adamc@221
|
1 (* Copyright (c) 2008-2009, Adam Chlipala
|
adamc@142
|
2 *
|
adamc@142
|
3 * This work is licensed under a
|
adamc@142
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@142
|
5 * Unported License.
|
adamc@142
|
6 * The license text is available at:
|
adamc@142
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@142
|
8 *)
|
adamc@142
|
9
|
adamc@142
|
10 (* begin hide *)
|
adamc@142
|
11 Require Import List.
|
adamc@142
|
12
|
adamc@142
|
13 Require Import Tactics MoreSpecif.
|
adamc@142
|
14
|
adamc@142
|
15 Set Implicit Arguments.
|
adamc@142
|
16 (* end hide *)
|
adamc@142
|
17
|
adamc@142
|
18
|
adamc@142
|
19 (** %\chapter{Proof by Reflection}% *)
|
adamc@142
|
20
|
adamc@142
|
21 (** The last chapter highlighted a very heuristic approach to proving. In this chapter, we will study an alternative technique, %\textit{%#<i>#proof by reflection#</i>#%}%. We will write, in Gallina, decision procedures with proofs of correctness, and we will appeal to these procedures in writing very short proofs. Such a proof is checked by running the decision procedure. The term %\textit{%#<i>#reflection#</i>#%}% applies because we will need to translate Gallina propositions into values of inductive types representing syntax, so that Gallina programs may analyze them. *)
|
adamc@142
|
22
|
adamc@142
|
23
|
adamc@142
|
24 (** * Proving Evenness *)
|
adamc@142
|
25
|
adamc@142
|
26 (** Proving that particular natural number constants are even is certainly something we would rather have happen automatically. The Ltac-programming techniques that we learned in the last chapter make it easy to implement such a procedure. *)
|
adamc@142
|
27
|
adamc@142
|
28 Inductive isEven : nat -> Prop :=
|
adamc@144
|
29 | Even_O : isEven O
|
adamc@144
|
30 | Even_SS : forall n, isEven n -> isEven (S (S n)).
|
adamc@142
|
31
|
adamc@148
|
32 (* begin thide *)
|
adamc@142
|
33 Ltac prove_even := repeat constructor.
|
adamc@148
|
34 (* end thide *)
|
adamc@142
|
35
|
adamc@142
|
36 Theorem even_256 : isEven 256.
|
adamc@142
|
37 prove_even.
|
adamc@142
|
38 Qed.
|
adamc@142
|
39
|
adamc@142
|
40 Print even_256.
|
adamc@221
|
41 (** %\vspace{-.15in}% [[
|
adamc@142
|
42 even_256 =
|
adamc@142
|
43 Even_SS
|
adamc@142
|
44 (Even_SS
|
adamc@142
|
45 (Even_SS
|
adamc@142
|
46 (Even_SS
|
adamc@221
|
47
|
adamc@142
|
48 ]]
|
adamc@142
|
49
|
adamc@221
|
50 %\noindent%...and so on. This procedure always works (at least on machines with infinite resources), but it has a serious drawback, which we see when we print the proof it generates that 256 is even. The final proof term has length linear in the input value. This seems like a shame, since we could write a trivial and trustworthy program to verify evenness of constants. The proof checker could simply call our program where needed.
|
adamc@142
|
51
|
adamc@142
|
52 It is also unfortunate not to have static typing guarantees that our tactic always behaves appropriately. Other invocations of similar tactics might fail with dynamic type errors, and we would not know about the bugs behind these errors until we happened to attempt to prove complex enough goals.
|
adamc@142
|
53
|
adamc@142
|
54 The techniques of proof by reflection address both complaints. We will be able to write proofs like this with constant size overhead beyond the size of the input, and we will do it with verified decision procedures written in Gallina.
|
adamc@142
|
55
|
adamc@221
|
56 For this example, we begin by using a type from the [MoreSpecif] module (included in the book source) to write a certified evenness checker. *)
|
adamc@142
|
57
|
adamc@142
|
58 Print partial.
|
adamc@221
|
59 (** %\vspace{-.15in}% [[
|
adamc@221
|
60 Inductive partial (P : Prop) : Set := Proved : P -> [P] | Uncertain : [P]
|
adamc@221
|
61
|
adamc@221
|
62 ]]
|
adamc@142
|
63
|
adamc@221
|
64 A [partial P] value is an optional proof of [P]. The notation [[P]] stands for [partial P]. *)
|
adamc@142
|
65
|
adamc@221
|
66 Local Open Scope partial_scope.
|
adamc@142
|
67
|
adamc@142
|
68 (** We bring into scope some notations for the [partial] type. These overlap with some of the notations we have seen previously for specification types, so they were placed in a separate scope that needs separate opening. *)
|
adamc@142
|
69
|
adamc@148
|
70 (* begin thide *)
|
adamc@142
|
71 Definition check_even (n : nat) : [isEven n].
|
adamc@142
|
72 Hint Constructors isEven.
|
adamc@142
|
73
|
adamc@142
|
74 refine (fix F (n : nat) : [isEven n] :=
|
adamc@221
|
75 match n with
|
adamc@142
|
76 | 0 => Yes
|
adamc@142
|
77 | 1 => No
|
adamc@142
|
78 | S (S n') => Reduce (F n')
|
adamc@142
|
79 end); auto.
|
adamc@142
|
80 Defined.
|
adamc@142
|
81
|
adamc@142
|
82 (** We can use dependent pattern-matching to write a function that performs a surprising feat. When given a [partial P], this function [partialOut] returns a proof of [P] if the [partial] value contains a proof, and it returns a (useless) proof of [True] otherwise. From the standpoint of ML and Haskell programming, it seems impossible to write such a type, but it is trivial with a [return] annotation. *)
|
adamc@142
|
83
|
adamc@142
|
84 Definition partialOut (P : Prop) (x : [P]) :=
|
adamc@142
|
85 match x return (match x with
|
adamc@142
|
86 | Proved _ => P
|
adamc@142
|
87 | Uncertain => True
|
adamc@142
|
88 end) with
|
adamc@142
|
89 | Proved pf => pf
|
adamc@142
|
90 | Uncertain => I
|
adamc@142
|
91 end.
