adamc@142
|
1 (* Copyright (c) 2008, Adam Chlipala
|
adamc@142
|
2 *
|
adamc@142
|
3 * This work is licensed under a
|
adamc@142
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@142
|
5 * Unported License.
|
adamc@142
|
6 * The license text is available at:
|
adamc@142
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@142
|
8 *)
|
adamc@142
|
9
|
adamc@142
|
10 (* begin hide *)
|
adamc@142
|
11 Require Import List.
|
adamc@142
|
12
|
adamc@142
|
13 Require Import Tactics MoreSpecif.
|
adamc@142
|
14
|
adamc@142
|
15 Set Implicit Arguments.
|
adamc@142
|
16 (* end hide *)
|
adamc@142
|
17
|
adamc@142
|
18
|
adamc@142
|
19 (** %\chapter{Proof by Reflection}% *)
|
adamc@142
|
20
|
adamc@142
|
21 (** The last chapter highlighted a very heuristic approach to proving. In this chapter, we will study an alternative technique, %\textit{%#<i>#proof by reflection#</i>#%}%. We will write, in Gallina, decision procedures with proofs of correctness, and we will appeal to these procedures in writing very short proofs. Such a proof is checked by running the decision procedure. The term %\textit{%#<i>#reflection#</i>#%}% applies because we will need to translate Gallina propositions into values of inductive types representing syntax, so that Gallina programs may analyze them. *)
|
adamc@142
|
22
|
adamc@142
|
23
|
adamc@142
|
24 (** * Proving Evenness *)
|
adamc@142
|
25
|
adamc@142
|
26 (** Proving that particular natural number constants are even is certainly something we would rather have happen automatically. The Ltac-programming techniques that we learned in the last chapter make it easy to implement such a procedure. *)
|
adamc@142
|
27
|
adamc@142
|
28 Inductive isEven : nat -> Prop :=
|
adamc@144
|
29 | Even_O : isEven O
|
adamc@144
|
30 | Even_SS : forall n, isEven n -> isEven (S (S n)).
|
adamc@142
|
31
|
adamc@148
|
32 (* begin thide *)
|
adamc@142
|
33 Ltac prove_even := repeat constructor.
|
adamc@148
|
34 (* end thide *)
|
adamc@142
|
35
|
adamc@142
|
36 Theorem even_256 : isEven 256.
|
adamc@142
|
37 prove_even.
|
adamc@142
|
38 Qed.
|
adamc@142
|
39
|
adamc@142
|
40 Print even_256.
|
adamc@142
|
41 (** [[
|
adamc@142
|
42
|
adamc@142
|
43 even_256 =
|
adamc@142
|
44 Even_SS
|
adamc@142
|
45 (Even_SS
|
adamc@142
|
46 (Even_SS
|
adamc@142
|
47 (Even_SS
|
adamc@142
|
48 ]]
|
adamc@142
|
49
|
adamc@142
|
50 ...and so on. This procedure always works (at least on machines with infinite resources), but it has a serious drawback, which we see when we print the proof it generates that 256 is even. The final proof term has length linear in the input value. This seems like a shame, since we could write a trivial and trustworthy program to verify evenness of constants. The proof checker could simply call our program where needed.
|
adamc@142
|
51
|
adamc@142
|
52 It is also unfortunate not to have static typing guarantees that our tactic always behaves appropriately. Other invocations of similar tactics might fail with dynamic type errors, and we would not know about the bugs behind these errors until we happened to attempt to prove complex enough goals.
|
adamc@142
|
53
|
adamc@142
|
54 The techniques of proof by reflection address both complaints. We will be able to write proofs like this with constant size overhead beyond the size of the input, and we will do it with verified decision procedures written in Gallina.
