eq_type_dec t1 TNat with
adamc@75 811 | true ->
adamc@75 812 (match eq_type_dec t2 TNat with
adamc@75 813 | true -> Found TNat
adamc@75 814 | false -> Unknown)
adamc@75 815 | false -> Unknown)))
adamc@75 816 | Bool b -> Found TBool
adamc@75 817 | And (e1, e2) ->
adamc@75 818 (match typeCheck e1 with
adamc@75 819 | Unknown -> Unknown
adamc@75 820 | Found t1 ->
adamc@75 821 (match typeCheck e2 with
adamc@75 822 | Unknown -> Unknown
adamc@75 823 | Found t2 ->
adamc@75 824 (match eq_type_dec t1 TBool with
adamc@75 825 | true ->
adamc@75 826 (match eq_type_dec t2 TBool with
adamc@75 827 | true -> Found TBool
adamc@75 828 | false -> Unknown)
adamc@75 829 | false -> Unknown)))
adamc@75 830 \end{verbatim}%
adamc@75 831
adamc@75 832 #<pre>
adamc@75 833 (** val typeCheck : exp -> type0 maybe **)
adamc@75 834
adamc@75 835 let rec typeCheck = function
adamc@75 836 | Nat n -> Found TNat
adamc@75 837 | Plus (e1, e2) ->
adamc@75 838 (match typeCheck e1 with
adamc@75 839 | Unknown -> Unknown
adamc@75 840 | Found t1 ->
adamc@75 841 (match typeCheck e2 with
adamc@75 842 | Unknown -> Unknown
adamc@75 843 | Found t2 ->
adamc@75 844 (match eq_type_dec t1 TNat with
adamc@75 845 | true ->
adamc@75 846 (match eq_type_dec t2 TNat with
adamc@75 847 | true -> Found TNat
adamc@75 848 | false -> Unknown)
adamc@75 849 | false -> Unknown)))
adamc@75 850 | Bool b -> Found TBool
adamc@75 851 | And (e1, e2) ->
adamc@75 852 (match typeCheck e1 with
adamc@75 853 | Unknown -> Unknown
adamc@75 854 | Found t1 ->
adamc@75 855 (match typeCheck e2 with
adamc@75 856 | Unknown -> Unknown
adamc@75 857 | Found t2 ->
adamc@75 858 (match eq_type_dec t1 TBool with
adamc@75 859 | true ->
adamc@75 860 (match eq_type_dec t2 TBool with
adamc@75 861 | true -> Found TBool
adamc@75 862 | false -> Unknown)
adamc@75 863 | false -> Unknown)))
adamc@75 864 </pre># *)
adamc@75 865
adamc@75 866 (** %\smallskip%
adamc@75 867
adam@423 868 We can adapt this implementation to use [sumor], so that we know our type-checker only fails on ill-typed inputs. First, we define an analogue to the "assertion" notation. *)
adamc@73 869
adamc@77 870 (* begin thide *)
adamc@73 871 Notation "e1 ;;; e2" := (if e1 then e2 else !!)
adamc@73 872 (right associativity, at level 60).
adamc@73 873
adamc@75 874 (** Next, we prove a helpful lemma, which states that a given expression can have at most one type. *)
adamc@75 875
adamc@75 876 Lemma hasType_det : forall e t1,
adamc@73 877 hasType e t1
adam@335 878 -> forall t2, hasType e t2
adamc@73 879 -> t1 = t2.
adamc@73 880 induction 1; inversion 1; crush.
adamc@73 881 Qed.
adamc@73 882
adamc@75 883 (** Now we can define the type-checker. Its type expresses that it only fails on untypable expressions. *)
adamc@75 884
adamc@77 885 (* end thide *)
adam@297 886 Definition typeCheck' : forall e : exp, {t : type | hasType e t} + {forall t, ~ hasType e t}.
adamc@77 887 (* begin thide *)
adamc@73 888 Hint Constructors hasType.