|
adamc@142
|
92
|
adamc@142
|
93 (** It may seem strange to define a function like this. However, it turns out to be very useful in writing a reflective verison of our earlier [prove_even] tactic: *)
|
adamc@142
|
94
|
adamc@142
|
95 Ltac prove_even_reflective :=
|
adamc@142
|
96 match goal with
|
adamc@142
|
97 | [ |- isEven ?N] => exact (partialOut (check_even N))
|
adamc@142
|
98 end.
|
adamc@148
|
99 (* end thide *)
|
adamc@142
|
100
|
adamc@142
|
101 (** We identify which natural number we are considering, and we "prove" its evenness by pulling the proof out of the appropriate [check_even] call. *)
|
adamc@142
|
102
|
adamc@142
|
103 Theorem even_256' : isEven 256.
|
adamc@142
|
104 prove_even_reflective.
|
adamc@142
|
105 Qed.
|
adamc@142
|
106
|
adamc@142
|
107 Print even_256'.
|
adamc@221
|
108 (** %\vspace{-.15in}% [[
|
adamc@142
|
109 even_256' = partialOut (check_even 256)
|
adamc@142
|
110 : isEven 256
|
adamc@221
|
111
|
adamc@142
|
112 ]]
|
adamc@142
|
113
|
adamc@142
|
114 We can see a constant wrapper around the object of the proof. For any even number, this form of proof will suffice. What happens if we try the tactic with an odd number? *)
|
adamc@142
|
115
|
adamc@142
|
116 Theorem even_255 : isEven 255.
|
adamc@142
|
117 (** [[
|
adamc@142
|
118 prove_even_reflective.
|
adamc@142
|
119
|
adamc@142
|
120 User error: No matching clauses for match goal
|
adamc@221
|
121
|
adamc@142
|
122 ]]
|
adamc@142
|
123
|
adamc@142
|
124 Thankfully, the tactic fails. To see more precisely what goes wrong, we can run manually the body of the [match].
|
adamc@142
|
125
|
adamc@142
|
126 [[
|
adamc@142
|
127 exact (partialOut (check_even 255)).
|
adamc@142
|
128
|
adamc@142
|
129 Error: The term "partialOut (check_even 255)" has type
|
adamc@142
|
130 "match check_even 255 with
|
adamc@142
|
131 | Yes => isEven 255
|
adamc@142
|
132 | No => True
|
adamc@142
|
133 end" while it is expected to have type "isEven 255"
|
adamc@221
|
134
|
adamc@142
|
135 ]]
|
adamc@142
|
136
|
adamc@142
|
137 As usual, the type-checker performs no reductions to simplify error messages. If we reduced the first term ourselves, we would see that [check_even 255] reduces to a [No], so that the first term is equivalent to [True], which certainly does not unify with [isEven 255]. *)
|
adamc@221
|
138
|
adamc@142
|
139 Abort.
|
adamc@143
|
140
|
adamc@143
|
141
|
adamc@143
|
142 (** * Reflecting the Syntax of a Trivial Tautology Language *)
|
adamc@143
|
143
|
adamc@143
|
144 (** We might also like to have reflective proofs of trivial tautologies like this one: *)
|
adamc@143
|
145
|
adamc@143
|
146 Theorem true_galore : (True /\ True) -> (True \/ (True /\ (True -> True))).
|
adamc@143
|
147 tauto.
|
adamc@143
|
148 Qed.
|
adamc@143
|
149
|
adamc@143
|
150 Print true_galore.
|
adamc@221
|
151 (** %\vspace{-.15in}% [[
|
adamc@143
|
152 true_galore =
|
adamc@143
|
153 fun H : True /\ True =>
|
adamc@143
|
154 and_ind (fun _ _ : True => or_introl (True /\ (True -> True)) I) H
|
adamc@143
|
155 : True /\ True -> True \/ True /\ (True -> True)
|
adamc@221
|
156
|
adamc@143
|
157 ]]
|
adamc@143
|
158
|
adamc@143
|
159 As we might expect, the proof that [tauto] builds contains explicit applications of natural deduction rules. For large formulas, this can add a linear amount of proof size overhead, beyond the size of the input.
|
adamc@143
|
160
|
adamc@143
|
161 To write a reflective procedure for this class of goals, we will need to get into the actual "reflection" part of "proof by reflection." It is impossible to case-analyze a [Prop] in any way in Gallina. We must %\textit{%#<i>#reflect#</i>#%}% [Prop] into some type that we %\textit{%#<i>#can#</i>#%}% analyze. This inductive type is a good candidate: *)
|
adamc@143
|
162
|
adamc@148
|
163 (* begin thide *)
|
adamc@143
|
164 Inductive taut : Set :=
|
adamc@143
|
165 | TautTrue : taut
|
adamc@143
|
166 | TautAnd : taut -> taut -> taut
|
adamc@143
|
167 | TautOr : taut -> taut -> taut
|
adamc@143
|
168 | TautImp : taut -> taut -> taut.
|
adamc@143
|
169
|
adamc@143
|
170 (** We write a recursive function to "unreflect" this syntax back to [Prop]. *)
|
adamc@143
|
171
|
adamc@143
|
172 Fixpoint tautDenote (t : taut) : Prop :=
|
adamc@143
|
173 match t with
|
adamc@143
|
174 | TautTrue => True
|
adamc@143
|
175 | TautAnd t1 t2 => tautDenote t1 /\ tautDenote t2
|
adamc@143
|
176 | TautOr t1 t2 => tautDenote t1 \/ tautDenote t2
|
adamc@143
|
177 | TautImp t1 t2 => tautDenote t1 -> tautDenote t2
|
adamc@143
|
178 end.
|
adamc@143
|
179
|
adamc@143
|
180 (** It is easy to prove that every formula in the range of [tautDenote] is true. *)
|
adamc@143
|
181
|
adamc@143
|
182 Theorem tautTrue : forall t, tautDenote t.
|
adamc@143
|
183 induction t; crush.