|
adamc@142
|
55
|
adamc@142
|
56 For this example, we begin by using a type from the [MoreSpecif] module to write a certified evenness checker. *)
|
adamc@142
|
57
|
adamc@142
|
58 Print partial.
|
adamc@142
|
59 (** [[
|
adamc@142
|
60
|
adamc@142
|
61 Inductive partial (P : Prop) : Set := Proved : P -> [P] | Uncertain : [P]
|
adamc@142
|
62 ]] *)
|
adamc@142
|
63
|
adamc@142
|
64 (** A [partial P] value is an optional proof of [P]. The notation [[P]] stands for [partial P]. *)
|
adamc@142
|
65
|
adamc@142
|
66 Open Local Scope partial_scope.
|
adamc@142
|
67
|
adamc@142
|
68 (** We bring into scope some notations for the [partial] type. These overlap with some of the notations we have seen previously for specification types, so they were placed in a separate scope that needs separate opening. *)
|
adamc@142
|
69
|
adamc@148
|
70 (* begin thide *)
|
adamc@142
|
71 Definition check_even (n : nat) : [isEven n].
|
adamc@142
|
72 Hint Constructors isEven.
|
adamc@142
|
73
|
adamc@142
|
74 refine (fix F (n : nat) : [isEven n] :=
|
adamc@142
|
75 match n return [isEven n] with
|
adamc@142
|
76 | 0 => Yes
|
adamc@142
|
77 | 1 => No
|
adamc@142
|
78 | S (S n') => Reduce (F n')
|
adamc@142
|
79 end); auto.
|
adamc@142
|
80 Defined.
|
adamc@142
|
81
|
adamc@142
|
82 (** We can use dependent pattern-matching to write a function that performs a surprising feat. When given a [partial P], this function [partialOut] returns a proof of [P] if the [partial] value contains a proof, and it returns a (useless) proof of [True] otherwise. From the standpoint of ML and Haskell programming, it seems impossible to write such a type, but it is trivial with a [return] annotation. *)
|
adamc@142
|
83
|
adamc@142
|
84 Definition partialOut (P : Prop) (x : [P]) :=
|
adamc@142
|
85 match x return (match x with
|
adamc@142
|
86 | Proved _ => P
|
adamc@142
|
87 | Uncertain => True
|
adamc@142
|
88 end) with
|
adamc@142
|
89 | Proved pf => pf
|
adamc@142
|
90 | Uncertain => I
|
adamc@142
|
91 end.
|
adamc@142
|
92
|
adamc@142
|
93 (** It may seem strange to define a function like this. However, it turns out to be very useful in writing a reflective verison of our earlier [prove_even] tactic: *)
|
adamc@142
|
94
|
adamc@142
|
95 Ltac prove_even_reflective :=
|
adamc@142
|
96 match goal with
|
adamc@142
|
97 | [ |- isEven ?N] => exact (partialOut (check_even N))
|
adamc@142
|
98 end.
|
adamc@148
|
99 (* end thide *)
|
adamc@142
|
100
|
adamc@142
|
101 (** We identify which natural number we are considering, and we "prove" its evenness by pulling the proof out of the appropriate [check_even] call. *)
|
adamc@142
|
102
|
adamc@142
|
103 Theorem even_256' : isEven 256.
|
adamc@142
|
104 prove_even_reflective.
|
adamc@142
|
105 Qed.
|
adamc@142
|
106
|
adamc@142
|
107 Print even_256'.
|
adamc@142
|
108 (** [[
|
adamc@142
|
109
|
adamc@142
|
110 even_256' = partialOut (check_even 256)
|
adamc@142
|
111 : isEven 256
|
adamc@142
|
112 ]]
|
adamc@142
|
113
|
adamc@142
|
114 We can see a constant wrapper around the object of the proof. For any even number, this form of proof will suffice. What happens if we try the tactic with an odd number? *)
|
adamc@142
|
115
|
adamc@142
|
116 Theorem even_255 : isEven 255.
|
adamc@142
|
117 (** [[
|
adamc@142
|
118
|
adamc@142
|
119 prove_even_reflective.
