adam@297
|
1 (* Copyright (c) 2008-2011, Adam Chlipala
|
adamc@142
|
2 *
|
adamc@142
|
3 * This work is licensed under a
|
adamc@142
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@142
|
5 * Unported License.
|
adamc@142
|
6 * The license text is available at:
|
adamc@142
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@142
|
8 *)
|
adamc@142
|
9
|
adamc@142
|
10 (* begin hide *)
|
adamc@142
|
11 Require Import List.
|
adamc@142
|
12
|
adam@314
|
13 Require Import CpdtTactics MoreSpecif.
|
adamc@142
|
14
|
adamc@142
|
15 Set Implicit Arguments.
|
adamc@142
|
16 (* end hide *)
|
adamc@142
|
17
|
adamc@142
|
18
|
adamc@142
|
19 (** %\chapter{Proof by Reflection}% *)
|
adamc@142
|
20
|
adam@360
|
21 (** The last chapter highlighted a very heuristic approach to proving. In this chapter, we will study an alternative technique, %\index{proof by reflection}\textit{%#<i>#proof by reflection#</i>#%}~\cite{reflection}%. We will write, in Gallina, decision procedures with proofs of correctness, and we will appeal to these procedures in writing very short proofs. Such a proof is checked by running the decision procedure. The term %\textit{%#<i>#reflection#</i>#%}% applies because we will need to translate Gallina propositions into values of inductive types representing syntax, so that Gallina programs may analyze them. *)
|
adamc@142
|
22
|
adamc@142
|
23
|
adamc@142
|
24 (** * Proving Evenness *)
|
adamc@142
|
25
|
adamc@142
|
26 (** Proving that particular natural number constants are even is certainly something we would rather have happen automatically. The Ltac-programming techniques that we learned in the last chapter make it easy to implement such a procedure. *)
|
adamc@142
|
27
|
adamc@142
|
28 Inductive isEven : nat -> Prop :=
|
adamc@144
|
29 | Even_O : isEven O
|
adamc@144
|
30 | Even_SS : forall n, isEven n -> isEven (S (S n)).
|
adamc@142
|
31
|
adamc@148
|
32 (* begin thide *)
|
adamc@142
|
33 Ltac prove_even := repeat constructor.
|
adamc@148
|
34 (* end thide *)
|
adamc@142
|
35
|
adamc@142
|
36 Theorem even_256 : isEven 256.
|
adamc@142
|
37 prove_even.
|
adamc@142
|
38 Qed.
|
adamc@142
|
39
|
adamc@142
|
40 Print even_256.
|
adamc@221
|
41 (** %\vspace{-.15in}% [[
|
adamc@142
|
42 even_256 =
|
adamc@142
|
43 Even_SS
|
adamc@142
|
44 (Even_SS
|
adamc@142
|
45 (Even_SS
|
adamc@142
|
46 (Even_SS
|
adamc@221
|
47
|
adamc@142
|
48 ]]
|
adamc@142
|
49
|
adam@360
|
50 %\noindent%...and so on. This procedure always works (at least on machines with infinite resources), but it has a serious drawback, which we see when we print the proof it generates that 256 is even. The final proof term has length super-linear in the input value. Coq's implicit arguments mechanism is hiding the values given for parameter [n] of [Even_SS], which is why the proof term only appears linear here. Also, proof terms are represented internally as syntax trees, with opportunity for sharing of node representations, but in this chapter we will measure proof term size as simple textual length or as the number of nodes in the term's syntax tree, two measures that are approximately equivalent. Sometimes apparently large proof terms have enough internal sharing that they take up less memory than we expect, but one avoids having to reason about such sharing by ensuring that the size of a sharing-free version of a term is low enough.
|
adam@360
|
51
|
adam@360
|
52 Superlinear evenness proof terms seem like a shame, since we could write a trivial and trustworthy program to verify evenness of constants. The proof checker could simply call our program where needed.
|
adamc@142
|
53
|
adamc@142
|
54 It is also unfortunate not to have static typing guarantees that our tactic always behaves appropriately. Other invocations of similar tactics might fail with dynamic type errors, and we would not know about the bugs behind these errors until we happened to attempt to prove complex enough goals.
|
adamc@142
|
55
|
adamc@142
|
56 The techniques of proof by reflection address both complaints. We will be able to write proofs like this with constant size overhead beyond the size of the input, and we will do it with verified decision procedures written in Gallina.
|
adamc@142
|
57
|
adamc@221
|
58 For this example, we begin by using a type from the [MoreSpecif] module (included in the book source) to write a certified evenness checker. *)
|
adamc@142
|
59
|
adamc@142
|
60 Print partial.
|
adamc@221
|
61 (** %\vspace{-.15in}% [[
|
adamc@221
|
62 Inductive partial (P : Prop) : Set := Proved : P -> [P] | Uncertain : [P]
|
adamc@221
|
63
|
adamc@221
|
64 ]]
|
adamc@142
|
65
|
adamc@221
|
66 A [partial P] value is an optional proof of [P]. The notation [[P]] stands for [partial P]. *)
|
adamc@142
|
67
|
adamc@221
|
68 Local Open Scope partial_scope.
|
adamc@142
|
69
|
adamc@142
|
70 (** We bring into scope some notations for the [partial] type. These overlap with some of the notations we have seen previously for specification types, so they were placed in a separate scope that needs separate opening. *)
|
adamc@142
|
71
|
adamc@148
|
72 (* begin thide *)
|
adam@297
|
73 Definition check_even : forall n : nat, [isEven n].
|
adamc@142
|
74 Hint Constructors isEven.
|
adamc@142
|
75
|
adamc@142
|
76 refine (fix F (n : nat) : [isEven n] :=
|
adamc@221
|
77 match n with
|
adamc@142
|
78 | 0 => Yes
|
adamc@142
|
79 | 1 => No
|
adamc@142
|
80 | S (S n') => Reduce (F n')
|
adamc@142
|
81 end); auto.
|
adamc@142
|
82 Defined.
|
adamc@142
|
83
|
adam@360
|
84 (** The function [check_even] may be viewed as a %\emph{%#<i>#verified decision procedure#</i>#%}%, because its type guarantees that it never returns [Yes] for inputs that are not even.