|
adamc@143
|
184 Qed.
|
adamc@143
|
185
|
adamc@143
|
186 (** To use [tautTrue] to prove particular formulas, we need to implement the syntax reflection process. A recursive Ltac function does the job. *)
|
adamc@143
|
187
|
adamc@143
|
188 Ltac tautReflect P :=
|
adamc@143
|
189 match P with
|
adamc@143
|
190 | True => TautTrue
|
adamc@143
|
191 | ?P1 /\ ?P2 =>
|
adamc@143
|
192 let t1 := tautReflect P1 in
|
adamc@143
|
193 let t2 := tautReflect P2 in
|
adamc@143
|
194 constr:(TautAnd t1 t2)
|
adamc@143
|
195 | ?P1 \/ ?P2 =>
|
adamc@143
|
196 let t1 := tautReflect P1 in
|
adamc@143
|
197 let t2 := tautReflect P2 in
|
adamc@143
|
198 constr:(TautOr t1 t2)
|
adamc@143
|
199 | ?P1 -> ?P2 =>
|
adamc@143
|
200 let t1 := tautReflect P1 in
|
adamc@143
|
201 let t2 := tautReflect P2 in
|
adamc@143
|
202 constr:(TautImp t1 t2)
|
adamc@143
|
203 end.
|
adamc@143
|
204
|
adamc@143
|
205 (** With [tautReflect] available, it is easy to finish our reflective tactic. We look at the goal formula, reflect it, and apply [tautTrue] to the reflected formula. *)
|
adamc@143
|
206
|
adamc@143
|
207 Ltac obvious :=
|
adamc@143
|
208 match goal with
|
adamc@143
|
209 | [ |- ?P ] =>
|
adamc@143
|
210 let t := tautReflect P in
|
adamc@143
|
211 exact (tautTrue t)
|
adamc@143
|
212 end.
|
adamc@143
|
213
|
adamc@143
|
214 (** We can verify that [obvious] solves our original example, with a proof term that does not mention details of the proof. *)
|
adamc@148
|
215 (* end thide *)
|
adamc@143
|
216
|
adamc@143
|
217 Theorem true_galore' : (True /\ True) -> (True \/ (True /\ (True -> True))).
|
adamc@143
|
218 obvious.
|
adamc@143
|
219 Qed.
|
adamc@143
|
220
|
adamc@143
|
221 Print true_galore'.
|
adamc@143
|
222
|
adamc@221
|
223 (** %\vspace{-.15in}% [[
|
adamc@143
|
224 true_galore' =
|
adamc@143
|
225 tautTrue
|
adamc@143
|
226 (TautImp (TautAnd TautTrue TautTrue)
|
adamc@143
|
227 (TautOr TautTrue (TautAnd TautTrue (TautImp TautTrue TautTrue))))
|
adamc@143
|
228 : True /\ True -> True \/ True /\ (True -> True)
|
adamc@221
|
229
|
adamc@143
|
230 ]]
|
adamc@143
|
231
|
adamc@143
|
232 It is worth considering how the reflective tactic improves on a pure-Ltac implementation. The formula reflection process is just as ad-hoc as before, so we gain little there. In general, proofs will be more complicated than formula translation, and the "generic proof rule" that we apply here %\textit{%#<i>#is#</i>#%}% on much better formal footing than a recursive Ltac function. The dependent type of the proof guarantees that it "works" on any input formula. This is all in addition to the proof-size improvement that we have already seen. *)
|
adamc@144
|
233
|
adamc@144
|
234
|
adamc@145
|
235 (** * A Monoid Expression Simplifier *)
|
adamc@145
|
236
|
adamc@146
|
237 (** Proof by reflection does not require encoding of all of the syntax in a goal. We can insert "variables" in our syntax types to allow injection of arbitrary pieces, even if we cannot apply specialized reasoning to them. In this section, we explore that possibility by writing a tactic for normalizing monoid equations. *)
|
adamc@146
|
238
|
adamc@145
|
239 Section monoid.
|
adamc@145
|
240 Variable A : Set.
|
adamc@145
|
241 Variable e : A.
|
adamc@145
|
242 Variable f : A -> A -> A.
|
adamc@145
|
243
|
adamc@145
|
244 Infix "+" := f.
|
adamc@145
|
245
|
adamc@145
|
246 Hypothesis assoc : forall a b c, (a + b) + c = a + (b + c).
|
adamc@145
|
247 Hypothesis identl : forall a, e + a = a.
|
adamc@145
|
248 Hypothesis identr : forall a, a + e = a.
|
adamc@145
|
249
|
adamc@146
|
250 (** We add variables and hypotheses characterizing an arbitrary instance of the algebraic structure of monoids. We have an associative binary operator and an identity element for it.
|
adamc@146
|
251
|
adamc@146
|
252 It is easy to define an expression tree type for monoid expressions. A [Var] constructor is a "catch-all" case for subexpressions that we cannot model. These subexpressions could be actual Gallina variables, or they could just use functions that our tactic is unable to understand. *)
|
adamc@146
|
253
|
adamc@148
|
254 (* begin thide *)
|
adamc@145
|
255 Inductive mexp : Set :=
|
adamc@145
|
256 | Ident : mexp
|
adamc@145
|
257 | Var : A -> mexp
|
adamc@145
|
258 | Op : mexp -> mexp -> mexp.
|
adamc@145
|
259
|
adamc@146
|
260 (** Next, we write an "un-reflect" function. *)
|
adamc@146
|
261
|
adamc@145
|
262 Fixpoint mdenote (me : mexp) : A :=
|
adamc@145
|
263 match me with
|
adamc@145
|
264 | Ident => e
|
adamc@145
|
265 | Var v => v
|
adamc@145
|
266 | Op me1 me2 => mdenote me1 + mdenote me2
|
adamc@145
|
267 end.
