adamc@158
|
1 (* Copyright (c) 2008, Adam Chlipala
|
adamc@158
|
2 *
|
adamc@158
|
3 * This work is licensed under a
|
adamc@158
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@158
|
5 * Unported License.
|
adamc@158
|
6 * The license text is available at:
|
adamc@158
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@158
|
8 *)
|
adamc@158
|
9
|
adamc@158
|
10 (* begin hide *)
|
adamc@158
|
11 Require Import Arith Eqdep String List.
|
adamc@158
|
12
|
adamc@160
|
13 Require Import Axioms DepList Tactics.
|
adamc@158
|
14
|
adamc@158
|
15 Set Implicit Arguments.
|
adamc@158
|
16 (* end hide *)
|
adamc@158
|
17
|
adamc@158
|
18
|
adamc@158
|
19 (** %\chapter{Higher-Order Abstract Syntax}% *)
|
adamc@158
|
20
|
adamc@158
|
21 (** TODO: Prose for this chapter *)
|
adamc@158
|
22
|
adamc@158
|
23
|
adamc@158
|
24 (** * Parametric Higher-Order Abstract Syntax *)
|
adamc@158
|
25
|
adamc@158
|
26 Inductive type : Type :=
|
adamc@159
|
27 | Nat : type
|
adamc@158
|
28 | Arrow : type -> type -> type.
|
adamc@158
|
29
|
adamc@158
|
30 Infix "-->" := Arrow (right associativity, at level 60).
|
adamc@158
|
31
|
adamc@158
|
32 Section exp.
|
adamc@158
|
33 Variable var : type -> Type.
|
adamc@158
|
34
|
adamc@158
|
35 Inductive exp : type -> Type :=
|
adamc@159
|
36 | Const' : nat -> exp Nat
|
adamc@159
|
37 | Plus' : exp Nat -> exp Nat -> exp Nat
|
adamc@159
|
38
|
adamc@158
|
39 | Var : forall t, var t -> exp t
|
adamc@158
|
40 | App' : forall dom ran, exp (dom --> ran) -> exp dom -> exp ran
|
adamc@158
|
41 | Abs' : forall dom ran, (var dom -> exp ran) -> exp (dom --> ran).
|
adamc@158
|
42 End exp.
|
adamc@158
|
43
|
adamc@158
|
44 Implicit Arguments Const' [var].
|
adamc@158
|
45 Implicit Arguments Var [var t].
|
adamc@158
|
46 Implicit Arguments Abs' [var dom ran].
|
adamc@158
|
47
|
adamc@158
|
48 Definition Exp t := forall var, exp var t.
|
adamc@158
|
49 Definition Exp1 t1 t2 := forall var, var t1 -> exp var t2.
|
adamc@158
|
50
|
adamc@159
|
51 Definition Const (n : nat) : Exp Nat :=
|
adamc@159
|
52 fun _ => Const' n.
|
adamc@159
|
53 Definition Plus (E1 E2 : Exp Nat) : Exp Nat :=
|
adamc@159
|
54 fun _ => Plus' (E1 _) (E2 _).
|
adamc@158
|
55 Definition App dom ran (F : Exp (dom --> ran)) (X : Exp dom) : Exp ran :=
|
adamc@158
|
56 fun _ => App' (F _) (X _).
|
adamc@158
|
57 Definition Abs dom ran (B : Exp1 dom ran) : Exp (dom --> ran) :=
|
adamc@158
|
58 fun _ => Abs' (B _).
|
adamc@158
|
59
|
adamc@158
|
60 Section flatten.
|
adamc@158
|
61 Variable var : type -> Type.
|
adamc@158
|
62
|
adamc@158
|
63 Fixpoint flatten t (e : exp (exp var) t) {struct e} : exp var t :=
|
adamc@158
|
64 match e in exp _ t return exp _ t with
|
adamc@159
|
65 | Const' n => Const' n
|
adamc@159
|
66 | Plus' e1 e2 => Plus' (flatten e1) (flatten e2)
|
adamc@158
|
67 | Var _ e' => e'
|
adamc@158
|
68 | App' _ _ e1 e2 => App' (flatten e1) (flatten e2)
|
adamc@158
|
69 | Abs' _ _ e' => Abs' (fun x => flatten (e' (Var x)))
|
adamc@158
|
70 end.
|
adamc@158
|
71 End flatten.
|
adamc@158
|
72
|
adamc@158
|
73 Definition Subst t1 t2 (E1 : Exp t1) (E2 : Exp1 t1 t2) : Exp t2 := fun _ =>
|
adamc@158
|
74 flatten (E2 _ (E1 _)).