|
adam@360
|
85
|
adam@360
|
86 Now we can use dependent pattern-matching to write a function that performs a surprising feat. When given a [partial P], this function [partialOut] returns a proof of [P] if the [partial] value contains a proof, and it returns a (useless) proof of [True] otherwise. From the standpoint of ML and Haskell programming, it seems impossible to write such a type, but it is trivial with a [return] annotation. *)
|
adamc@142
|
87
|
adamc@142
|
88 Definition partialOut (P : Prop) (x : [P]) :=
|
adamc@142
|
89 match x return (match x with
|
adamc@142
|
90 | Proved _ => P
|
adamc@142
|
91 | Uncertain => True
|
adamc@142
|
92 end) with
|
adamc@142
|
93 | Proved pf => pf
|
adamc@142
|
94 | Uncertain => I
|
adamc@142
|
95 end.
|
adamc@142
|
96
|
adam@289
|
97 (** It may seem strange to define a function like this. However, it turns out to be very useful in writing a reflective version of our earlier [prove_even] tactic: *)
|
adamc@142
|
98
|
adamc@142
|
99 Ltac prove_even_reflective :=
|
adamc@142
|
100 match goal with
|
adamc@142
|
101 | [ |- isEven ?N] => exact (partialOut (check_even N))
|
adamc@142
|
102 end.
|
adamc@148
|
103 (* end thide *)
|
adamc@142
|
104
|
adam@360
|
105 (** We identify which natural number we are considering, and we %``%#"#prove#"#%''% its evenness by pulling the proof out of the appropriate [check_even] call. Recall that the %\index{tactics!exact}%[exact] tactic proves a proposition [P] when given a proof term of precisely type [P]. *)
|
adamc@142
|
106
|
adamc@142
|
107 Theorem even_256' : isEven 256.
|
adamc@142
|
108 prove_even_reflective.
|
adamc@142
|
109 Qed.
|
adamc@142
|
110
|
adamc@142
|
111 Print even_256'.
|
adamc@221
|
112 (** %\vspace{-.15in}% [[
|
adamc@142
|
113 even_256' = partialOut (check_even 256)
|
adamc@142
|
114 : isEven 256
|
adamc@142
|
115 ]]
|
adamc@142
|
116
|
adam@289
|
117 We can see a constant wrapper around the object of the proof. For any even number, this form of proof will suffice. The size of the proof term is now linear in the number being checked, containing two repetitions of the unary form of that number, one of which is hidden above within the implicit argument to [partialOut].
|
adam@289
|
118
|
adam@289
|
119 What happens if we try the tactic with an odd number? *)
|
adamc@142
|
120
|
adamc@142
|
121 Theorem even_255 : isEven 255.
|
adam@360
|
122 (** %\vspace{-.275in}%[[
|
adamc@142
|
123 prove_even_reflective.
|
adam@360
|
124 ]]
|
adamc@142
|
125
|
adam@360
|
126 <<
|
adamc@142
|
127 User error: No matching clauses for match goal
|
adam@360
|
128 >>
|
adamc@142
|
129
|
adamc@142
|
130 Thankfully, the tactic fails. To see more precisely what goes wrong, we can run manually the body of the [match].
|
adamc@142
|
131
|
adam@360
|
132 %\vspace{-.15in}%[[
|
adamc@142
|
133 exact (partialOut (check_even 255)).
|
adam@360
|
134 ]]
|
adamc@142
|
135
|
adam@360
|
136 <<
|
adamc@142
|
137 Error: The term "partialOut (check_even 255)" has type
|
adamc@142
|
138 "match check_even 255 with
|
adamc@142
|
139 | Yes => isEven 255
|
adamc@142
|
140 | No => True
|
adamc@142
|
141 end" while it is expected to have type "isEven 255"
|
adam@360
|
142 >>
|
adamc@142
|
143
|
adam@360
|
144 As usual, the type checker performs no reductions to simplify error messages. If we reduced the first term ourselves, we would see that [check_even 255] reduces to a [No], so that the first term is equivalent to [True], which certainly does not unify with [isEven 255]. *)
|
adamc@221
|
145
|
adamc@142
|
146 Abort.
|
adamc@143
|
147
|
adam@360
|
148 (** Our tactic [prove_even_reflective] is reflective because it performs a proof search process (a trivial one, in this case) wholly within Gallina, where the only use of Ltac is to translate a goal into an appropriate use of [check_even]. *)
|
adamc@143
|
149
|
adam@360
|
150
|
adam@360
|
151 (** * Reifying the Syntax of a Trivial Tautology Language *)
|
adamc@143
|
152
|
adamc@143
|
153 (** We might also like to have reflective proofs of trivial tautologies like this one: *)
|
adamc@143
|
154
|
adamc@143
|
155 Theorem true_galore : (True /\ True) -> (True \/ (True /\ (True -> True))).
|
adamc@143
|
156 tauto.
|
adamc@143
|
157 Qed.
|
adamc@143
|
158
|
adamc@143
|
159 Print true_galore.
|
adamc@221
|
160 (** %\vspace{-.15in}% [[
|
adamc@143
|
161 true_galore =
|
adamc@143
|
162 fun H : True /\ True =>
|
adamc@143
|
163 and_ind (fun _ _ : True => or_introl (True /\ (True -> True)) I) H
|
adamc@143
|
164 : True /\ True -> True \/ True /\ (True -> True)
|
adamc@221
|
165
|
adamc@143
|
166 ]]
|
adamc@143
|
167
|
adamc@143
|
168 As we might expect, the proof that [tauto] builds contains explicit applications of natural deduction rules. For large formulas, this can add a linear amount of proof size overhead, beyond the size of the input.
|
adamc@143
|
169
|
adam@360
|
170 To write a reflective procedure for this class of goals, we will need to get into the actual %``%#"#reflection#"#%''% part of %``%#"#proof by reflection.#"#%''% It is impossible to case-analyze a [Prop] in any way in Gallina. We must %\index{reification}\textit{%#<i>#reify#</i>#%}% [Prop] into some type that we %\textit{%#<i>#can#</i>#%}% analyze. This inductive type is a good candidate: *)
|
adamc@143
|
171
|
adamc@148
|
172 (* begin thide *)
|
adamc@143
|
173 Inductive taut : Set :=
|
adamc@143
|
174 | TautTrue : taut
|
adamc@143
|
175 | TautAnd : taut -> taut -> taut
|
adamc@143
|
176 | TautOr : taut -> taut -> taut
|
adamc@143
|
177 | TautImp : taut -> taut -> taut.