|
adamc@142
|
120
|
adamc@142
|
121 [[
|
adamc@142
|
122
|
adamc@142
|
123 User error: No matching clauses for match goal
|
adamc@142
|
124 ]]
|
adamc@142
|
125
|
adamc@142
|
126 Thankfully, the tactic fails. To see more precisely what goes wrong, we can run manually the body of the [match].
|
adamc@142
|
127
|
adamc@142
|
128 [[
|
adamc@142
|
129
|
adamc@142
|
130 exact (partialOut (check_even 255)).
|
adamc@142
|
131
|
adamc@142
|
132 [[
|
adamc@142
|
133
|
adamc@142
|
134 Error: The term "partialOut (check_even 255)" has type
|
adamc@142
|
135 "match check_even 255 with
|
adamc@142
|
136 | Yes => isEven 255
|
adamc@142
|
137 | No => True
|
adamc@142
|
138 end" while it is expected to have type "isEven 255"
|
adamc@142
|
139 ]]
|
adamc@142
|
140
|
adamc@142
|
141 As usual, the type-checker performs no reductions to simplify error messages. If we reduced the first term ourselves, we would see that [check_even 255] reduces to a [No], so that the first term is equivalent to [True], which certainly does not unify with [isEven 255]. *)
|
adamc@142
|
142 Abort.
|
adamc@143
|
143
|
adamc@143
|
144
|
adamc@143
|
145 (** * Reflecting the Syntax of a Trivial Tautology Language *)
|
adamc@143
|
146
|
adamc@143
|
147 (** We might also like to have reflective proofs of trivial tautologies like this one: *)
|
adamc@143
|
148
|
adamc@143
|
149 Theorem true_galore : (True /\ True) -> (True \/ (True /\ (True -> True))).
|
adamc@143
|
150 tauto.
|
adamc@143
|
151 Qed.
|
adamc@143
|
152
|
adamc@143
|
153 Print true_galore.
|
adamc@143
|
154
|
adamc@143
|
155 (** [[
|
adamc@143
|
156
|
adamc@143
|
157 true_galore =
|
adamc@143
|
158 fun H : True /\ True =>
|
adamc@143
|
159 and_ind (fun _ _ : True => or_introl (True /\ (True -> True)) I) H
|
adamc@143
|
160 : True /\ True -> True \/ True /\ (True -> True)
|
adamc@143
|
161 ]]
|
adamc@143
|
162
|
adamc@143
|
163 As we might expect, the proof that [tauto] builds contains explicit applications of natural deduction rules. For large formulas, this can add a linear amount of proof size overhead, beyond the size of the input.
|
adamc@143
|
164
|
adamc@143
|
165 To write a reflective procedure for this class of goals, we will need to get into the actual "reflection" part of "proof by reflection." It is impossible to case-analyze a [Prop] in any way in Gallina. We must %\textit{%#<i>#reflect#</i>#%}% [Prop] into some type that we %\textit{%#<i>#can#</i>#%}% analyze. This inductive type is a good candidate: *)
|
adamc@143
|
166
|
adamc@148
|
167 (* begin thide *)
|
adamc@143
|
168 Inductive taut : Set :=
|
adamc@143
|
169 | TautTrue : taut
|
adamc@143
|
170 | TautAnd : taut -> taut -> taut
|
adamc@143
|
171 | TautOr : taut -> taut -> taut
|
adamc@143
|
172 | TautImp : taut -> taut -> taut.
|
adamc@143
|
173
|
adamc@143
|
174 (** We write a recursive function to "unreflect" this syntax back to [Prop]. *)
|
adamc@143
|
175
|
adamc@143
|
176 Fixpoint tautDenote (t : taut) : Prop :=
|
adamc@143
|
177 match t with
|
adamc@143
|
178 | TautTrue => True
|
adamc@143
|
179 | TautAnd t1 t2 => tautDenote t1 /\ tautDenote t2
|
adamc@143
|
180 | TautOr t1 t2 => tautDenote t1 \/ tautDenote t2
|
adamc@143
|
181 | TautImp t1 t2 => tautDenote t1 -> tautDenote t2
|
adamc@143
|
182 end.