|
adamc@145
|
268
|
adamc@146
|
269 (** We will normalize expressions by flattening them into lists, via associativity, so it is helpful to have a denotation function for lists of monoid values. *)
|
adamc@146
|
270
|
adamc@145
|
271 Fixpoint mldenote (ls : list A) : A :=
|
adamc@145
|
272 match ls with
|
adamc@145
|
273 | nil => e
|
adamc@145
|
274 | x :: ls' => x + mldenote ls'
|
adamc@145
|
275 end.
|
adamc@145
|
276
|
adamc@146
|
277 (** The flattening function itself is easy to implement. *)
|
adamc@146
|
278
|
adamc@145
|
279 Fixpoint flatten (me : mexp) : list A :=
|
adamc@145
|
280 match me with
|
adamc@145
|
281 | Ident => nil
|
adamc@145
|
282 | Var x => x :: nil
|
adamc@145
|
283 | Op me1 me2 => flatten me1 ++ flatten me2
|
adamc@145
|
284 end.
|
adamc@145
|
285
|
adamc@146
|
286 (** [flatten] has a straightforward correctness proof in terms of our [denote] functions. *)
|
adamc@146
|
287
|
adamc@146
|
288 Lemma flatten_correct' : forall ml2 ml1,
|
adamc@146
|
289 mldenote ml1 + mldenote ml2 = mldenote (ml1 ++ ml2).
|
adamc@145
|
290 induction ml1; crush.
|
adamc@145
|
291 Qed.
|
adamc@145
|
292
|
adamc@145
|
293 Theorem flatten_correct : forall me, mdenote me = mldenote (flatten me).
|
adamc@145
|
294 Hint Resolve flatten_correct'.
|
adamc@145
|
295
|
adamc@145
|
296 induction me; crush.
|
adamc@145
|
297 Qed.
|
adamc@145
|
298
|
adamc@146
|
299 (** Now it is easy to prove a theorem that will be the main tool behind our simplification tactic. *)
|
adamc@146
|
300
|
adamc@146
|
301 Theorem monoid_reflect : forall me1 me2,
|
adamc@146
|
302 mldenote (flatten me1) = mldenote (flatten me2)
|
adamc@146
|
303 -> mdenote me1 = mdenote me2.
|
adamc@145
|
304 intros; repeat rewrite flatten_correct; assumption.
|
adamc@145
|
305 Qed.
|
adamc@145
|
306
|
adamc@146
|
307 (** We implement reflection into the [mexp] type. *)
|
adamc@146
|
308
|
adamc@146
|
309 Ltac reflect me :=
|
adamc@146
|
310 match me with
|
adamc@145
|
311 | e => Ident
|
adamc@146
|
312 | ?me1 + ?me2 =>
|
adamc@146
|
313 let r1 := reflect me1 in
|
adamc@146
|
314 let r2 := reflect me2 in
|
adamc@145
|
315 constr:(Op r1 r2)
|
adamc@146
|
316 | _ => constr:(Var me)
|
adamc@145
|
317 end.
|
adamc@145
|
318
|
adamc@146
|
319 (** The final [monoid] tactic works on goals that equate two monoid terms. We reflect each and change the goal to refer to the reflected versions, finishing off by applying [monoid_reflect] and simplifying uses of [mldenote]. *)
|
adamc@146
|
320
|
adamc@145
|
321 Ltac monoid :=
|
adamc@145
|
322 match goal with
|
adamc@146
|
323 | [ |- ?me1 = ?me2 ] =>
|
adamc@146
|
324 let r1 := reflect me1 in
|
adamc@146
|
325 let r2 := reflect me2 in
|
adamc@145
|
326 change (mdenote r1 = mdenote r2);
|
adamc@145
|
327 apply monoid_reflect; simpl mldenote
|
adamc@145
|
328 end.
|
adamc@145
|
329
|
adamc@146
|
330 (** We can make short work of theorems like this one: *)
|
adamc@146
|
331
|
adamc@148
|
332 (* end thide *)
|
adamc@148
|
333
|
adamc@145
|
334 Theorem t1 : forall a b c d, a + b + c + d = a + (b + c) + d.
|
adamc@146
|
335 intros; monoid.
|
adamc@146
|
336 (** [[
|
adamc@146
|
337 ============================
|
adamc@146
|
338 a + (b + (c + (d + e))) = a + (b + (c + (d + e)))
|
adamc@221
|
339
|
adamc@146
|
340 ]]
|
adamc@146
|
341
|
adamc@146
|
342 [monoid] has canonicalized both sides of the equality, such that we can finish the proof by reflexivity. *)
|
adamc@146
|
343
|
adamc@145
|
344 reflexivity.
|
adamc@145
|
345 Qed.
|
adamc@146
|
346
|
adamc@146
|
347 (** It is interesting to look at the form of the proof. *)
|
adamc@146
|
348
|
adamc@146
|
349 Print t1.
|
adamc@221
|
350 (** %\vspace{-.15in}% [[
|
adamc@146
|
351 t1 =
|
adamc@146
|
352 fun a b c d : A =>
|
adamc@146
|
353 monoid_reflect (Op (Op (Op (Var a) (Var b)) (Var c)) (Var d))
|
adamc@146
|
354 (Op (Op (Var a) (Op (Var b) (Var c))) (Var d))
|
adamc@146
|
355 (refl_equal (a + (b + (c + (d + e)))))
|
adamc@146
|
356 : forall a b c d : A, a + b + c + d = a + (b + c) + d
|
adamc@221
|
357
|
adamc@146
|
358 ]]
|
adamc@146
|
359
|
adamc@146
|
360 The proof term contains only restatements of the equality operands in reflected form, followed by a use of reflexivity on the shared canonical form. *)
|
adamc@221
|
361
|
adamc@145
|
362 End monoid.
|
adamc@145
|
363
|
adamc@146
|
364 (** Extensions of this basic approach are used in the implementations of the [ring] and [field] tactics that come packaged with Coq. *)
|
adamc@146
|
365
|
adamc@145
|
366
|
adamc@144
|
367 (** * A Smarter Tautology Solver *)
|
adamc@144
|
368
|
adamc@221
|
369 (** Now we are ready to revisit our earlier tautology solver example. We want to broaden the scope of the tactic to include formulas whose truth is not syntactically apparent. We will want to allow injection of arbitrary formulas, like we allowed arbitrary monoid expressions in the last example. Since we are working in a richer theory, it is important to be able to use equalities between different injected formulas. For instance, we cannot prove [P -> P] by translating the formula into a value like [Imp (Var P) (Var P)], because a Gallina function has no way of comparing the two [P]s for equality.