|
adamc@143
|
178
|
adam@360
|
179 (** We write a recursive function to %\emph{%#<i>#reflect#</i>#%}% this syntax back to [Prop]. Such functions are also called %\index{interpretation function}\emph{%#<i>#interpretation functions#</i>#%}%, and have used them in previous examples to give semantics to small programming languages. *)
|
adamc@143
|
180
|
adamc@143
|
181 Fixpoint tautDenote (t : taut) : Prop :=
|
adamc@143
|
182 match t with
|
adamc@143
|
183 | TautTrue => True
|
adamc@143
|
184 | TautAnd t1 t2 => tautDenote t1 /\ tautDenote t2
|
adamc@143
|
185 | TautOr t1 t2 => tautDenote t1 \/ tautDenote t2
|
adamc@143
|
186 | TautImp t1 t2 => tautDenote t1 -> tautDenote t2
|
adamc@143
|
187 end.
|
adamc@143
|
188
|
adamc@143
|
189 (** It is easy to prove that every formula in the range of [tautDenote] is true. *)
|
adamc@143
|
190
|
adamc@143
|
191 Theorem tautTrue : forall t, tautDenote t.
|
adamc@143
|
192 induction t; crush.
|
adamc@143
|
193 Qed.
|
adamc@143
|
194
|
adam@360
|
195 (** To use [tautTrue] to prove particular formulas, we need to implement the syntax reification process. A recursive Ltac function does the job. *)
|
adamc@143
|
196
|
adam@360
|
197 Ltac tautReify P :=
|
adamc@143
|
198 match P with
|
adamc@143
|
199 | True => TautTrue
|
adamc@143
|
200 | ?P1 /\ ?P2 =>
|
adam@360
|
201 let t1 := tautReify P1 in
|
adam@360
|
202 let t2 := tautReify P2 in
|
adamc@143
|
203 constr:(TautAnd t1 t2)
|
adamc@143
|
204 | ?P1 \/ ?P2 =>
|
adam@360
|
205 let t1 := tautReify P1 in
|
adam@360
|
206 let t2 := tautReify P2 in
|
adamc@143
|
207 constr:(TautOr t1 t2)
|
adamc@143
|
208 | ?P1 -> ?P2 =>
|
adam@360
|
209 let t1 := tautReify P1 in
|
adam@360
|
210 let t2 := tautReify P2 in
|
adamc@143
|
211 constr:(TautImp t1 t2)
|
adamc@143
|
212 end.
|
adamc@143
|
213
|
adam@360
|
214 (** With [tautReify] available, it is easy to finish our reflective tactic. We look at the goal formula, reflect it, and apply [tautTrue] to the reflected formula. *)
|
adamc@143
|
215
|
adamc@143
|
216 Ltac obvious :=
|
adamc@143
|
217 match goal with
|
adamc@143
|
218 | [ |- ?P ] =>
|
adam@360
|
219 let t := tautReify P in
|
adamc@143
|
220 exact (tautTrue t)
|
adamc@143
|
221 end.
|
adamc@143
|
222
|
adamc@143
|
223 (** We can verify that [obvious] solves our original example, with a proof term that does not mention details of the proof. *)
|
adamc@148
|
224 (* end thide *)
|
adamc@143
|
225
|
adamc@143
|
226 Theorem true_galore' : (True /\ True) -> (True \/ (True /\ (True -> True))).
|
adamc@143
|
227 obvious.
|
adamc@143
|
228 Qed.
|
adamc@143
|
229
|
adamc@143
|
230 Print true_galore'.
|
adamc@143
|
231
|
adamc@221
|
232 (** %\vspace{-.15in}% [[
|
adamc@143
|
233 true_galore' =
|
adamc@143
|
234 tautTrue
|
adamc@143
|
235 (TautImp (TautAnd TautTrue TautTrue)
|
adamc@143
|
236 (TautOr TautTrue (TautAnd TautTrue (TautImp TautTrue TautTrue))))
|
adamc@143
|
237 : True /\ True -> True \/ True /\ (True -> True)
|
adamc@143
|
238 ]]
|
adamc@143
|
239
|
adam@360
|
240 It is worth considering how the reflective tactic improves on a pure-Ltac implementation. The formula reification process is just as ad-hoc as before, so we gain little there. In general, proofs will be more complicated than formula translation, and the %``%#"#generic proof rule#"#%''% that we apply here %\textit{%#<i>#is#</i>#%}% on much better formal footing than a recursive Ltac function. The dependent type of the proof guarantees that it %``%#"#works#"#%''% on any input formula. This is all in addition to the proof-size improvement that we have already seen.
|
adam@360
|
241
|
adam@360
|
242 It may also be worth pointing out that our previous example of evenness testing used a function [partialOut] for sound handling of input goals that the verified decision procedure fails to prove. Here, we prove that our procedure [tautTrue] (recall that an inductive proof may be viewed as a recursive procedure) is able to prove any goal representable in [taut], so no extra step is necessary. *)
|
adamc@144
|
243
|
adamc@144
|
244
|
adamc@145
|
245 (** * A Monoid Expression Simplifier *)
|
adamc@145
|
246
|
adam@289
|
247 (** Proof by reflection does not require encoding of all of the syntax in a goal. We can insert %``%#"#variables#"#%''% in our syntax types to allow injection of arbitrary pieces, even if we cannot apply specialized reasoning to them. In this section, we explore that possibility by writing a tactic for normalizing monoid equations. *)
|
adamc@146
|
248
|
adamc@145
|
249 Section monoid.
|
adamc@145
|
250 Variable A : Set.
|
adamc@145
|
251 Variable e : A.
|
adamc@145
|
252 Variable f : A -> A -> A.
|
adamc@145
|
253
|
adamc@145
|
254 Infix "+" := f.
|
adamc@145
|
255
|
adamc@145
|
256 Hypothesis assoc : forall a b c, (a + b) + c = a + (b + c).
|
adamc@145
|
257 Hypothesis identl : forall a, e + a = a.
|
adamc@145
|
258 Hypothesis identr : forall a, a + e = a.
|
adamc@145
|
259
|
adamc@146
|
260 (** We add variables and hypotheses characterizing an arbitrary instance of the algebraic structure of monoids. We have an associative binary operator and an identity element for it.
