adamc@158
|
1 (* Copyright (c) 2008, Adam Chlipala
|
adamc@158
|
2 *
|
adamc@158
|
3 * This work is licensed under a
|
adamc@158
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@158
|
5 * Unported License.
|
adamc@158
|
6 * The license text is available at:
|
adamc@158
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@158
|
8 *)
|
adamc@158
|
9
|
adamc@158
|
10 (* begin hide *)
|
adamc@158
|
11 Require Import Arith Eqdep String List.
|
adamc@158
|
12
|
adamc@160
|
13 Require Import Axioms DepList Tactics.
|
adamc@158
|
14
|
adamc@158
|
15 Set Implicit Arguments.
|
adamc@158
|
16 (* end hide *)
|
adamc@158
|
17
|
adamc@158
|
18
|
adamc@158
|
19 (** %\chapter{Higher-Order Abstract Syntax}% *)
|
adamc@158
|
20
|
adamc@158
|
21 (** TODO: Prose for this chapter *)
|
adamc@158
|
22
|
adamc@158
|
23
|
adamc@158
|
24 (** * Parametric Higher-Order Abstract Syntax *)
|
adamc@158
|
25
|
adamc@158
|
26 Inductive type : Type :=
|
adamc@159
|
27 | Nat : type
|
adamc@158
|
28 | Arrow : type -> type -> type.
|
adamc@158
|
29
|
adamc@158
|
30 Infix "-->" := Arrow (right associativity, at level 60).
|
adamc@158
|
31
|
adamc@158
|
32 Section exp.
|
adamc@158
|
33 Variable var : type -> Type.
|
adamc@158
|
34
|
adamc@158
|
35 Inductive exp : type -> Type :=
|
adamc@159
|
36 | Const' : nat -> exp Nat
|
adamc@159
|
37 | Plus' : exp Nat -> exp Nat -> exp Nat
|
adamc@159
|
38
|
adamc@158
|
39 | Var : forall t, var t -> exp t
|
adamc@158
|
40 | App' : forall dom ran, exp (dom --> ran) -> exp dom -> exp ran
|
adamc@158
|
41 | Abs' : forall dom ran, (var dom -> exp ran) -> exp (dom --> ran).
|
adamc@158
|
42 End exp.
|
adamc@158
|
43
|
adamc@158
|
44 Implicit Arguments Const' [var].
|
adamc@158
|
45 Implicit Arguments Var [var t].
|
adamc@158
|
46 Implicit Arguments Abs' [var dom ran].
|
adamc@158
|
47
|
adamc@158
|
48 Definition Exp t := forall var, exp var t.
|
adamc@158
|
49 Definition Exp1 t1 t2 := forall var, var t1 -> exp var t2.
|
adamc@158
|
50
|
adamc@159
|
51 Definition Const (n : nat) : Exp Nat :=
|
adamc@159
|
52 fun _ => Const' n.
|
adamc@159
|
53 Definition Plus (E1 E2 : Exp Nat) : Exp Nat :=
|
adamc@159
|
54 fun _ => Plus' (E1 _) (E2 _).
|
adamc@158
|
55 Definition App dom ran (F : Exp (dom --> ran)) (X : Exp dom) : Exp ran :=
|
adamc@158
|
56 fun _ => App' (F _) (X _).
|
adamc@158
|
57 Definition Abs dom ran (B : Exp1 dom ran) : Exp (dom --> ran) :=
|
adamc@158
|
58 fun _ => Abs' (B _).