|
adamc@147
|
370
|
adamc@147
|
371 To arrive at a nice implementation satisfying these criteria, we introduce the [quote] tactic and its associated library. *)
|
adamc@147
|
372
|
adamc@144
|
373 Require Import Quote.
|
adamc@144
|
374
|
adamc@148
|
375 (* begin thide *)
|
adamc@144
|
376 Inductive formula : Set :=
|
adamc@144
|
377 | Atomic : index -> formula
|
adamc@144
|
378 | Truth : formula
|
adamc@144
|
379 | Falsehood : formula
|
adamc@144
|
380 | And : formula -> formula -> formula
|
adamc@144
|
381 | Or : formula -> formula -> formula
|
adamc@144
|
382 | Imp : formula -> formula -> formula.
|
adamc@144
|
383
|
adamc@147
|
384 (** The type [index] comes from the [Quote] library and represents a countable variable type. The rest of [formula]'s definition should be old hat by now.
|
adamc@147
|
385
|
adamc@147
|
386 The [quote] tactic will implement injection from [Prop] into [formula] for us, but it is not quite as smart as we might like. In particular, it interprets implications incorrectly, so we will need to declare a wrapper definition for implication, as we did in the last chapter. *)
|
adamc@144
|
387
|
adamc@144
|
388 Definition imp (P1 P2 : Prop) := P1 -> P2.
|
adamc@144
|
389 Infix "-->" := imp (no associativity, at level 95).
|
adamc@144
|
390
|
adamc@147
|
391 (** Now we can define our denotation function. *)
|
adamc@147
|
392
|
adamc@147
|
393 Definition asgn := varmap Prop.
|
adamc@147
|
394
|
adamc@144
|
395 Fixpoint formulaDenote (atomics : asgn) (f : formula) : Prop :=
|
adamc@144
|
396 match f with
|
adamc@144
|
397 | Atomic v => varmap_find False v atomics
|
adamc@144
|
398 | Truth => True
|
adamc@144
|
399 | Falsehood => False
|
adamc@144
|
400 | And f1 f2 => formulaDenote atomics f1 /\ formulaDenote atomics f2
|
adamc@144
|
401 | Or f1 f2 => formulaDenote atomics f1 \/ formulaDenote atomics f2
|
adamc@144
|
402 | Imp f1 f2 => formulaDenote atomics f1 --> formulaDenote atomics f2
|
adamc@144
|
403 end.
|
adamc@144
|
404
|
adamc@147
|
405 (** The [varmap] type family implements maps from [index] values. In this case, we define an assignment as a map from variables to [Prop]s. [formulaDenote] works with an assignment, and we use the [varmap_find] function to consult the assignment in the [Atomic] case. The first argument to [varmap_find] is a default value, in case the variable is not found. *)
|
adamc@147
|
406
|
adamc@144
|
407 Section my_tauto.
|
adamc@144
|
408 Variable atomics : asgn.
|
adamc@144
|
409
|
adamc@144
|
410 Definition holds (v : index) := varmap_find False v atomics.
|
adamc@144
|
411
|
adamc@147
|
412 (** We define some shorthand for a particular variable being true, and now we are ready to define some helpful functions based on the [ListSet] module of the standard library, which (unsurprisingly) presents a view of lists as sets. *)
|
adamc@147
|
413
|
adamc@144
|
414 Require Import ListSet.
|
adamc@144
|
415
|
adamc@144
|
416 Definition index_eq : forall x y : index, {x = y} + {x <> y}.
|
adamc@144
|
417 decide equality.
|
adamc@144
|
418 Defined.
|
adamc@144
|
419
|
adamc@144
|
420 Definition add (s : set index) (v : index) := set_add index_eq v s.
|
adamc@147
|
421
|
adamc@221
|
422 Definition In_dec : forall v (s : set index), {In v s} + {~ In v s}.
|
adamc@221
|
423 Local Open Scope specif_scope.
|
adamc@144
|
424
|
adamc@221
|
425 intro; refine (fix F (s : set index) : {In v s} + {~ In v s} :=
|
adamc@221
|
426 match s with
|
adamc@144
|
427 | nil => No
|
adamc@144
|
428 | v' :: s' => index_eq v' v || F s'
|
adamc@144
|
429 end); crush.
|
adamc@144
|
430 Defined.
|
adamc@144
|
431
|
adamc@147
|
432 (** We define what it means for all members of an index set to represent true propositions, and we prove some lemmas about this notion. *)
|
adamc@147
|
433
|
adamc@144
|
434 Fixpoint allTrue (s : set index) : Prop :=
|
adamc@144
|
435 match s with
|
adamc@144
|
436 | nil => True
|
adamc@144
|
437 | v :: s' => holds v /\ allTrue s'
|
adamc@144
|
438 end.
|
adamc@144
|
439
|
adamc@144
|
440 Theorem allTrue_add : forall v s,
|
adamc@144
|
441 allTrue s
|
adamc@144
|
442 -> holds v
|
adamc@144
|
443 -> allTrue (add s v).
|
adamc@144
|
444 induction s; crush;
|
adamc@144
|
445 match goal with
|
adamc@144
|
446 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@144
|
447 end; crush.
|
adamc@144
|
448 Qed.
|
adamc@144
|
449
|
adamc@144
|
450 Theorem allTrue_In : forall v s,
|
adamc@144
|
451 allTrue s
|
adamc@144
|
452 -> set_In v s
|
adamc@144
|
453 -> varmap_find False v atomics.
|
adamc@144
|
454 induction s; crush.