|
adamc@146
|
261
|
adam@289
|
262 It is easy to define an expression tree type for monoid expressions. A [Var] constructor is a %``%#"#catch-all#"#%''% case for subexpressions that we cannot model. These subexpressions could be actual Gallina variables, or they could just use functions that our tactic is unable to understand. *)
|
adamc@146
|
263
|
adamc@148
|
264 (* begin thide *)
|
adamc@145
|
265 Inductive mexp : Set :=
|
adamc@145
|
266 | Ident : mexp
|
adamc@145
|
267 | Var : A -> mexp
|
adamc@145
|
268 | Op : mexp -> mexp -> mexp.
|
adamc@145
|
269
|
adam@360
|
270 (** Next, we write an interpretation function. *)
|
adamc@146
|
271
|
adamc@145
|
272 Fixpoint mdenote (me : mexp) : A :=
|
adamc@145
|
273 match me with
|
adamc@145
|
274 | Ident => e
|
adamc@145
|
275 | Var v => v
|
adamc@145
|
276 | Op me1 me2 => mdenote me1 + mdenote me2
|
adamc@145
|
277 end.
|
adamc@145
|
278
|
adamc@146
|
279 (** We will normalize expressions by flattening them into lists, via associativity, so it is helpful to have a denotation function for lists of monoid values. *)
|
adamc@146
|
280
|
adamc@145
|
281 Fixpoint mldenote (ls : list A) : A :=
|
adamc@145
|
282 match ls with
|
adamc@145
|
283 | nil => e
|
adamc@145
|
284 | x :: ls' => x + mldenote ls'
|
adamc@145
|
285 end.
|
adamc@145
|
286
|
adamc@146
|
287 (** The flattening function itself is easy to implement. *)
|
adamc@146
|
288
|
adamc@145
|
289 Fixpoint flatten (me : mexp) : list A :=
|
adamc@145
|
290 match me with
|
adamc@145
|
291 | Ident => nil
|
adamc@145
|
292 | Var x => x :: nil
|
adamc@145
|
293 | Op me1 me2 => flatten me1 ++ flatten me2
|
adamc@145
|
294 end.
|
adamc@145
|
295
|
adamc@146
|
296 (** [flatten] has a straightforward correctness proof in terms of our [denote] functions. *)
|
adamc@146
|
297
|
adamc@146
|
298 Lemma flatten_correct' : forall ml2 ml1,
|
adamc@146
|
299 mldenote ml1 + mldenote ml2 = mldenote (ml1 ++ ml2).
|
adamc@145
|
300 induction ml1; crush.
|
adamc@145
|
301 Qed.
|
adamc@145
|
302
|
adamc@145
|
303 Theorem flatten_correct : forall me, mdenote me = mldenote (flatten me).
|
adamc@145
|
304 Hint Resolve flatten_correct'.
|
adamc@145
|
305
|
adamc@145
|
306 induction me; crush.
|
adamc@145
|
307 Qed.
|
adamc@145
|
308
|
adamc@146
|
309 (** Now it is easy to prove a theorem that will be the main tool behind our simplification tactic. *)
|
adamc@146
|
310
|
adamc@146
|
311 Theorem monoid_reflect : forall me1 me2,
|
adamc@146
|
312 mldenote (flatten me1) = mldenote (flatten me2)
|
adamc@146
|
313 -> mdenote me1 = mdenote me2.
|
adamc@145
|
314 intros; repeat rewrite flatten_correct; assumption.
|
adamc@145
|
315 Qed.
|
adamc@145
|
316
|
adam@360
|
317 (** We implement reification into the [mexp] type. *)
|
adamc@146
|
318
|
adam@360
|
319 Ltac reify me :=
|
adamc@146
|
320 match me with
|
adamc@145
|
321 | e => Ident
|
adamc@146
|
322 | ?me1 + ?me2 =>
|
adam@360
|
323 let r1 := reify me1 in
|
adam@360
|
324 let r2 := reify me2 in
|
adamc@145
|
325 constr:(Op r1 r2)
|
adamc@146
|
326 | _ => constr:(Var me)
|
adamc@145
|
327 end.
|
adamc@145
|
328
|
adam@360
|
329 (** The final [monoid] tactic works on goals that equate two monoid terms. We reify each and change the goal to refer to the reified versions, finishing off by applying [monoid_reflect] and simplifying uses of [mldenote]. Recall that the %\index{tactics!change}%[change] tactic replaces a conclusion formula with another that is definitionally equal to it. *)
|
adamc@146
|
330
|
adamc@145
|
331 Ltac monoid :=
|
adamc@145
|
332 match goal with
|
adamc@146
|
333 | [ |- ?me1 = ?me2 ] =>
|
adam@360
|
334 let r1 := reify me1 in
|
adam@360
|
335 let r2 := reify me2 in
|
adamc@145
|
336 change (mdenote r1 = mdenote r2);
|
adam@360
|
337 apply monoid_reflect; simpl
|
adamc@145
|
338 end.
|
adamc@145
|
339
|
adamc@146
|
340 (** We can make short work of theorems like this one: *)
|
adamc@146
|
341
|
adamc@148
|
342 (* end thide *)
|
adamc@148
|
343
|
adamc@145
|
344 Theorem t1 : forall a b c d, a + b + c + d = a + (b + c) + d.
|
adamc@146
|
345 intros; monoid.
|
adamc@146
|
346 (** [[
|
adamc@146
|
347 ============================
|
adamc@146
|
348 a + (b + (c + (d + e))) = a + (b + (c + (d + e)))
|
adamc@221
|
349
|
adamc@146
|
350 ]]
|
adamc@146
|
351
|
adam@360
|
352 Our tactic has canonicalized both sides of the equality, such that we can finish the proof by reflexivity. *)
|
adamc@146
|
353
|
adamc@145
|
354 reflexivity.