|
adamc@158
|
75
|
adamc@158
|
76
|
adamc@158
|
77 (** * A Type Soundness Proof *)
|
adamc@158
|
78
|
adamc@158
|
79 Reserved Notation "E1 ==> E2" (no associativity, at level 90).
|
adamc@158
|
80
|
adamc@158
|
81 Inductive Val : forall t, Exp t -> Prop :=
|
adamc@159
|
82 | VConst : forall n, Val (Const n)
|
adamc@158
|
83 | VAbs : forall dom ran (B : Exp1 dom ran), Val (Abs B).
|
adamc@158
|
84
|
adamc@158
|
85 Hint Constructors Val.
|
adamc@158
|
86
|
adamc@162
|
87 Inductive Ctx : type -> type -> Type :=
|
adamc@162
|
88 | AppCong1 : forall (dom ran : type),
|
adamc@162
|
89 Exp dom -> Ctx (dom --> ran) ran
|
adamc@162
|
90 | AppCong2 : forall (dom ran : type),
|
adamc@162
|
91 Exp (dom --> ran) -> Ctx dom ran
|
adamc@162
|
92 | PlusCong1 : Exp Nat -> Ctx Nat Nat
|
adamc@162
|
93 | PlusCong2 : Exp Nat -> Ctx Nat Nat.
|
adamc@162
|
94
|
adamc@162
|
95 Inductive isCtx : forall t1 t2, Ctx t1 t2 -> Prop :=
|
adamc@162
|
96 | IsApp1 : forall dom ran (X : Exp dom), isCtx (AppCong1 ran X)
|
adamc@162
|
97 | IsApp2 : forall dom ran (F : Exp (dom --> ran)), Val F -> isCtx (AppCong2 F)
|
adamc@162
|
98 | IsPlus1 : forall E2, isCtx (PlusCong1 E2)
|
adamc@162
|
99 | IsPlus2 : forall E1, Val E1 -> isCtx (PlusCong2 E1).
|
adamc@162
|
100
|
adamc@162
|
101 Definition plug t1 t2 (C : Ctx t1 t2) : Exp t1 -> Exp t2 :=
|
adamc@162
|
102 match C in Ctx t1 t2 return Exp t1 -> Exp t2 with
|
adamc@162
|
103 | AppCong1 _ _ X => fun F => App F X
|
adamc@162
|
104 | AppCong2 _ _ F => fun X => App F X
|
adamc@162
|
105 | PlusCong1 E2 => fun E1 => Plus E1 E2
|
adamc@162
|
106 | PlusCong2 E1 => fun E2 => Plus E1 E2
|
adamc@162
|
107 end.
|
adamc@162
|
108
|
adamc@162
|
109 Infix "@" := plug (no associativity, at level 60).
|
adamc@162
|
110
|
adamc@158
|
111 Inductive Step : forall t, Exp t -> Exp t -> Prop :=
|
adamc@158
|
112 | Beta : forall dom ran (B : Exp1 dom ran) (X : Exp dom),
|
adamc@160
|
113 Val X
|
adamc@160
|
114 -> App (Abs B) X ==> Subst X B
|
adamc@159
|
115 | Sum : forall n1 n2,
|
adamc@159
|
116 Plus (Const n1) (Const n2) ==> Const (n1 + n2)
|
adamc@162
|
117 | Cong : forall t t' (C : Ctx t t') E E' E1,
|
adamc@162
|
118 isCtx C
|
adamc@162
|
119 -> E1 = C @ E
|
adamc@162
|
120 -> E ==> E'
|
adamc@162
|
121 -> E1 ==> C @ E'
|
adamc@159
|
122
|
adamc@158
|
123 where "E1 ==> E2" := (Step E1 E2).
|
adamc@158
|
124
|
adamc@162
|
125 Hint Constructors isCtx Step.
|
adamc@158
|
126
|
adamc@158
|
127 Inductive Closed : forall t, Exp t -> Prop :=
|
adamc@158
|
128 | CConst : forall b,
|
adamc@158
|
129 Closed (Const b)
|
adamc@159
|
130 | CPlus : forall E1 E2,
|
adamc@159
|
131 Closed E1
|
adamc@159
|
132 -> Closed E2
|
adamc@159
|
133 -> Closed (Plus E1 E2)
|
adamc@158
|
134 | CApp : forall dom ran (E1 : Exp (dom --> ran)) E2,
|
adamc@158
|
135 Closed E1
|
adamc@158
|
136 -> Closed E2
|
adamc@158
|
137 -> Closed (App E1 E2)
|
adamc@158
|
138 | CAbs : forall dom ran (E1 : Exp1 dom ran),
|
adamc@158
|
139 Closed (Abs E1).
|
adamc@158
|
140
|
adamc@158
|
141 Axiom closed : forall t (E : Exp t), Closed E.
|
adamc@158
|
142
|
adamc@160
|
143 Ltac my_crush' :=
|
adamc@158
|
144 crush;
|
adamc@158
|
145 repeat (match goal with
|
adamc@158
|
146 | [ H : _ |- _ ] => generalize (inj_pairT2 _ _ _ _ _ H); clear H
|
adamc@158
|
147 end; crush).