|
adamc@144
|
455 Qed.
|
adamc@144
|
456
|
adamc@144
|
457 Hint Resolve allTrue_add allTrue_In.
|
adamc@144
|
458
|
adamc@221
|
459 Local Open Scope partial_scope.
|
adamc@144
|
460
|
adamc@147
|
461 (** Now we can write a function [forward] which implements deconstruction of hypotheses. It has a dependent type, in the style of Chapter 6, guaranteeing correctness. The arguments to [forward] are a goal formula [f], a set [known] of atomic formulas that we may assume are true, a hypothesis formula [hyp], and a success continuation [cont] that we call when we have extended [known] to hold new truths implied by [hyp]. *)
|
adamc@147
|
462
|
adamc@144
|
463 Definition forward (f : formula) (known : set index) (hyp : formula)
|
adamc@144
|
464 (cont : forall known', [allTrue known' -> formulaDenote atomics f])
|
adamc@144
|
465 : [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f].
|
adamc@144
|
466 refine (fix F (f : formula) (known : set index) (hyp : formula)
|
adamc@221
|
467 (cont : forall known', [allTrue known' -> formulaDenote atomics f])
|
adamc@144
|
468 : [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f] :=
|
adamc@221
|
469 match hyp with
|
adamc@144
|
470 | Atomic v => Reduce (cont (add known v))
|
adamc@144
|
471 | Truth => Reduce (cont known)
|
adamc@144
|
472 | Falsehood => Yes
|
adamc@144
|
473 | And h1 h2 =>
|
adamc@144
|
474 Reduce (F (Imp h2 f) known h1 (fun known' =>
|
adamc@144
|
475 Reduce (F f known' h2 cont)))
|
adamc@144
|
476 | Or h1 h2 => F f known h1 cont && F f known h2 cont
|
adamc@144
|
477 | Imp _ _ => Reduce (cont known)
|
adamc@144
|
478 end); crush.
|
adamc@144
|
479 Defined.
|
adamc@144
|
480
|
adamc@147
|
481 (** A [backward] function implements analysis of the final goal. It calls [forward] to handle implications. *)
|
adamc@147
|
482
|
adamc@221
|
483 Definition backward (known : set index) (f : formula)
|
adamc@221
|
484 : [allTrue known -> formulaDenote atomics f].
|
adamc@221
|
485 refine (fix F (known : set index) (f : formula)
|
adamc@221
|
486 : [allTrue known -> formulaDenote atomics f] :=
|
adamc@221
|
487 match f with
|
adamc@144
|
488 | Atomic v => Reduce (In_dec v known)
|
adamc@144
|
489 | Truth => Yes
|
adamc@144
|
490 | Falsehood => No
|
adamc@144
|
491 | And f1 f2 => F known f1 && F known f2
|
adamc@144
|
492 | Or f1 f2 => F known f1 || F known f2
|
adamc@144
|
493 | Imp f1 f2 => forward f2 known f1 (fun known' => F known' f2)
|
adamc@144
|
494 end); crush; eauto.
|
adamc@144
|
495 Defined.
|
adamc@144
|
496
|
adamc@147
|
497 (** A simple wrapper around [backward] gives us the usual type of a partial decision procedure. *)
|
adamc@147
|
498
|
adamc@144
|
499 Definition my_tauto (f : formula) : [formulaDenote atomics f].
|
adamc@144
|
500 intro; refine (Reduce (backward nil f)); crush.
|
adamc@144
|
501 Defined.
|
adamc@144
|
502 End my_tauto.
|
adamc@144
|
503
|
adamc@147
|
504 (** Our final tactic implementation is now fairly straightforward. First, we [intro] all quantifiers that do not bind [Prop]s. Then we call the [quote] tactic, which implements the reflection for us. Finally, we are able to construct an exact proof via [partialOut] and the [my_tauto] Gallina function. *)
|
adamc@147
|
505
|
adamc@144
|
506 Ltac my_tauto :=
|
adamc@144
|
507 repeat match goal with
|
adamc@144
|
508 | [ |- forall x : ?P, _ ] =>
|
adamc@144
|
509 match type of P with
|
adamc@144
|
510 | Prop => fail 1
|
adamc@144
|
511 | _ => intro
|
adamc@144
|
512 end
|
adamc@144
|
513 end;
|
adamc@144
|
514 quote formulaDenote;
|
adamc@144
|
515 match goal with
|
adamc@144
|
516 | [ |- formulaDenote ?m ?f ] => exact (partialOut (my_tauto m f))
|
adamc@144
|
517 end.
|
adamc@148
|
518 (* end thide *)
|
adamc@144
|
519
|
adamc@147
|
520 (** A few examples demonstrate how the tactic works. *)
|
adamc@147
|
521
|
adamc@144
|
522 Theorem mt1 : True.
|
adamc@144
|
523 my_tauto.
|
adamc@144
|
524 Qed.
|
adamc@144
|
525
|
adamc@144
|
526 Print mt1.
|
adamc@221
|
527 (** %\vspace{-.15in}% [[
|
adamc@147
|
528 mt1 = partialOut (my_tauto (Empty_vm Prop) Truth)
|
adamc@147
|
529 : True
|
adamc@221
|
530
|
adamc@147
|
531 ]]
|
adamc@147
|
532
|
adamc@147
|
533 We see [my_tauto] applied with an empty [varmap], since every subformula is handled by [formulaDenote]. *)
|
adamc@144
|
534
|
adamc@144
|
535 Theorem mt2 : forall x y : nat, x = y --> x = y.
|
adamc@144
|
536 my_tauto.