|
adamc@158
|
59
|
adamc@166
|
60 Definition zero := Const 0.
|
adamc@166
|
61 Definition one := Const 1.
|
adamc@166
|
62 Definition one_again := Plus zero one.
|
adamc@166
|
63 Definition ident : Exp (Nat --> Nat) := Abs (fun _ X => Var X).
|
adamc@166
|
64 Definition app_ident := App ident one_again.
|
adamc@166
|
65 Definition app : Exp ((Nat --> Nat) --> Nat --> Nat) := fun _ =>
|
adamc@166
|
66 Abs' (fun f => Abs' (fun x => App' (Var f) (Var x))).
|
adamc@166
|
67 Definition app_ident' := App (App app ident) one_again.
|
adamc@166
|
68
|
adamc@166
|
69 Fixpoint countVars t (e : exp (fun _ => unit) t) {struct e} : nat :=
|
adamc@166
|
70 match e with
|
adamc@166
|
71 | Const' _ => 0
|
adamc@166
|
72 | Plus' e1 e2 => countVars e1 + countVars e2
|
adamc@166
|
73 | Var _ _ => 1
|
adamc@166
|
74 | App' _ _ e1 e2 => countVars e1 + countVars e2
|
adamc@166
|
75 | Abs' _ _ e' => countVars (e' tt)
|
adamc@166
|
76 end.
|
adamc@166
|
77
|
adamc@166
|
78 Definition CountVars t (E : Exp t) : nat := countVars (E _).
|
adamc@166
|
79
|
adamc@166
|
80 Eval compute in CountVars zero.
|
adamc@166
|
81 Eval compute in CountVars one.
|
adamc@166
|
82 Eval compute in CountVars one_again.
|
adamc@166
|
83 Eval compute in CountVars ident.
|
adamc@166
|
84 Eval compute in CountVars app_ident.
|
adamc@166
|
85 Eval compute in CountVars app.
|
adamc@166
|
86 Eval compute in CountVars app_ident'.
|
adamc@166
|
87
|
adamc@166
|
88 Fixpoint countOne t (e : exp (fun _ => bool) t) {struct e} : nat :=
|
adamc@166
|
89 match e with
|
adamc@166
|
90 | Const' _ => 0
|
adamc@166
|
91 | Plus' e1 e2 => countOne e1 + countOne e2
|
adamc@166
|
92 | Var _ true => 1
|
adamc@166
|
93 | Var _ false => 0
|
adamc@166
|
94 | App' _ _ e1 e2 => countOne e1 + countOne e2
|
adamc@166
|
95 | Abs' _ _ e' => countOne (e' false)
|
adamc@166
|
96 end.
|
adamc@166
|
97
|
adamc@166
|
98 Definition CountOne t1 t2 (E : Exp1 t1 t2) : nat :=
|
adamc@166
|
99 countOne (E _ true).
|
adamc@166
|
100
|
adamc@166
|
101 Definition ident1 : Exp1 Nat Nat := fun _ X => Var X.
|
adamc@166
|
102 Definition add_self : Exp1 Nat Nat := fun _ X => Plus' (Var X) (Var X).
|
adamc@166
|
103 Definition app_zero : Exp1 (Nat --> Nat) Nat := fun _ X => App' (Var X) (Const' 0).
|
adamc@166
|
104 Definition app_ident1 : Exp1 Nat Nat := fun _ X => App' (Abs' (fun Y => Var Y)) (Var X).
|
adamc@166
|
105
|
adamc@166
|
106 Eval compute in CountOne ident1.
|
adamc@166
|
107 Eval compute in CountOne add_self.
|
adamc@166
|
108 Eval compute in CountOne app_zero.
|
adamc@166
|
109 Eval compute in CountOne app_ident1.
|
adamc@166
|
110
|
adamc@166
|
111 Section ToString.
|
adamc@166
|
112 Open Scope string_scope.
|
adamc@166
|
113
|
adamc@166
|
114 Fixpoint natToString (n : nat) : string :=
|
adamc@166
|
115 match n with
|
adamc@166
|
116 | O => "O"
|
adamc@166
|
117 | S n' => "S(" ++ natToString n' ++ ")"
|
adamc@166
|
118 end.