|
adamc@143
|
183
|
adamc@143
|
184 (** It is easy to prove that every formula in the range of [tautDenote] is true. *)
|
adamc@143
|
185
|
adamc@143
|
186 Theorem tautTrue : forall t, tautDenote t.
|
adamc@143
|
187 induction t; crush.
|
adamc@143
|
188 Qed.
|
adamc@143
|
189
|
adamc@143
|
190 (** To use [tautTrue] to prove particular formulas, we need to implement the syntax reflection process. A recursive Ltac function does the job. *)
|
adamc@143
|
191
|
adamc@143
|
192 Ltac tautReflect P :=
|
adamc@143
|
193 match P with
|
adamc@143
|
194 | True => TautTrue
|
adamc@143
|
195 | ?P1 /\ ?P2 =>
|
adamc@143
|
196 let t1 := tautReflect P1 in
|
adamc@143
|
197 let t2 := tautReflect P2 in
|
adamc@143
|
198 constr:(TautAnd t1 t2)
|
adamc@143
|
199 | ?P1 \/ ?P2 =>
|
adamc@143
|
200 let t1 := tautReflect P1 in
|
adamc@143
|
201 let t2 := tautReflect P2 in
|
adamc@143
|
202 constr:(TautOr t1 t2)
|
adamc@143
|
203 | ?P1 -> ?P2 =>
|
adamc@143
|
204 let t1 := tautReflect P1 in
|
adamc@143
|
205 let t2 := tautReflect P2 in
|
adamc@143
|
206 constr:(TautImp t1 t2)
|
adamc@143
|
207 end.
|
adamc@143
|
208
|
adamc@143
|
209 (** With [tautReflect] available, it is easy to finish our reflective tactic. We look at the goal formula, reflect it, and apply [tautTrue] to the reflected formula. *)
|
adamc@143
|
210
|
adamc@143
|
211 Ltac obvious :=
|
adamc@143
|
212 match goal with
|
adamc@143
|
213 | [ |- ?P ] =>
|
adamc@143
|
214 let t := tautReflect P in
|
adamc@143
|
215 exact (tautTrue t)
|
adamc@143
|
216 end.
|
adamc@143
|
217
|
adamc@143
|
218 (** We can verify that [obvious] solves our original example, with a proof term that does not mention details of the proof. *)
|
adamc@148
|
219 (* end thide *)
|
adamc@143
|
220
|
adamc@143
|
221 Theorem true_galore' : (True /\ True) -> (True \/ (True /\ (True -> True))).
|
adamc@143
|
222 obvious.
|
adamc@143
|
223 Qed.
|
adamc@143
|
224
|
adamc@143
|
225 Print true_galore'.
|
adamc@143
|
226
|
adamc@143
|
227 (** [[
|
adamc@143
|
228
|
adamc@143
|
229 true_galore' =
|
adamc@143
|
230 tautTrue
|
adamc@143
|
231 (TautImp (TautAnd TautTrue TautTrue)
|
adamc@143
|
232 (TautOr TautTrue (TautAnd TautTrue (TautImp TautTrue TautTrue))))
|
adamc@143
|
233 : True /\ True -> True \/ True /\ (True -> True)
|
adamc@143
|
234
|
adamc@143
|
235 ]]
|
adamc@143
|
236
|
adamc@143
|
237 It is worth considering how the reflective tactic improves on a pure-Ltac implementation. The formula reflection process is just as ad-hoc as before, so we gain little there. In general, proofs will be more complicated than formula translation, and the "generic proof rule" that we apply here %\textit{%#<i>#is#</i>#%}% on much better formal footing than a recursive Ltac function. The dependent type of the proof guarantees that it "works" on any input formula. This is all in addition to the proof-size improvement that we have already seen. *)
|
adamc@144
|
238
|
adamc@144
|
239
|
adamc@145
|
240 (** * A Monoid Expression Simplifier *)
|
adamc@145
|
241
|
adamc@146
|
242 (** Proof by reflection does not require encoding of all of the syntax in a goal. We can insert "variables" in our syntax types to allow injection of arbitrary pieces, even if we cannot apply specialized reasoning to them. In this section, we explore that possibility by writing a tactic for normalizing monoid equations. *)