|
adamc@158
|
148
|
adamc@160
|
149 Ltac my_crush :=
|
adamc@160
|
150 my_crush';
|
adamc@160
|
151 try (match goal with
|
adamc@160
|
152 | [ H : ?F = ?G |- _ ] =>
|
adamc@160
|
153 match goal with
|
adamc@162
|
154 (*| [ _ : F (fun _ => unit) = G (fun _ => unit) |- _ ] => fail 1*)
|
adamc@160
|
155 | _ =>
|
adamc@160
|
156 let H' := fresh "H'" in
|
adamc@160
|
157 assert (H' : F (fun _ => unit) = G (fun _ => unit)); [ congruence
|
adamc@160
|
158 | discriminate || injection H' ];
|
adamc@160
|
159 clear H'
|
adamc@160
|
160 end
|
adamc@160
|
161 end; my_crush');
|
adamc@160
|
162 repeat match goal with
|
adamc@160
|
163 | [ H : ?F = ?G, H2 : ?X (fun _ => unit) = ?Y (fun _ => unit) |- _ ] =>
|
adamc@160
|
164 match X with
|
adamc@160
|
165 | Y => fail 1
|
adamc@160
|
166 | _ =>
|
adamc@160
|
167 assert (X = Y); [ unfold Exp; apply ext_eq; intro var;
|
adamc@160
|
168 let H' := fresh "H'" in
|
adamc@160
|
169 assert (H' : F var = G var); [ congruence
|
adamc@160
|
170 | match type of H' with
|
adamc@160
|
171 | ?X = ?Y =>
|
adamc@160
|
172 let X := eval hnf in X in
|
adamc@160
|
173 let Y := eval hnf in Y in
|
adamc@160
|
174 change (X = Y) in H'
|
adamc@160
|
175 end; injection H'; clear H'; my_crush' ]
|
adamc@160
|
176 | my_crush'; clear H2 ]
|
adamc@160
|
177 end
|
adamc@160
|
178 end.
|
adamc@160
|
179
|
adamc@162
|
180 Hint Extern 1 (_ = _ @ _) => simpl.
|
adamc@162
|
181
|
adamc@158
|
182 Lemma progress' : forall t (E : Exp t),
|
adamc@158
|
183 Closed E
|
adamc@158
|
184 -> Val E \/ exists E', E ==> E'.
|
adamc@158
|
185 induction 1; crush;
|
adamc@159
|
186 repeat match goal with
|
adamc@159
|
187 | [ H : Val _ |- _ ] => inversion H; []; clear H; my_crush
|
adamc@162
|
188 end; eauto 6.
|
adamc@158
|
189 Qed.
|
adamc@158
|
190
|
adamc@158
|
191 Theorem progress : forall t (E : Exp t),
|
adamc@158
|
192 Val E \/ exists E', E ==> E'.
|
adamc@158
|
193 intros; apply progress'; apply closed.
|
adamc@158
|
194 Qed.
|
adamc@158
|
195
|
adamc@160
|
196
|
adamc@160
|
197 (** * Big-Step Semantics *)
|
adamc@160
|
198
|
adamc@160
|
199 Reserved Notation "E1 ===> E2" (no associativity, at level 90).
|
adamc@160
|
200
|
adamc@160
|
201 Inductive BigStep : forall t, Exp t -> Exp t -> Prop :=
|
adamc@160
|
202 | SConst : forall n,
|
adamc@160
|
203 Const n ===> Const n
|
adamc@160
|
204 | SPlus : forall E1 E2 n1 n2,
|
adamc@160
|
205 E1 ===> Const n1
|
adamc@160
|
206 -> E2 ===> Const n2
|
adamc@160
|
207 -> Plus E1 E2 ===> Const (n1 + n2)
|
adamc@160
|
208
|
adamc@160
|
209 | SApp : forall dom ran (E1 : Exp (dom --> ran)) E2 B V2 V,
|
adamc@160
|
210 E1 ===> Abs B
|
adamc@160
|
211 -> E2 ===> V2
|
adamc@160
|
212 -> Subst V2 B ===> V
|
adamc@160
|
213 -> App E1 E2 ===> V
|
adamc@160
|
214 | SAbs : forall dom ran (B : Exp1 dom ran),
|
adamc@160
|
215 Abs B ===> Abs B
|
adamc@160
|
216
|
adamc@160
|
217 where "E1 ===> E2" := (BigStep E1 E2).