|
adamc@166
|
119
|
adamc@166
|
120 Fixpoint toString t (e : exp (fun _ => string) t) (cur : string) {struct e} : string * string :=
|
adamc@166
|
121 match e with
|
adamc@166
|
122 | Const' n => (cur, natToString n)
|
adamc@166
|
123 | Plus' e1 e2 =>
|
adamc@166
|
124 let (cur', s1) := toString e1 cur in
|
adamc@166
|
125 let (cur'', s2) := toString e2 cur' in
|
adamc@166
|
126 (cur'', "(" ++ s1 ++ ") + (" ++ s2 ++ ")")
|
adamc@166
|
127 | Var _ s => (cur, s)
|
adamc@166
|
128 | App' _ _ e1 e2 =>
|
adamc@166
|
129 let (cur', s1) := toString e1 cur in
|
adamc@166
|
130 let (cur'', s2) := toString e2 cur' in
|
adamc@166
|
131 (cur'', "(" ++ s1 ++ ") (" ++ s2 ++ ")")
|
adamc@166
|
132 | Abs' _ _ e' =>
|
adamc@166
|
133 let (cur', s) := toString (e' cur) (cur ++ "'") in
|
adamc@166
|
134 (cur', "(\" ++ cur ++ ", " ++ s ++ ")")
|
adamc@166
|
135 end.
|
adamc@166
|
136
|
adamc@166
|
137 Definition ToString t (E : Exp t) : string := snd (toString (E _) "x").
|
adamc@166
|
138 End ToString.
|
adamc@166
|
139
|
adamc@166
|
140 Eval compute in ToString zero.
|
adamc@166
|
141 Eval compute in ToString one.
|
adamc@166
|
142 Eval compute in ToString one_again.
|
adamc@166
|
143 Eval compute in ToString ident.
|
adamc@166
|
144 Eval compute in ToString app_ident.
|
adamc@166
|
145 Eval compute in ToString app.
|
adamc@166
|
146 Eval compute in ToString app_ident'.
|
adamc@166
|
147
|
adamc@158
|
148 Section flatten.
|
adamc@158
|
149 Variable var : type -> Type.
|
adamc@158
|
150
|
adamc@158
|
151 Fixpoint flatten t (e : exp (exp var) t) {struct e} : exp var t :=
|
adamc@158
|
152 match e in exp _ t return exp _ t with
|
adamc@159
|
153 | Const' n => Const' n
|
adamc@159
|
154 | Plus' e1 e2 => Plus' (flatten e1) (flatten e2)
|
adamc@158
|
155 | Var _ e' => e'
|
adamc@158
|
156 | App' _ _ e1 e2 => App' (flatten e1) (flatten e2)
|
adamc@158
|
157 | Abs' _ _ e' => Abs' (fun x => flatten (e' (Var x)))
|
adamc@158
|
158 end.
|
adamc@158
|
159 End flatten.
|
adamc@158
|
160
|
adamc@158
|
161 Definition Subst t1 t2 (E1 : Exp t1) (E2 : Exp1 t1 t2) : Exp t2 := fun _ =>
|
adamc@158
|
162 flatten (E2 _ (E1 _)).
|
adamc@158
|
163
|
adamc@166
|
164 Eval compute in Subst one ident1.
|
adamc@166
|
165 Eval compute in Subst one add_self.
|
adamc@166
|
166 Eval compute in Subst ident app_zero.
|
adamc@166
|
167 Eval compute in Subst one app_ident1.
|
adamc@166
|
168
|
adamc@158
|
169
|
adamc@158
|
170 (** * A Type Soundness Proof *)
|
adamc@158
|
171
|
adamc@158
|
172 Reserved Notation "E1 ==> E2" (no associativity, at level 90).
|
adamc@158
|
173
|
adamc@158
|
174 Inductive Val : forall t, Exp t -> Prop :=
|
adamc@159
|
175 | VConst : forall n, Val (Const n)
|
adamc@158
|
176 | VAbs : forall dom ran (B : Exp1 dom ran), Val (Abs B).