|
adamc@145
|
355 Qed.
|
adamc@146
|
356
|
adamc@146
|
357 (** It is interesting to look at the form of the proof. *)
|
adamc@146
|
358
|
adamc@146
|
359 Print t1.
|
adamc@221
|
360 (** %\vspace{-.15in}% [[
|
adamc@146
|
361 t1 =
|
adamc@146
|
362 fun a b c d : A =>
|
adamc@146
|
363 monoid_reflect (Op (Op (Op (Var a) (Var b)) (Var c)) (Var d))
|
adamc@146
|
364 (Op (Op (Var a) (Op (Var b) (Var c))) (Var d))
|
adamc@146
|
365 (refl_equal (a + (b + (c + (d + e)))))
|
adamc@146
|
366 : forall a b c d : A, a + b + c + d = a + (b + c) + d
|
adamc@146
|
367 ]]
|
adamc@146
|
368
|
adam@360
|
369 The proof term contains only restatements of the equality operands in reified form, followed by a use of reflexivity on the shared canonical form. *)
|
adamc@221
|
370
|
adamc@145
|
371 End monoid.
|
adamc@145
|
372
|
adam@360
|
373 (** Extensions of this basic approach are used in the implementations of the %\index{tactics!ring}%[ring] and %\index{tactics!field}%[field] tactics that come packaged with Coq. *)
|
adamc@146
|
374
|
adamc@145
|
375
|
adamc@144
|
376 (** * A Smarter Tautology Solver *)
|
adamc@144
|
377
|
adam@360
|
378 (** Now we are ready to revisit our earlier tautology solver example. We want to broaden the scope of the tactic to include formulas whose truth is not syntactically apparent. We will want to allow injection of arbitrary formulas, like we allowed arbitrary monoid expressions in the last example. Since we are working in a richer theory, it is important to be able to use equalities between different injected formulas. For instance, we cannot prove [P -> P] by translating the formula into a value like [Imp (][Var P) (][Var P)], because a Gallina function has no way of comparing the two [P]s for equality.
|
adamc@147
|
379
|
adam@360
|
380 To arrive at a nice implementation satisfying these criteria, we introduce the %\index{tactics!quote}%[quote] tactic and its associated library. *)
|
adamc@147
|
381
|
adamc@144
|
382 Require Import Quote.
|
adamc@144
|
383
|
adamc@148
|
384 (* begin thide *)
|
adamc@144
|
385 Inductive formula : Set :=
|
adamc@144
|
386 | Atomic : index -> formula
|
adamc@144
|
387 | Truth : formula
|
adamc@144
|
388 | Falsehood : formula
|
adamc@144
|
389 | And : formula -> formula -> formula
|
adamc@144
|
390 | Or : formula -> formula -> formula
|
adamc@144
|
391 | Imp : formula -> formula -> formula.
|
adamc@144
|
392
|
adam@360
|
393 (** The type %\index{Gallina terms!index}%[index] comes from the [Quote] library and represents a countable variable type. The rest of [formula]'s definition should be old hat by now.
|
adamc@147
|
394
|
adamc@147
|
395 The [quote] tactic will implement injection from [Prop] into [formula] for us, but it is not quite as smart as we might like. In particular, it interprets implications incorrectly, so we will need to declare a wrapper definition for implication, as we did in the last chapter. *)
|
adamc@144
|
396
|
adamc@144
|
397 Definition imp (P1 P2 : Prop) := P1 -> P2.
|
adamc@144
|
398 Infix "-->" := imp (no associativity, at level 95).
|
adamc@144
|
399
|
adamc@147
|
400 (** Now we can define our denotation function. *)
|
adamc@147
|
401
|
adamc@147
|
402 Definition asgn := varmap Prop.
|
adamc@147
|
403
|
adamc@144
|
404 Fixpoint formulaDenote (atomics : asgn) (f : formula) : Prop :=
|
adamc@144
|
405 match f with
|
adamc@144
|
406 | Atomic v => varmap_find False v atomics
|
adamc@144
|
407 | Truth => True
|
adamc@144
|
408 | Falsehood => False
|
adamc@144
|
409 | And f1 f2 => formulaDenote atomics f1 /\ formulaDenote atomics f2
|
adamc@144
|
410 | Or f1 f2 => formulaDenote atomics f1 \/ formulaDenote atomics f2
|
adamc@144
|
411 | Imp f1 f2 => formulaDenote atomics f1 --> formulaDenote atomics f2
|
adamc@144
|
412 end.
|
adamc@144
|
413
|
adam@360
|
414 (** The %\index{Gallina terms!varmap}%[varmap] type family implements maps from [index] values. In this case, we define an assignment as a map from variables to [Prop]s. Our reifier [formulaDenote] works with an assignment, and we use the [varmap_find] function to consult the assignment in the [Atomic] case. The first argument to [varmap_find] is a default value, in case the variable is not found. *)
|
adamc@147
|
415
|
adamc@144
|
416 Section my_tauto.
|
adamc@144
|
417 Variable atomics : asgn.
|
adamc@144
|
418
|
adamc@144
|
419 Definition holds (v : index) := varmap_find False v atomics.
|
adamc@144
|
420
|
adamc@147
|
421 (** We define some shorthand for a particular variable being true, and now we are ready to define some helpful functions based on the [ListSet] module of the standard library, which (unsurprisingly) presents a view of lists as sets. *)
|
adamc@147
|
422
|
adamc@144
|
423 Require Import ListSet.
|
adamc@144
|
424
|
adamc@144
|
425 Definition index_eq : forall x y : index, {x = y} + {x <> y}.
|
adamc@144
|
426 decide equality.
|
adamc@144
|
427 Defined.
|
adamc@144
|
428
|
adamc@144
|
429 Definition add (s : set index) (v : index) := set_add index_eq v s.
|
adamc@147
|
430
|
adamc@221
|
431 Definition In_dec : forall v (s : set index), {In v s} + {~ In v s}.
|
adamc@221
|
432 Local Open Scope specif_scope.
|
adamc@144
|
433
|
adamc@221
|
434 intro; refine (fix F (s : set index) : {In v s} + {~ In v s} :=
|
adamc@221
|
435 match s with
|
adamc@144
|
436 | nil => No
|
adamc@144
|
437 | v' :: s' => index_eq v' v || F s'
|
adamc@144
|
438 end); crush.
|
adamc@144
|
439 Defined.
|
adamc@144
|
440
|
adamc@147
|
441 (** We define what it means for all members of an index set to represent true propositions, and we prove some lemmas about this notion. *)
|
adamc@147
|
442
|
adamc@144
|
443 Fixpoint allTrue (s : set index) : Prop :=
|
adamc@144
|
444 match s with
|
adamc@144
|
445 | nil => True
|
adamc@144
|
446 | v :: s' => holds v /\ allTrue s'
|
adamc@144
|
447 end.