|
adamc@146
|
243
|
adamc@145
|
244 Section monoid.
|
adamc@145
|
245 Variable A : Set.
|
adamc@145
|
246 Variable e : A.
|
adamc@145
|
247 Variable f : A -> A -> A.
|
adamc@145
|
248
|
adamc@145
|
249 Infix "+" := f.
|
adamc@145
|
250
|
adamc@145
|
251 Hypothesis assoc : forall a b c, (a + b) + c = a + (b + c).
|
adamc@145
|
252 Hypothesis identl : forall a, e + a = a.
|
adamc@145
|
253 Hypothesis identr : forall a, a + e = a.
|
adamc@145
|
254
|
adamc@146
|
255 (** We add variables and hypotheses characterizing an arbitrary instance of the algebraic structure of monoids. We have an associative binary operator and an identity element for it.
|
adamc@146
|
256
|
adamc@146
|
257 It is easy to define an expression tree type for monoid expressions. A [Var] constructor is a "catch-all" case for subexpressions that we cannot model. These subexpressions could be actual Gallina variables, or they could just use functions that our tactic is unable to understand. *)
|
adamc@146
|
258
|
adamc@148
|
259 (* begin thide *)
|
adamc@145
|
260 Inductive mexp : Set :=
|
adamc@145
|
261 | Ident : mexp
|
adamc@145
|
262 | Var : A -> mexp
|
adamc@145
|
263 | Op : mexp -> mexp -> mexp.
|
adamc@145
|
264
|
adamc@146
|
265 (** Next, we write an "un-reflect" function. *)
|
adamc@146
|
266
|
adamc@145
|
267 Fixpoint mdenote (me : mexp) : A :=
|
adamc@145
|
268 match me with
|
adamc@145
|
269 | Ident => e
|
adamc@145
|
270 | Var v => v
|
adamc@145
|
271 | Op me1 me2 => mdenote me1 + mdenote me2
|
adamc@145
|
272 end.
|
adamc@145
|
273
|
adamc@146
|
274 (** We will normalize expressions by flattening them into lists, via associativity, so it is helpful to have a denotation function for lists of monoid values. *)
|
adamc@146
|
275
|
adamc@145
|
276 Fixpoint mldenote (ls : list A) : A :=
|
adamc@145
|
277 match ls with
|
adamc@145
|
278 | nil => e
|
adamc@145
|
279 | x :: ls' => x + mldenote ls'
|
adamc@145
|
280 end.
|
adamc@145
|
281
|
adamc@146
|
282 (** The flattening function itself is easy to implement. *)
|
adamc@146
|
283
|
adamc@145
|
284 Fixpoint flatten (me : mexp) : list A :=
|
adamc@145
|
285 match me with
|
adamc@145
|
286 | Ident => nil
|
adamc@145
|
287 | Var x => x :: nil
|
adamc@145
|
288 | Op me1 me2 => flatten me1 ++ flatten me2
|
adamc@145
|
289 end.
|
adamc@145
|
290
|
adamc@146
|
291 (** [flatten] has a straightforward correctness proof in terms of our [denote] functions. *)
|
adamc@146
|
292
|
adamc@146
|
293 Lemma flatten_correct' : forall ml2 ml1,
|
adamc@146
|
294 mldenote ml1 + mldenote ml2 = mldenote (ml1 ++ ml2).