|
adamc@158
|
177
|
adamc@158
|
178 Hint Constructors Val.
|
adamc@158
|
179
|
adamc@162
|
180 Inductive Ctx : type -> type -> Type :=
|
adamc@162
|
181 | AppCong1 : forall (dom ran : type),
|
adamc@162
|
182 Exp dom -> Ctx (dom --> ran) ran
|
adamc@162
|
183 | AppCong2 : forall (dom ran : type),
|
adamc@162
|
184 Exp (dom --> ran) -> Ctx dom ran
|
adamc@162
|
185 | PlusCong1 : Exp Nat -> Ctx Nat Nat
|
adamc@162
|
186 | PlusCong2 : Exp Nat -> Ctx Nat Nat.
|
adamc@162
|
187
|
adamc@162
|
188 Inductive isCtx : forall t1 t2, Ctx t1 t2 -> Prop :=
|
adamc@162
|
189 | IsApp1 : forall dom ran (X : Exp dom), isCtx (AppCong1 ran X)
|
adamc@162
|
190 | IsApp2 : forall dom ran (F : Exp (dom --> ran)), Val F -> isCtx (AppCong2 F)
|
adamc@162
|
191 | IsPlus1 : forall E2, isCtx (PlusCong1 E2)
|
adamc@162
|
192 | IsPlus2 : forall E1, Val E1 -> isCtx (PlusCong2 E1).
|
adamc@162
|
193
|
adamc@162
|
194 Definition plug t1 t2 (C : Ctx t1 t2) : Exp t1 -> Exp t2 :=
|
adamc@162
|
195 match C in Ctx t1 t2 return Exp t1 -> Exp t2 with
|
adamc@162
|
196 | AppCong1 _ _ X => fun F => App F X
|
adamc@162
|
197 | AppCong2 _ _ F => fun X => App F X
|
adamc@162
|
198 | PlusCong1 E2 => fun E1 => Plus E1 E2
|
adamc@162
|
199 | PlusCong2 E1 => fun E2 => Plus E1 E2
|
adamc@162
|
200 end.
|
adamc@162
|
201
|
adamc@162
|
202 Infix "@" := plug (no associativity, at level 60).
|
adamc@162
|
203
|
adamc@158
|
204 Inductive Step : forall t, Exp t -> Exp t -> Prop :=
|
adamc@158
|
205 | Beta : forall dom ran (B : Exp1 dom ran) (X : Exp dom),
|
adamc@160
|
206 Val X
|
adamc@160
|
207 -> App (Abs B) X ==> Subst X B
|
adamc@159
|
208 | Sum : forall n1 n2,
|
adamc@159
|
209 Plus (Const n1) (Const n2) ==> Const (n1 + n2)
|
adamc@162
|
210 | Cong : forall t t' (C : Ctx t t') E E' E1,
|
adamc@162
|
211 isCtx C
|
adamc@162
|
212 -> E1 = C @ E
|
adamc@162
|
213 -> E ==> E'
|
adamc@162
|
214 -> E1 ==> C @ E'
|
adamc@159
|
215
|
adamc@158
|
216 where "E1 ==> E2" := (Step E1 E2).
|
adamc@158
|
217
|
adamc@162
|
218 Hint Constructors isCtx Step.
|
adamc@158
|
219
|
adamc@158
|
220 Inductive Closed : forall t, Exp t -> Prop :=
|
adamc@164
|
221 | CConst : forall n,
|
adamc@164
|
222 Closed (Const n)
|
adamc@159
|
223 | CPlus : forall E1 E2,
|
adamc@159
|
224 Closed E1
|
adamc@159
|
225 -> Closed E2
|
adamc@159
|
226 -> Closed (Plus E1 E2)
|
adamc@158
|
227 | CApp : forall dom ran (E1 : Exp (dom --> ran)) E2,
|
adamc@158
|
228 Closed E1
|
adamc@158
|
229 -> Closed E2
|
adamc@158
|
230 -> Closed (App E1 E2)
|
adamc@158
|
231 | CAbs : forall dom ran (E1 : Exp1 dom ran),
|
adamc@158
|
232 Closed (Abs E1).
|
adamc@158
|
233
|
adamc@158
|
234 Axiom closed : forall t (E : Exp t), Closed E.
|
adamc@158
|
235
|
adamc@160
|
236 Ltac my_crush' :=
|
adamc@167
|
237 crush;
|
adamc@158
|
238 repeat (match goal with
|
adamc@158
|
239 | [ H : _ |- _ ] => generalize (inj_pairT2 _ _ _ _ _ H); clear H
|
adamc@167
|
240 end; crush).