adamc@75 889 (** We register all of the typing rules as hints. *)
adamc@75 890
adamc@73 891 Hint Resolve hasType_det.
adam@335 892 (** The lemma [hasType_det] will also be useful for proving proof obligations with contradictory contexts. Since its statement includes [forall]-bound variables that do not appear in its conclusion, only [eauto] will apply this hint. *)
adamc@73 893
adamc@75 894 (** Finally, the implementation of [typeCheck] can be transcribed literally, simply switching notations as needed. *)
adamc@212 895
adamc@212 896 refine (fix F (e : exp) : {t : type | hasType e t} + {forall t, ~ hasType e t} :=
adam@380 897 match e return {t : type | hasType e t} + {forall t, ~ hasType e t} with
adam@335 898 | Nat _ => [||TNat||]
adamc@73 899 | Plus e1 e2 =>
adamc@73 900 t1 <-- F e1;
adamc@73 901 t2 <-- F e2;
adamc@73 902 eq_type_dec t1 TNat;;;
adamc@73 903 eq_type_dec t2 TNat;;;
adam@335 904 [||TNat||]
adam@335 905 | Bool _ => [||TBool||]
adamc@73 906 | And e1 e2 =>
adamc@73 907 t1 <-- F e1;
adamc@73 908 t2 <-- F e2;
adamc@73 909 eq_type_dec t1 TBool;;;
adamc@73 910 eq_type_dec t2 TBool;;;
adam@335 911 [||TBool||]
adamc@73 912 end); clear F; crush' tt hasType; eauto.
adamc@75 913
adam@335 914 (** We clear [F], the local name for the recursive function, to avoid strange proofs that refer to recursive calls that we never make. The [crush] variant %\index{tactics!crush'}%[crush'] helps us by performing automatic inversion on instances of the predicates specified in its second argument. Once we throw in [eauto] to apply [hasType_det] for us, we have discharged all the subgoals. *)
adamc@77 915 (* end thide *)
adamc@212 916
adamc@212 917
adamc@73 918 Defined.
adamc@73 919
adamc@75 920 (** The short implementation here hides just how time-saving automation is. Every use of one of the notations adds a proof obligation, giving us 12 in total. Most of these obligations require multiple inversions and either uses of [hasType_det] or applications of [hasType] rules.
adamc@75 921
adam@335 922 Our new function remains easy to test: *)
adamc@75 923
adamc@73 924 Eval simpl in typeCheck' (Nat 0).
adamc@212 925 (** %\vspace{-.15in}% [[
adam@335 926 = [||TNat||]
adamc@75 927 : {t : type | hasType (Nat 0) t} +
adamc@75 928 {(forall t : type, ~ hasType (Nat 0) t)}
adam@302 929 ]]
adam@302 930 *)
adamc@75 931
adamc@73 932 Eval simpl in typeCheck' (Plus (Nat 1) (Nat 2)).
adamc@212 933 (** %\vspace{-.15in}% [[
adam@335 934 = [||TNat||]
adamc@75 935 : {t : type | hasType (Plus (Nat 1) (Nat 2)) t} +
adamc@75 936 {(forall t : type, ~ hasType (Plus (Nat 1) (Nat 2)) t)}
adam@302 937 ]]
adam@302 938 *)
adamc@75 939
adamc@73 940 Eval simpl in typeCheck' (Plus (Nat 1) (Bool false)).
adamc@212 941 (** %\vspace{-.15in}% [[
adamc@75 942 = !!
adamc@75 943 : {t : type | hasType (Plus (Nat 1) (Bool false)) t} +
adamc@75 944 {(forall t : type, ~ hasType (Plus (Nat 1) (Bool false)) t)}
adam@302 945 ]]
adam@335 946
adam@335 947 The results of simplifying calls to [typeCheck'] look deceptively similar to the results for [typeCheck], but now the types of the results provide more information. *)