|
adamc@145
|
295 induction ml1; crush.
|
adamc@145
|
296 Qed.
|
adamc@145
|
297
|
adamc@145
|
298 Theorem flatten_correct : forall me, mdenote me = mldenote (flatten me).
|
adamc@145
|
299 Hint Resolve flatten_correct'.
|
adamc@145
|
300
|
adamc@145
|
301 induction me; crush.
|
adamc@145
|
302 Qed.
|
adamc@145
|
303
|
adamc@146
|
304 (** Now it is easy to prove a theorem that will be the main tool behind our simplification tactic. *)
|
adamc@146
|
305
|
adamc@146
|
306 Theorem monoid_reflect : forall me1 me2,
|
adamc@146
|
307 mldenote (flatten me1) = mldenote (flatten me2)
|
adamc@146
|
308 -> mdenote me1 = mdenote me2.
|
adamc@145
|
309 intros; repeat rewrite flatten_correct; assumption.
|
adamc@145
|
310 Qed.
|
adamc@145
|
311
|
adamc@146
|
312 (** We implement reflection into the [mexp] type. *)
|
adamc@146
|
313
|
adamc@146
|
314 Ltac reflect me :=
|
adamc@146
|
315 match me with
|
adamc@145
|
316 | e => Ident
|
adamc@146
|
317 | ?me1 + ?me2 =>
|
adamc@146
|
318 let r1 := reflect me1 in
|
adamc@146
|
319 let r2 := reflect me2 in
|
adamc@145
|
320 constr:(Op r1 r2)
|
adamc@146
|
321 | _ => constr:(Var me)
|
adamc@145
|
322 end.
|
adamc@145
|
323
|
adamc@146
|
324 (** The final [monoid] tactic works on goals that equate two monoid terms. We reflect each and change the goal to refer to the reflected versions, finishing off by applying [monoid_reflect] and simplifying uses of [mldenote]. *)
|
adamc@146
|
325
|
adamc@145
|
326 Ltac monoid :=
|
adamc@145
|
327 match goal with
|
adamc@146
|
328 | [ |- ?me1 = ?me2 ] =>
|
adamc@146
|
329 let r1 := reflect me1 in
|
adamc@146
|
330 let r2 := reflect me2 in
|
adamc@145
|
331 change (mdenote r1 = mdenote r2);
|
adamc@145
|
332 apply monoid_reflect; simpl mldenote
|
adamc@145
|
333 end.
|
adamc@145
|
334
|
adamc@146
|
335 (** We can make short work of theorems like this one: *)
|
adamc@146
|
336
|
adamc@148
|
337 (* end thide *)
|
adamc@148
|
338
|
adamc@145
|
339 Theorem t1 : forall a b c d, a + b + c + d = a + (b + c) + d.
|
adamc@146
|
340 intros; monoid.
|
adamc@146
|
341 (** [[
|
adamc@146
|
342
|
adamc@146
|
343 ============================
|
adamc@146
|
344 a + (b + (c + (d + e))) = a + (b + (c + (d + e)))
|
adamc@146
|
345 ]]
|
adamc@146
|
346
|
adamc@146
|
347 [monoid] has canonicalized both sides of the equality, such that we can finish the proof by reflexivity. *)
|
adamc@146
|
348
|
adamc@145
|
349 reflexivity.
|
adamc@145
|
350 Qed.
|
adamc@146
|
351
|
adamc@146
|
352 (** It is interesting to look at the form of the proof. *)