|
adamc@160
|
241
|
adamc@162
|
242 Hint Extern 1 (_ = _ @ _) => simpl.
|
adamc@162
|
243
|
adamc@158
|
244 Lemma progress' : forall t (E : Exp t),
|
adamc@158
|
245 Closed E
|
adamc@158
|
246 -> Val E \/ exists E', E ==> E'.
|
adamc@158
|
247 induction 1; crush;
|
adamc@159
|
248 repeat match goal with
|
adamc@167
|
249 | [ H : Val _ |- _ ] => inversion H; []; clear H; my_crush'
|
adamc@162
|
250 end; eauto 6.
|
adamc@158
|
251 Qed.
|
adamc@158
|
252
|
adamc@158
|
253 Theorem progress : forall t (E : Exp t),
|
adamc@158
|
254 Val E \/ exists E', E ==> E'.
|
adamc@158
|
255 intros; apply progress'; apply closed.
|
adamc@158
|
256 Qed.
|
adamc@158
|
257
|
adamc@160
|
258
|
adamc@160
|
259 (** * Big-Step Semantics *)
|
adamc@160
|
260
|
adamc@160
|
261 Reserved Notation "E1 ===> E2" (no associativity, at level 90).
|
adamc@160
|
262
|
adamc@160
|
263 Inductive BigStep : forall t, Exp t -> Exp t -> Prop :=
|
adamc@160
|
264 | SConst : forall n,
|
adamc@160
|
265 Const n ===> Const n
|
adamc@160
|
266 | SPlus : forall E1 E2 n1 n2,
|
adamc@160
|
267 E1 ===> Const n1
|
adamc@160
|
268 -> E2 ===> Const n2
|
adamc@160
|
269 -> Plus E1 E2 ===> Const (n1 + n2)
|
adamc@160
|
270
|
adamc@160
|
271 | SApp : forall dom ran (E1 : Exp (dom --> ran)) E2 B V2 V,
|
adamc@160
|
272 E1 ===> Abs B
|
adamc@160
|
273 -> E2 ===> V2
|
adamc@160
|
274 -> Subst V2 B ===> V
|
adamc@160
|
275 -> App E1 E2 ===> V
|
adamc@160
|
276 | SAbs : forall dom ran (B : Exp1 dom ran),
|
adamc@160
|
277 Abs B ===> Abs B
|
adamc@160
|
278
|
adamc@160
|
279 where "E1 ===> E2" := (BigStep E1 E2).
|
adamc@160
|
280
|
adamc@160
|
281 Hint Constructors BigStep.
|
adamc@160
|
282
|
adamc@160
|
283 Reserved Notation "E1 ==>* E2" (no associativity, at level 90).
|
adamc@160
|
284
|
adamc@160
|
285 Inductive MultiStep : forall t, Exp t -> Exp t -> Prop :=
|
adamc@160
|
286 | Done : forall t (E : Exp t), E ==>* E
|
adamc@160
|
287 | OneStep : forall t (E E' E'' : Exp t),
|
adamc@160
|
288 E ==> E'
|
adamc@160
|
289 -> E' ==>* E''
|
adamc@160
|
290 -> E ==>* E''
|
adamc@160
|
291
|
adamc@160
|
292 where "E1 ==>* E2" := (MultiStep E1 E2).
|
adamc@160
|
293
|
adamc@160
|
294 Hint Constructors MultiStep.
|
adamc@160
|
295
|
adamc@160
|
296 Theorem MultiStep_trans : forall t (E1 E2 E3 : Exp t),
|
adamc@160
|
297 E1 ==>* E2
|
adamc@160
|
298 -> E2 ==>* E3
|
adamc@160
|
299 -> E1 ==>* E3.