|
adamc@160
|
218
|
adamc@160
|
219 Hint Constructors BigStep.
|
adamc@160
|
220
|
adamc@160
|
221 Reserved Notation "E1 ==>* E2" (no associativity, at level 90).
|
adamc@160
|
222
|
adamc@160
|
223 Inductive MultiStep : forall t, Exp t -> Exp t -> Prop :=
|
adamc@160
|
224 | Done : forall t (E : Exp t), E ==>* E
|
adamc@160
|
225 | OneStep : forall t (E E' E'' : Exp t),
|
adamc@160
|
226 E ==> E'
|
adamc@160
|
227 -> E' ==>* E''
|
adamc@160
|
228 -> E ==>* E''
|
adamc@160
|
229
|
adamc@160
|
230 where "E1 ==>* E2" := (MultiStep E1 E2).
|
adamc@160
|
231
|
adamc@160
|
232 Hint Constructors MultiStep.
|
adamc@160
|
233
|
adamc@160
|
234 Theorem MultiStep_trans : forall t (E1 E2 E3 : Exp t),
|
adamc@160
|
235 E1 ==>* E2
|
adamc@160
|
236 -> E2 ==>* E3
|
adamc@160
|
237 -> E1 ==>* E3.
|
adamc@160
|
238 induction 1; eauto.
|
adamc@160
|
239 Qed.
|
adamc@160
|
240
|
adamc@160
|
241 Theorem Big_Val : forall t (E V : Exp t),
|
adamc@160
|
242 E ===> V
|
adamc@160
|
243 -> Val V.
|
adamc@160
|
244 induction 1; crush.
|
adamc@160
|
245 Qed.
|
adamc@160
|
246
|
adamc@160
|
247 Theorem Val_Big : forall t (V : Exp t),
|
adamc@160
|
248 Val V
|
adamc@160
|
249 -> V ===> V.
|
adamc@160
|
250 destruct 1; crush.
|
adamc@160
|
251 Qed.
|
adamc@160
|
252
|
adamc@160
|
253 Hint Resolve Big_Val Val_Big.
|
adamc@160
|
254
|
adamc@162
|
255 Lemma Multi_Cong : forall t t' (C : Ctx t t'),
|
adamc@162
|
256 isCtx C
|
adamc@162
|
257 -> forall E E', E ==>* E'
|
adamc@162
|
258 -> C @ E ==>* C @ E'.
|
adamc@160
|
259 induction 2; crush; eauto.
|
adamc@160
|
260 Qed.
|
adamc@160
|
261
|
adamc@162
|
262 Lemma Multi_Cong' : forall t t' (C : Ctx t t') E1 E2 E E',
|
adamc@162
|
263 isCtx C
|
adamc@162
|
264 -> E1 = C @ E
|
adamc@162
|
265 -> E2 = C @ E'
|
adamc@162
|
266 -> E ==>* E'
|
adamc@162
|
267 -> E1 ==>* E2.
|
adamc@162
|
268 crush; apply Multi_Cong; auto.
|
adamc@162
|
269 Qed.
|
adamc@162
|
270
|
adamc@162
|
271 Hint Resolve Multi_Cong'.
|
adamc@162
|
272
|
adamc@162
|
273 Ltac mtrans E :=
|
adamc@162
|
274 match goal with
|
adamc@162
|
275 | [ |- E ==>* _ ] => fail 1
|
adamc@162
|
276 | _ => apply MultiStep_trans with E; [ solve [ eauto ] | eauto ]
|
adamc@162
|
277 end.
|
adamc@160
|
278
|
adamc@160
|
279 Theorem Big_Multi : forall t (E V : Exp t),
|
adamc@160
|
280 E ===> V
|
adamc@160
|
281 -> E ==>* V.
|
adamc@162
|
282 induction 1; crush; eauto;
|
adamc@162
|
283 repeat match goal with
|
adamc@162
|
284 | [ n1 : _, E2 : _ |- _ ] => mtrans (Plus (Const n1) E2)
|
adamc@162
|
285 | [ n1 : _, n2 : _ |- _ ] => mtrans (Plus (Const n1) (Const n2))
|
adamc@162
|
286 | [ B : _, E2 : _ |- _ ] => mtrans (App (Abs B) E2)
|
adamc@162
|
287 end.