|
adamc@144
|
448
|
adamc@144
|
449 Theorem allTrue_add : forall v s,
|
adamc@144
|
450 allTrue s
|
adamc@144
|
451 -> holds v
|
adamc@144
|
452 -> allTrue (add s v).
|
adamc@144
|
453 induction s; crush;
|
adamc@144
|
454 match goal with
|
adamc@144
|
455 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@144
|
456 end; crush.
|
adamc@144
|
457 Qed.
|
adamc@144
|
458
|
adamc@144
|
459 Theorem allTrue_In : forall v s,
|
adamc@144
|
460 allTrue s
|
adamc@144
|
461 -> set_In v s
|
adamc@144
|
462 -> varmap_find False v atomics.
|
adamc@144
|
463 induction s; crush.
|
adamc@144
|
464 Qed.
|
adamc@144
|
465
|
adamc@144
|
466 Hint Resolve allTrue_add allTrue_In.
|
adamc@144
|
467
|
adamc@221
|
468 Local Open Scope partial_scope.
|
adamc@144
|
469
|
adam@353
|
470 (** Now we can write a function [forward] which implements deconstruction of hypotheses. It has a dependent type, in the style of Chapter 6, guaranteeing correctness. The arguments to [forward] are a goal formula [f], a set [known] of atomic formulas that we may assume are true, a hypothesis formula [hyp], and a success continuation [cont] that we call when we have extended [known] to hold new truths implied by [hyp]. *)
|
adamc@147
|
471
|
adam@297
|
472 Definition forward : forall (f : formula) (known : set index) (hyp : formula)
|
adam@297
|
473 (cont : forall known', [allTrue known' -> formulaDenote atomics f]),
|
adam@297
|
474 [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f].
|
adamc@144
|
475 refine (fix F (f : formula) (known : set index) (hyp : formula)
|
adamc@221
|
476 (cont : forall known', [allTrue known' -> formulaDenote atomics f])
|
adamc@144
|
477 : [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f] :=
|
adamc@221
|
478 match hyp with
|
adamc@144
|
479 | Atomic v => Reduce (cont (add known v))
|
adamc@144
|
480 | Truth => Reduce (cont known)
|
adamc@144
|
481 | Falsehood => Yes
|
adamc@144
|
482 | And h1 h2 =>
|
adamc@144
|
483 Reduce (F (Imp h2 f) known h1 (fun known' =>
|
adamc@144
|
484 Reduce (F f known' h2 cont)))
|
adamc@144
|
485 | Or h1 h2 => F f known h1 cont && F f known h2 cont
|
adamc@144
|
486 | Imp _ _ => Reduce (cont known)
|
adamc@144
|
487 end); crush.
|
adamc@144
|
488 Defined.
|
adamc@144
|
489
|
adamc@147
|
490 (** A [backward] function implements analysis of the final goal. It calls [forward] to handle implications. *)
|
adamc@147
|
491
|
adam@297
|
492 Definition backward : forall (known : set index) (f : formula),
|
adam@297
|
493 [allTrue known -> formulaDenote atomics f].
|
adamc@221
|
494 refine (fix F (known : set index) (f : formula)
|
adamc@221
|
495 : [allTrue known -> formulaDenote atomics f] :=
|
adamc@221
|
496 match f with
|
adamc@144
|
497 | Atomic v => Reduce (In_dec v known)
|
adamc@144
|
498 | Truth => Yes
|
adamc@144
|
499 | Falsehood => No
|
adamc@144
|
500 | And f1 f2 => F known f1 && F known f2
|
adamc@144
|
501 | Or f1 f2 => F known f1 || F known f2
|
adamc@144
|
502 | Imp f1 f2 => forward f2 known f1 (fun known' => F known' f2)
|
adamc@144
|
503 end); crush; eauto.
|
adamc@144
|
504 Defined.
|
adamc@144
|
505
|
adamc@147
|
506 (** A simple wrapper around [backward] gives us the usual type of a partial decision procedure. *)
|
adamc@147
|
507
|
adam@297
|
508 Definition my_tauto : forall f : formula, [formulaDenote atomics f].
|
adamc@144
|
509 intro; refine (Reduce (backward nil f)); crush.
|
adamc@144
|
510 Defined.
|
adamc@144
|
511 End my_tauto.
|
adamc@144
|
512
|
adam@360
|
513 (** Our final tactic implementation is now fairly straightforward. First, we [intro] all quantifiers that do not bind [Prop]s. Then we call the [quote] tactic, which implements the reification for us. Finally, we are able to construct an exact proof via [partialOut] and the [my_tauto] Gallina function. *)
|
adamc@147
|
514
|
adamc@144
|
515 Ltac my_tauto :=
|
adamc@144
|
516 repeat match goal with
|
adamc@144
|
517 | [ |- forall x : ?P, _ ] =>
|
adamc@144
|
518 match type of P with
|
adamc@144
|
519 | Prop => fail 1
|
adamc@144
|
520 | _ => intro
|
adamc@144
|
521 end
|
adamc@144
|
522 end;
|
adamc@144
|
523 quote formulaDenote;
|
adamc@144
|
524 match goal with
|
adamc@144
|
525 | [ |- formulaDenote ?m ?f ] => exact (partialOut (my_tauto m f))
|
adamc@144
|
526 end.
|
adamc@148
|
527 (* end thide *)
|
adamc@144
|
528
|
adamc@147
|
529 (** A few examples demonstrate how the tactic works. *)
|
adamc@147
|
530
|
adamc@144
|
531 Theorem mt1 : True.
|
adamc@144
|
532 my_tauto.
|
adamc@144
|
533 Qed.
|
adamc@144
|
534
|
adamc@144
|
535 Print mt1.
|
adamc@221
|
536 (** %\vspace{-.15in}% [[
|
adamc@147
|
537 mt1 = partialOut (my_tauto (Empty_vm Prop) Truth)
|
adamc@147
|
538 : True
|
adamc@147
|
539 ]]
|
adamc@147
|
540
|
adamc@147
|
541 We see [my_tauto] applied with an empty [varmap], since every subformula is handled by [formulaDenote]. *)
|
adamc@144
|
542
|
adamc@144
|
543 Theorem mt2 : forall x y : nat, x = y --> x = y.
|
adamc@144
|
544 my_tauto.