|
adamc@144
|
537 Qed.
|
adamc@144
|
538
|
adamc@144
|
539 Print mt2.
|
adamc@221
|
540 (** %\vspace{-.15in}% [[
|
adamc@147
|
541 mt2 =
|
adamc@147
|
542 fun x y : nat =>
|
adamc@147
|
543 partialOut
|
adamc@147
|
544 (my_tauto (Node_vm (x = y) (Empty_vm Prop) (Empty_vm Prop))
|
adamc@147
|
545 (Imp (Atomic End_idx) (Atomic End_idx)))
|
adamc@147
|
546 : forall x y : nat, x = y --> x = y
|
adamc@221
|
547
|
adamc@147
|
548 ]]
|
adamc@147
|
549
|
adamc@147
|
550 Crucially, both instances of [x = y] are represented with the same index, [End_idx]. The value of this index only needs to appear once in the [varmap], whose form reveals that [varmap]s are represented as binary trees, where [index] values denote paths from tree roots to leaves. *)
|
adamc@144
|
551
|
adamc@144
|
552 Theorem mt3 : forall x y z,
|
adamc@144
|
553 (x < y /\ y > z) \/ (y > z /\ x < S y)
|
adamc@144
|
554 --> y > z /\ (x < y \/ x < S y).
|
adamc@144
|
555 my_tauto.
|
adamc@144
|
556 Qed.
|
adamc@144
|
557
|
adamc@144
|
558 Print mt3.
|
adamc@221
|
559 (** %\vspace{-.15in}% [[
|
adamc@147
|
560 fun x y z : nat =>
|
adamc@147
|
561 partialOut
|
adamc@147
|
562 (my_tauto
|
adamc@147
|
563 (Node_vm (x < S y) (Node_vm (x < y) (Empty_vm Prop) (Empty_vm Prop))
|
adamc@147
|
564 (Node_vm (y > z) (Empty_vm Prop) (Empty_vm Prop)))
|
adamc@147
|
565 (Imp
|
adamc@147
|
566 (Or (And (Atomic (Left_idx End_idx)) (Atomic (Right_idx End_idx)))
|
adamc@147
|
567 (And (Atomic (Right_idx End_idx)) (Atomic End_idx)))
|
adamc@147
|
568 (And (Atomic (Right_idx End_idx))
|
adamc@147
|
569 (Or (Atomic (Left_idx End_idx)) (Atomic End_idx)))))
|
adamc@147
|
570 : forall x y z : nat,
|
adamc@147
|
571 x < y /\ y > z \/ y > z /\ x < S y --> y > z /\ (x < y \/ x < S y)
|
adamc@221
|
572
|
adamc@147
|
573 ]]
|
adamc@147
|
574
|
adamc@147
|
575 Our goal contained three distinct atomic formulas, and we see that a three-element [varmap] is generated.
|
adamc@147
|
576
|
adamc@147
|
577 It can be interesting to observe differences between the level of repetition in proof terms generated by [my_tauto] and [tauto] for especially trivial theorems. *)
|
adamc@144
|
578
|
adamc@144
|
579 Theorem mt4 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False.
|
adamc@144
|
580 my_tauto.
|
adamc@144
|
581 Qed.
|
adamc@144
|
582
|
adamc@144
|
583 Print mt4.
|
adamc@221
|
584 (** %\vspace{-.15in}% [[
|
adamc@147
|
585 mt4 =
|
adamc@147
|
586 partialOut
|
adamc@147
|
587 (my_tauto (Empty_vm Prop)
|
adamc@147
|
588 (Imp
|
adamc@147
|
589 (And Truth
|
adamc@147
|
590 (And Truth
|
adamc@147
|
591 (And Truth (And Truth (And Truth (And Truth Falsehood))))))
|
adamc@147
|
592 Falsehood))
|
adamc@147
|
593 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False
|
adamc@147
|
594 ]] *)
|
adamc@144
|
595
|
adamc@144
|
596 Theorem mt4' : True /\ True /\ True /\ True /\ True /\ True /\ False -> False.
|
adamc@144
|
597 tauto.
|
adamc@144
|
598 Qed.
|
adamc@144
|
599
|
adamc@144
|
600 Print mt4'.
|
adamc@221
|
601 (** %\vspace{-.15in}% [[
|
adamc@147
|
602 mt4' =
|
adamc@147
|
603 fun H : True /\ True /\ True /\ True /\ True /\ True /\ False =>
|
adamc@147
|
604 and_ind
|
adamc@147
|
605 (fun (_ : True) (H1 : True /\ True /\ True /\ True /\ True /\ False) =>
|
adamc@147
|
606 and_ind
|
adamc@147
|
607 (fun (_ : True) (H3 : True /\ True /\ True /\ True /\ False) =>
|
adamc@147
|
608 and_ind
|
adamc@147
|
609 (fun (_ : True) (H5 : True /\ True /\ True /\ False) =>
|
adamc@147
|
610 and_ind
|
adamc@147
|
611 (fun (_ : True) (H7 : True /\ True /\ False) =>
|
adamc@147
|
612 and_ind
|
adamc@147
|
613 (fun (_ : True) (H9 : True /\ False) =>
|
adamc@147
|
614 and_ind (fun (_ : True) (H11 : False) => False_ind False H11)
|
adamc@147
|
615 H9) H7) H5) H3) H1) H
|
adamc@147
|
616 : True /\ True /\ True /\ True /\ True /\ True /\ False -> False
|
adamc@147
|
617 ]] *)
|
adamc@147
|
618
|
adamc@149
|
619
|
adamc@149
|
620 (** * Exercises *)
|
adamc@149
|
621
|
adamc@221
|
622 (** remove printing * *)
|
adamc@221
|
623
|
adamc@149
|
624 (** %\begin{enumerate}%#<ol>#
|
adamc@149
|
625
|
adamc@149
|
626 %\item%#<li># Implement a reflective procedure for normalizing systems of linear equations over rational numbers. In particular, the tactic should identify all hypotheses that are linear equations over rationals where the equation righthand sides are constants. It should normalize each hypothesis to have a lefthand side that is a sum of products of constants and variables, with no variable appearing multiple times. Then, your tactic should add together all of these equations to form a single new equation, possibly clearing the original equations. Some coefficients may cancel in the addition, reducing the number of variables that appear.