|
adamc@160
|
288 Qed.
|
adamc@160
|
289
|
adamc@160
|
290 Lemma Big_Val' : forall t (V1 V2 : Exp t),
|
adamc@160
|
291 Val V2
|
adamc@160
|
292 -> V1 = V2
|
adamc@160
|
293 -> V1 ===> V2.
|
adamc@160
|
294 crush.
|
adamc@160
|
295 Qed.
|
adamc@160
|
296
|
adamc@160
|
297 Hint Resolve Big_Val'.
|
adamc@160
|
298
|
adamc@160
|
299 Lemma Multi_Big' : forall t (E E' : Exp t),
|
adamc@160
|
300 E ==> E'
|
adamc@160
|
301 -> forall E'', E' ===> E''
|
adamc@160
|
302 -> E ===> E''.
|
adamc@160
|
303 induction 1; crush; eauto;
|
adamc@160
|
304 match goal with
|
adamc@160
|
305 | [ H : _ ===> _ |- _ ] => inversion H; my_crush; eauto
|
adamc@162
|
306 end;
|
adamc@162
|
307 match goal with
|
adamc@162
|
308 | [ H : isCtx _ |- _ ] => inversion H; my_crush; eauto
|
adamc@160
|
309 end.
|
adamc@160
|
310 Qed.
|
adamc@160
|
311
|
adamc@160
|
312 Hint Resolve Multi_Big'.
|
adamc@160
|
313
|
adamc@160
|
314 Theorem Multi_Big : forall t (E V : Exp t),
|
adamc@160
|
315 E ==>* V
|
adamc@160
|
316 -> Val V
|
adamc@160
|
317 -> E ===> V.
|
adamc@160
|
318 induction 1; crush; eauto.
|
adamc@160
|
319 Qed.
|
adamc@160
|
320
|
adamc@160
|
321
|
adamc@160
|
322 (** * Constant folding *)
|
adamc@160
|
323
|
adamc@160
|
324 Section cfold.
|
adamc@160
|
325 Variable var : type -> Type.
|
adamc@160
|
326
|
adamc@160
|
327 Fixpoint cfold t (e : exp var t) {struct e} : exp var t :=
|
adamc@160
|
328 match e in exp _ t return exp _ t with
|
adamc@160
|
329 | Const' n => Const' n
|
adamc@160
|
330 | Plus' e1 e2 =>
|
adamc@160
|
331 let e1' := cfold e1 in
|
adamc@160
|
332 let e2' := cfold e2 in
|
adamc@160
|
333 match e1', e2' with
|
adamc@160
|
334 | Const' n1, Const' n2 => Const' (n1 + n2)
|
adamc@160
|
335 | _, _ => Plus' e1' e2'
|
adamc@160
|
336 end
|
adamc@160
|
337
|
adamc@160
|
338 | Var _ x => Var x
|
adamc@160
|
339 | App' _ _ e1 e2 => App' (cfold e1) (cfold e2)
|
adamc@160
|
340 | Abs' _ _ e' => Abs' (fun x => cfold (e' x))
|
adamc@160
|
341 end.
|
adamc@160
|
342 End cfold.
|
adamc@160
|
343
|
adamc@160
|
344 Definition Cfold t (E : Exp t) : Exp t := fun _ => cfold (E _).
|
adamc@160
|
345
|
adamc@160
|
346
|
adamc@160
|
347 Definition ExpN (G : list type) (t : type) := forall var, hlist var G -> exp var t.
|
adamc@160
|
348
|
adamc@160
|
349 Definition ConstN G (n : nat) : ExpN G Nat :=
|
adamc@160
|
350 fun _ _ => Const' n.
|
adamc@160
|
351 Definition PlusN G (E1 E2 : ExpN G Nat) : ExpN G Nat :=
|
adamc@160
|
352 fun _ s => Plus' (E1 _ s) (E2 _ s).
|
adamc@160
|
353 Definition AppN G dom ran (F : ExpN G (dom --> ran)) (X : ExpN G dom) : ExpN G ran :=
|
adamc@160
|
354 fun _ s => App' (F _ s) (X _ s).
|
adamc@160
|
355 Definition AbsN G dom ran (B : ExpN (dom :: G) ran) : ExpN G (dom --> ran) :=
|
adamc@162
|
356 fun _ s => Abs' (fun x => B _ (x ::: s)).
|