|
adamc@144
|
545 Qed.
|
adamc@144
|
546
|
adamc@144
|
547 Print mt2.
|
adamc@221
|
548 (** %\vspace{-.15in}% [[
|
adamc@147
|
549 mt2 =
|
adamc@147
|
550 fun x y : nat =>
|
adamc@147
|
551 partialOut
|
adamc@147
|
552 (my_tauto (Node_vm (x = y) (Empty_vm Prop) (Empty_vm Prop))
|
adamc@147
|
553 (Imp (Atomic End_idx) (Atomic End_idx)))
|
adamc@147
|
554 : forall x y : nat, x = y --> x = y
|
adamc@147
|
555 ]]
|
adamc@147
|
556
|
adamc@147
|
557 Crucially, both instances of [x = y] are represented with the same index, [End_idx]. The value of this index only needs to appear once in the [varmap], whose form reveals that [varmap]s are represented as binary trees, where [index] values denote paths from tree roots to leaves. *)
|
adamc@144
|
558
|
adamc@144
|
559 Theorem mt3 : forall x y z,
|
adamc@144
|
560 (x < y /\ y > z) \/ (y > z /\ x < S y)
|
adamc@144
|
561 --> y > z /\ (x < y \/ x < S y).
|
adamc@144
|
562 my_tauto.
|
adamc@144
|
563 Qed.
|
adamc@144
|
564
|
adamc@144
|
565 Print mt3.
|
adamc@221
|
566 (** %\vspace{-.15in}% [[
|
adamc@147
|
567 fun x y z : nat =>
|
adamc@147
|
568 partialOut
|
adamc@147
|
569 (my_tauto
|
adamc@147
|
570 (Node_vm (x < S y) (Node_vm (x < y) (Empty_vm Prop) (Empty_vm Prop))
|
adamc@147
|
571 (Node_vm (y > z) (Empty_vm Prop) (Empty_vm Prop)))
|
adamc@147
|
572 (Imp
|
adamc@147
|
573 (Or (And (Atomic (Left_idx End_idx)) (Atomic (Right_idx End_idx)))
|
adamc@147
|
574 (And (Atomic (Right_idx End_idx)) (Atomic End_idx)))
|
adamc@147
|
575 (And (Atomic (Right_idx End_idx))
|
adamc@147
|
576 (Or (Atomic (Left_idx End_idx)) (Atomic End_idx)))))
|
adamc@147
|
577 : forall x y z : nat,
|
adamc@147
|
578 x < y /\ y > z \/ y > z /\ x < S y --> y > z /\ (x < y \/ x < S y)
|
adamc@147
|
579 ]]
|
adamc@147
|
580
|
adamc@147
|
581 Our goal contained three distinct atomic formulas, and we see that a three-element [varmap] is generated.
|
adamc@147
|
582
|
adamc@147
|
583 It can be interesting to observe differences between the level of repetition in proof terms generated by [my_tauto] and [tauto] for especially trivial theorems. *)
|
adamc@144
|
584
|
adamc@144
|
585 Theorem mt4 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False.
|
adamc@144
|
586 my_tauto.
|
adamc@144
|
587 Qed.
|
adamc@144
|
588
|
adamc@144
|
589 Print mt4.
|
adamc@221
|
590 (** %\vspace{-.15in}% [[
|
adamc@147
|
591 mt4 =
|
adamc@147
|
592 partialOut
|
adamc@147
|
593 (my_tauto (Empty_vm Prop)
|
adamc@147
|
594 (Imp
|
adamc@147
|
595 (And Truth
|
adamc@147
|
596 (And Truth
|
adamc@147
|
597 (And Truth (And Truth (And Truth (And Truth Falsehood))))))
|
adamc@147
|
598 Falsehood))
|
adamc@147
|
599 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False
|
adam@302
|
600 ]]
|
adam@302
|
601 *)
|
adamc@144
|
602
|
adamc@144
|
603 Theorem mt4' : True /\ True /\ True /\ True /\ True /\ True /\ False -> False.
|
adamc@144
|
604 tauto.
|
adamc@144
|
605 Qed.
|
adamc@144
|
606
|
adamc@144
|
607 Print mt4'.
|
adamc@221
|
608 (** %\vspace{-.15in}% [[
|
adamc@147
|
609 mt4' =
|
adamc@147
|
610 fun H : True /\ True /\ True /\ True /\ True /\ True /\ False =>
|
adamc@147
|
611 and_ind
|
adamc@147
|
612 (fun (_ : True) (H1 : True /\ True /\ True /\ True /\ True /\ False) =>
|
adamc@147
|
613 and_ind
|
adamc@147
|
614 (fun (_ : True) (H3 : True /\ True /\ True /\ True /\ False) =>
|
adamc@147
|
615 and_ind
|
adamc@147
|
616 (fun (_ : True) (H5 : True /\ True /\ True /\ False) =>
|
adamc@147
|
617 and_ind
|
adamc@147
|
618 (fun (_ : True) (H7 : True /\ True /\ False) =>
|
adamc@147
|
619 and_ind
|
adamc@147
|
620 (fun (_ : True) (H9 : True /\ False) =>
|
adamc@147
|
621 and_ind (fun (_ : True) (H11 : False) => False_ind False H11)
|
adamc@147
|
622 H9) H7) H5) H3) H1) H
|
adamc@147
|
623 : True /\ True /\ True /\ True /\ True /\ True /\ False -> False
|
adam@302
|
624 ]]
|
adam@360
|
625
|
adam@360
|
626 The traditional [tauto] tactic introduces a quadratic blow-up in the size of the proof term, whereas proofs produced by [my_tauto] always have linear size. *)
|
adamc@147
|
627
|
adamc@149
|
628
|
adamc@149
|
629 (** * Exercises *)
|
adamc@149
|
630
|
adamc@221
|
631 (** remove printing * *)
|
adamc@221
|
632
|
adamc@149
|
633 (** %\begin{enumerate}%#<ol>#
|
adamc@149
|
634
|
adamc@149
|
635 %\item%#<li># Implement a reflective procedure for normalizing systems of linear equations over rational numbers. In particular, the tactic should identify all hypotheses that are linear equations over rationals where the equation righthand sides are constants. It should normalize each hypothesis to have a lefthand side that is a sum of products of constants and variables, with no variable appearing multiple times. Then, your tactic should add together all of these equations to form a single new equation, possibly clearing the original equations. Some coefficients may cancel in the addition, reducing the number of variables that appear.