|
adamc@149
|
627
|
adamc@221
|
628 To work with rational numbers, import module [QArith] and use [Local Open Scope Q_scope]. All of the usual arithmetic operator notations will then work with rationals, and there are shorthands for constants 0 and 1. Other rationals must be written as [num # den] for numerator [num] and denominator [den]. Use the infix operator [==] in place of [=], to deal with different ways of expressing the same number as a fraction. For instance, a theorem and proof like this one should work with your tactic:
|
adamc@149
|
629
|
adamc@149
|
630 [[
|
adamc@149
|
631 Theorem t2 : forall x y z, (2 # 1) * (x - (3 # 2) * y) == 15 # 1
|
adamc@149
|
632 -> z + (8 # 1) * x == 20 # 1
|
adamc@149
|
633 -> (-6 # 2) * y + (10 # 1) * x + z == 35 # 1.
|
adamc@149
|
634 intros; reflectContext; assumption.
|
adamc@149
|
635 Qed.
|
adamc@221
|
636
|
adamc@205
|
637 ]]
|
adamc@205
|
638
|
adamc@149
|
639 Your solution can work in any way that involves reflecting syntax and doing most calculation with a Gallina function. These hints outline a particular possible solution. Throughout, the [ring] tactic will be helpful for proving many simple facts about rationals, and tactics like [rewrite] are correctly overloaded to work with rational equality [==].
|
adamc@149
|
640
|
adamc@149
|
641 %\begin{enumerate}%#<ol>#
|
adamc@221
|
642 %\item%#<li># Define an inductive type [exp] of expressions over rationals (which inhabit the Coq type [Q]). Include variables (represented as natural numbers), constants, addition, subtraction, and multiplication.#</li>#
|
adamc@149
|
643 %\item%#<li># Define a function [lookup] for reading an element out of a list of rationals, by its position in the list.#</li>#
|
adamc@149
|
644 %\item%#<li># Define a function [expDenote] that translates [exp]s, along with lists of rationals representing variable values, to [Q].#</li>#
|
adamc@149
|
645 %\item%#<li># Define a recursive function [eqsDenote] over [list (exp * Q)], characterizing when all of the equations are true.#</li>#
|
adamc@149
|
646 %\item%#<li># Fix a representation [lhs] of flattened expressions. Where [len] is the number of variables, represent a flattened equation as [ilist Q len]. Each position of the list gives the coefficient of the corresponding variable.#</li>#
|
adamc@151
|
647 %\item%#<li># Write a recursive function [linearize] that takes a constant [k] and an expression [e] and optionally returns an [lhs] equivalent to [k * e]. This function returns [None] when it discovers that the input expression is not linear. The parameter [len] of [lhs] should be a parameter of [linearize], too. The functions [singleton], [everywhere], and [map2] from [DepList] will probably be helpful. It is also helpful to know that [Qplus] is the identifier for rational addition.#</li>#
|
adamc@149
|
648 %\item%#<li># Write a recursive function [linearizeEqs : list (exp * Q) -> option (lhs * Q)]. This function linearizes all of the equations in the list in turn, building up the sum of the equations. It returns [None] if the linearization of any constituent equation fails.#</li>#
|
adamc@149
|
649 %\item%#<li># Define a denotation function for [lhs].#</li>#
|
adamc@149
|
650 %\item%#<li># Prove that, when [exp] linearization succeeds on constant [k] and expression [e], the linearized version has the same meaning as [k * e].#</li>#
|
adamc@149
|
651 %\item%#<li># Prove that, when [linearizeEqs] succeeds on an equation list [eqs], then the final summed-up equation is true whenever the original equation list is true.#</li>#
|
adamc@149
|
652 %\item%#<li># Write a tactic [findVarsHyps] to search through all equalities on rationals in the context, recursing through addition, subtraction, and multiplication to find the list of expressions that should be treated as variables. This list should be suitable as an argument to [expDenote] and [eqsDenote], associating a [Q] value to each natural number that stands for a variable.#</li>#
|
adamc@149
|
653 %\item%#<li># Write a tactic [reflect] to reflect a [Q] expression into [exp], with respect to a given list of variable values.#</li>#
|
adamc@149
|
654 %\item%#<li># Write a tactic [reflectEqs] to reflect a formula that begins with a sequence of implications from linear equalities whose lefthand sides are expressed with [expDenote]. This tactic should build a [list (exp * Q)] representing the equations. Remember to give an explicit type annotation when returning a nil list, as in [constr:(@nil (exp * Q))].#</li>#
|
adamc@149
|
655 %\item%#<li># Now this final tactic should do the job:
|
adamc@221
|
656
|
adamc@149
|
657 [[
|
adamc@149
|
658 Ltac reflectContext :=
|
adamc@149
|
659 let ls := findVarsHyps in
|
adamc@149
|
660 repeat match goal with
|
adamc@149
|
661 | [ H : ?e == ?num # ?den |- _ ] =>
|
adamc@149
|
662 let r := reflect ls e in
|
adamc@149
|
663 change (expDenote ls r == num # den) in H;
|
adamc@149
|
664 generalize H
|
adamc@149
|
665 end;
|
adamc@149
|
666 match goal with
|
adamc@149
|
667 | [ |- ?g ] => let re := reflectEqs g in
|
adamc@149
|
668 intros;
|
adamc@149
|
669 let H := fresh "H" in
|
adamc@149
|
670 assert (H : eqsDenote ls re); [ simpl in *; tauto
|
adamc@149
|
671 | repeat match goal with
|
adamc@149
|
672 | [ H : expDenote _ _ == _ |- _ ] => clear H
|
adamc@149
|
673 end;
|
adamc@149
|
674 generalize (linearizeEqsCorrect ls re H); clear H; simpl;
|
adamc@149
|
675 match goal with
|
adamc@149
|
676 | [ |- ?X == ?Y -> _ ] =>
|
adamc@149
|
677 ring_simplify X Y; intro
|
adamc@149
|
678 end ]
|
adamc@149
|
679 end.
|
adamc@149
|
680
|
adamc@205
|
681 ]]
|
adamc@205
|
682
|
adamc@149
|
683 #</ol>#%\end{enumerate}%
|
adamc@149
|
684 #</li>#
|
adamc@149
|
685
|
adamc@149
|
686 #</ol>#%\end{enumerate}% *)
|