|
adamc@160
|
300 induction 1; eauto.
|
adamc@160
|
301 Qed.
|
adamc@160
|
302
|
adamc@160
|
303 Theorem Big_Val : forall t (E V : Exp t),
|
adamc@160
|
304 E ===> V
|
adamc@160
|
305 -> Val V.
|
adamc@160
|
306 induction 1; crush.
|
adamc@160
|
307 Qed.
|
adamc@160
|
308
|
adamc@160
|
309 Theorem Val_Big : forall t (V : Exp t),
|
adamc@160
|
310 Val V
|
adamc@160
|
311 -> V ===> V.
|
adamc@160
|
312 destruct 1; crush.
|
adamc@160
|
313 Qed.
|
adamc@160
|
314
|
adamc@160
|
315 Hint Resolve Big_Val Val_Big.
|
adamc@160
|
316
|
adamc@162
|
317 Lemma Multi_Cong : forall t t' (C : Ctx t t'),
|
adamc@162
|
318 isCtx C
|
adamc@162
|
319 -> forall E E', E ==>* E'
|
adamc@162
|
320 -> C @ E ==>* C @ E'.
|
adamc@160
|
321 induction 2; crush; eauto.
|
adamc@160
|
322 Qed.
|
adamc@160
|
323
|
adamc@162
|
324 Lemma Multi_Cong' : forall t t' (C : Ctx t t') E1 E2 E E',
|
adamc@162
|
325 isCtx C
|
adamc@162
|
326 -> E1 = C @ E
|
adamc@162
|
327 -> E2 = C @ E'
|
adamc@162
|
328 -> E ==>* E'
|
adamc@162
|
329 -> E1 ==>* E2.
|
adamc@162
|
330 crush; apply Multi_Cong; auto.
|
adamc@162
|
331 Qed.
|
adamc@162
|
332
|
adamc@162
|
333 Hint Resolve Multi_Cong'.
|
adamc@162
|
334
|
adamc@162
|
335 Ltac mtrans E :=
|
adamc@162
|
336 match goal with
|
adamc@162
|
337 | [ |- E ==>* _ ] => fail 1
|
adamc@162
|
338 | _ => apply MultiStep_trans with E; [ solve [ eauto ] | eauto ]
|
adamc@162
|
339 end.
|
adamc@160
|
340
|
adamc@160
|
341 Theorem Big_Multi : forall t (E V : Exp t),
|
adamc@160
|
342 E ===> V
|
adamc@160
|
343 -> E ==>* V.
|
adamc@162
|
344 induction 1; crush; eauto;
|
adamc@162
|
345 repeat match goal with
|
adamc@162
|
346 | [ n1 : _, E2 : _ |- _ ] => mtrans (Plus (Const n1) E2)
|
adamc@162
|
347 | [ n1 : _, n2 : _ |- _ ] => mtrans (Plus (Const n1) (Const n2))
|
adamc@162
|
348 | [ B : _, E2 : _ |- _ ] => mtrans (App (Abs B) E2)
|
adamc@162
|
349 end.
|
adamc@160
|
350 Qed.
|
adamc@160
|
351
|
adamc@160
|
352 Lemma Big_Val' : forall t (V1 V2 : Exp t),
|
adamc@160
|
353 Val V2
|
adamc@160
|
354 -> V1 = V2
|
adamc@160
|
355 -> V1 ===> V2.
|
adamc@160
|
356 crush.