|
adamc@149
|
636
|
adamc@221
|
637 To work with rational numbers, import module [QArith] and use [Local Open Scope Q_scope]. All of the usual arithmetic operator notations will then work with rationals, and there are shorthands for constants 0 and 1. Other rationals must be written as [num # den] for numerator [num] and denominator [den]. Use the infix operator [==] in place of [=], to deal with different ways of expressing the same number as a fraction. For instance, a theorem and proof like this one should work with your tactic:
|
adamc@149
|
638 [[
|
adamc@149
|
639 Theorem t2 : forall x y z, (2 # 1) * (x - (3 # 2) * y) == 15 # 1
|
adamc@149
|
640 -> z + (8 # 1) * x == 20 # 1
|
adamc@149
|
641 -> (-6 # 2) * y + (10 # 1) * x + z == 35 # 1.
|
adam@360
|
642 intros; reifyContext; assumption.
|
adamc@149
|
643 Qed.
|
adamc@205
|
644 ]]
|
adamc@205
|
645
|
adam@360
|
646 Your solution can work in any way that involves reifying syntax and doing most calculation with a Gallina function. These hints outline a particular possible solution. Throughout, the [ring] tactic will be helpful for proving many simple facts about rationals, and tactics like [rewrite] are correctly overloaded to work with rational equality [==].
|
adamc@149
|
647
|
adamc@149
|
648 %\begin{enumerate}%#<ol>#
|
adamc@221
|
649 %\item%#<li># Define an inductive type [exp] of expressions over rationals (which inhabit the Coq type [Q]). Include variables (represented as natural numbers), constants, addition, subtraction, and multiplication.#</li>#
|
adamc@149
|
650 %\item%#<li># Define a function [lookup] for reading an element out of a list of rationals, by its position in the list.#</li>#
|
adamc@149
|
651 %\item%#<li># Define a function [expDenote] that translates [exp]s, along with lists of rationals representing variable values, to [Q].#</li>#
|
adamc@149
|
652 %\item%#<li># Define a recursive function [eqsDenote] over [list (exp * Q)], characterizing when all of the equations are true.#</li>#
|
adamc@149
|
653 %\item%#<li># Fix a representation [lhs] of flattened expressions. Where [len] is the number of variables, represent a flattened equation as [ilist Q len]. Each position of the list gives the coefficient of the corresponding variable.#</li>#
|
adamc@151
|
654 %\item%#<li># Write a recursive function [linearize] that takes a constant [k] and an expression [e] and optionally returns an [lhs] equivalent to [k * e]. This function returns [None] when it discovers that the input expression is not linear. The parameter [len] of [lhs] should be a parameter of [linearize], too. The functions [singleton], [everywhere], and [map2] from [DepList] will probably be helpful. It is also helpful to know that [Qplus] is the identifier for rational addition.#</li>#
|
adamc@149
|
655 %\item%#<li># Write a recursive function [linearizeEqs : list (exp * Q) -> option (lhs * Q)]. This function linearizes all of the equations in the list in turn, building up the sum of the equations. It returns [None] if the linearization of any constituent equation fails.#</li>#
|
adamc@149
|
656 %\item%#<li># Define a denotation function for [lhs].#</li>#
|
adamc@149
|
657 %\item%#<li># Prove that, when [exp] linearization succeeds on constant [k] and expression [e], the linearized version has the same meaning as [k * e].#</li>#
|
adamc@149
|
658 %\item%#<li># Prove that, when [linearizeEqs] succeeds on an equation list [eqs], then the final summed-up equation is true whenever the original equation list is true.#</li>#
|
adamc@149
|
659 %\item%#<li># Write a tactic [findVarsHyps] to search through all equalities on rationals in the context, recursing through addition, subtraction, and multiplication to find the list of expressions that should be treated as variables. This list should be suitable as an argument to [expDenote] and [eqsDenote], associating a [Q] value to each natural number that stands for a variable.#</li>#
|
adam@360
|
660 %\item%#<li># Write a tactic [reify] to reify a [Q] expression into [exp], with respect to a given list of variable values.#</li>#
|
adam@360
|
661 %\item%#<li># Write a tactic [reifyEqs] to reify a formula that begins with a sequence of implications from linear equalities whose lefthand sides are expressed with [expDenote]. This tactic should build a [list (exp * Q)] representing the equations. Remember to give an explicit type annotation when returning a nil list, as in [constr:(][@][nil (exp * Q))].#</li>#
|
adamc@149
|
662 %\item%#<li># Now this final tactic should do the job:
|
adamc@149
|
663 [[
|
adam@360
|
664 Ltac reifyContext :=
|
adamc@149
|
665 let ls := findVarsHyps in
|
adamc@149
|
666 repeat match goal with
|
adamc@149
|
667 | [ H : ?e == ?num # ?den |- _ ] =>
|
adam@360
|
668 let r := reify ls e in
|
adamc@149
|
669 change (expDenote ls r == num # den) in H;
|
adamc@149
|
670 generalize H
|
adamc@149
|
671 end;
|
adamc@149
|
672 match goal with
|
adam@360
|
673 | [ |- ?g ] => let re := reifyEqs g in
|
adamc@149
|
674 intros;
|
adamc@149
|
675 let H := fresh "H" in
|
adamc@149
|
676 assert (H : eqsDenote ls re); [ simpl in *; tauto
|
adamc@149
|
677 | repeat match goal with
|
adamc@149
|
678 | [ H : expDenote _ _ == _ |- _ ] => clear H
|
adamc@149
|
679 end;
|
adamc@149
|
680 generalize (linearizeEqsCorrect ls re H); clear H; simpl;
|
adamc@149
|
681 match goal with
|
adamc@149
|
682 | [ |- ?X == ?Y -> _ ] =>
|
adamc@149
|
683 ring_simplify X Y; intro
|
adamc@149
|
684 end ]
|
adamc@149
|
685 end.
|
adamc@205
|
686 ]]
|
adamc@205
|
687
|
adamc@149
|
688 #</ol>#%\end{enumerate}%
|
adamc@149
|
689 #</li>#
|
adamc@149
|
690
|
adamc@149
|
691 #</ol>#%\end{enumerate}% *)
|