|
adamc@160
|
357 Qed.
|
adamc@160
|
358
|
adamc@160
|
359 Hint Resolve Big_Val'.
|
adamc@160
|
360
|
adamc@167
|
361 Ltac equate_conj F G :=
|
adamc@167
|
362 match constr:(F, G) with
|
adamc@167
|
363 | (_ ?x1, _ ?x2) => constr:(x1 = x2)
|
adamc@167
|
364 | (_ ?x1 ?y1, _ ?x2 ?y2) => constr:(x1 = x2 /\ y1 = y2)
|
adamc@167
|
365 | (_ ?x1 ?y1 ?z1, _ ?x2 ?y2 ?z2) => constr:(x1 = x2 /\ y1 = y2 /\ z1 = z2)
|
adamc@167
|
366 | (_ ?x1 ?y1 ?z1 ?u1, _ ?x2 ?y2 ?z2 ?u2) => constr:(x1 = x2 /\ y1 = y2 /\ z1 = z2 /\ u1 = u2)
|
adamc@167
|
367 | (_ ?x1 ?y1 ?z1 ?u1 ?v1, _ ?x2 ?y2 ?z2 ?u2 ?v2) => constr:(x1 = x2 /\ y1 = y2 /\ z1 = z2 /\ u1 = u2 /\ v1 = v2)
|
adamc@167
|
368 end.
|
adamc@167
|
369
|
adamc@167
|
370 Ltac my_crush :=
|
adamc@167
|
371 my_crush';
|
adamc@167
|
372 repeat (match goal with
|
adamc@167
|
373 | [ H : ?F = ?G |- _ ] =>
|
adamc@167
|
374 (let H' := fresh "H'" in
|
adamc@167
|
375 assert (H' : F (fun _ => unit) = G (fun _ => unit)); [ congruence
|
adamc@167
|
376 | discriminate || injection H'; clear H' ];
|
adamc@167
|
377 my_crush';
|
adamc@167
|
378 repeat match goal with
|
adamc@167
|
379 | [ H : context[fun _ => unit] |- _ ] => clear H
|
adamc@167
|
380 end;
|
adamc@167
|
381 match type of H with
|
adamc@167
|
382 | ?F = ?G =>
|
adamc@167
|
383 let ec := equate_conj F G in
|
adamc@167
|
384 let var := fresh "var" in
|
adamc@167
|
385 assert ec; [ intuition; unfold Exp; apply ext_eq; intro var;
|
adamc@167
|
386 assert (H' : F var = G var); try congruence;
|
adamc@167
|
387 match type of H' with
|
adamc@167
|
388 | ?X = ?Y =>
|
adamc@167
|
389 let X := eval hnf in X in
|
adamc@167
|
390 let Y := eval hnf in Y in
|
adamc@167
|
391 change (X = Y) in H'
|
adamc@167
|
392 end; injection H'; my_crush'; tauto
|
adamc@167
|
393 | intuition; subst ]
|
adamc@167
|
394 end);
|
adamc@167
|
395 clear H
|
adamc@167
|
396 end; my_crush');
|
adamc@167
|
397 my_crush'.
|
adamc@167
|
398
|
adamc@160
|
399 Lemma Multi_Big' : forall t (E E' : Exp t),
|
adamc@160
|
400 E ==> E'
|
adamc@160
|
401 -> forall E'', E' ===> E''
|
adamc@160
|
402 -> E ===> E''.
|
adamc@160
|
403 induction 1; crush; eauto;
|
adamc@160
|
404 match goal with
|
adamc@160
|
405 | [ H : _ ===> _ |- _ ] => inversion H; my_crush; eauto
|
adamc@162
|
406 end;
|
adamc@162
|
407 match goal with
|
adamc@162
|
408 | [ H : isCtx _ |- _ ] => inversion H; my_crush; eauto
|
adamc@160
|
409 end.
|
adamc@160
|
410 Qed.
|
adamc@160
|
411
|
adamc@160
|
412 Hint Resolve Multi_Big'.
|
adamc@160
|
413
|
adamc@160
|
414 Theorem Multi_Big : forall t (E V : Exp t),
|
adamc@160
|
415 E ==>* V
|
adamc@160
|
416 -> Val V
|
adamc@160
|
417 -> E ===> V.
|
adamc@160
|
418 induction 1; crush; eauto.
|
adamc@160
|
419 Qed.
|