|
adamc@146
|
353
|
adamc@146
|
354 Print t1.
|
adamc@146
|
355 (** [[
|
adamc@146
|
356
|
adamc@146
|
357 t1 =
|
adamc@146
|
358 fun a b c d : A =>
|
adamc@146
|
359 monoid_reflect (Op (Op (Op (Var a) (Var b)) (Var c)) (Var d))
|
adamc@146
|
360 (Op (Op (Var a) (Op (Var b) (Var c))) (Var d))
|
adamc@146
|
361 (refl_equal (a + (b + (c + (d + e)))))
|
adamc@146
|
362 : forall a b c d : A, a + b + c + d = a + (b + c) + d
|
adamc@146
|
363 ]]
|
adamc@146
|
364
|
adamc@146
|
365 The proof term contains only restatements of the equality operands in reflected form, followed by a use of reflexivity on the shared canonical form. *)
|
adamc@145
|
366 End monoid.
|
adamc@145
|
367
|
adamc@146
|
368 (** Extensions of this basic approach are used in the implementations of the [ring] and [field] tactics that come packaged with Coq. *)
|
adamc@146
|
369
|
adamc@145
|
370
|
adamc@144
|
371 (** * A Smarter Tautology Solver *)
|
adamc@144
|
372
|
adamc@147
|
373 (** Now we are ready to revisit our earlier tautology solver example. We want to broaden the scope of the tactic to include formulas whose truth is not syntactically apparent. We will want to allow injection of arbitrary formulas, like we allowed arbitrary monoid expressions in the last example. Since we are working in a richer theory, it is important to be able to use equalities between different injected formulas. For instance, we cannott prove [P -> P] by translating the formula into a value like [Imp (Var P) (Var P)], because a Gallina function has no way of comparing the two [P]s for equality.
|
adamc@147
|
374
|
adamc@147
|
375 To arrive at a nice implementation satisfying these criteria, we introduce the [quote] tactic and its associated library. *)
|
adamc@147
|
376
|
adamc@144
|
377 Require Import Quote.
|
adamc@144
|
378
|
adamc@148
|
379 (* begin thide *)
|
adamc@144
|
380 Inductive formula : Set :=
|
adamc@144
|
381 | Atomic : index -> formula
|
adamc@144
|
382 | Truth : formula
|
adamc@144
|
383 | Falsehood : formula
|
adamc@144
|
384 | And : formula -> formula -> formula
|
adamc@144
|
385 | Or : formula -> formula -> formula
|
adamc@144
|
386 | Imp : formula -> formula -> formula.
|
adamc@144
|
387
|
adamc@147
|
388 (** The type [index] comes from the [Quote] library and represents a countable variable type. The rest of [formula]'s definition should be old hat by now.
|
adamc@147
|
389
|
adamc@147
|
390 The [quote] tactic will implement injection from [Prop] into [formula] for us, but it is not quite as smart as we might like. In particular, it interprets implications incorrectly, so we will need to declare a wrapper definition for implication, as we did in the last chapter. *)
|
adamc@144
|
391
|
adamc@144
|
392 Definition imp (P1 P2 : Prop) := P1 -> P2.
|
adamc@144
|
393 Infix "-->" := imp (no associativity, at level 95).
|
adamc@144
|
394
|
adamc@147
|
395 (** Now we can define our denotation function. *)
|
adamc@147
|
396
|
adamc@147
|
397 Definition asgn := varmap Prop.
|
adamc@147
|
398
|
adamc@144
|
399 Fixpoint formulaDenote (atomics : asgn) (f : formula) : Prop :=
|
adamc@144
|
400 match f with
|
adamc@144
|
401 | Atomic v => varmap_find False v atomics
|
adamc@144
|
402 | Truth => True
|
adamc@144
|
403 | Falsehood => False
|
adamc@144
|
404 | And f1 f2 => formulaDenote atomics f1 /\ formulaDenote atomics f2
|
adamc@144
|
405 | Or f1 f2 => formulaDenote atomics f1 \/ formulaDenote atomics f2
|
adamc@144
|
406 | Imp f1 f2 => formulaDenote atomics f1 --> formulaDenote atomics f2
|
adamc@144
|
407 end.
|
adamc@144
|
408
|
adamc@147
|
409 (** The [varmap] type family implements maps from [index] values. In this case, we define an assignment as a map from variables to [Prop]s. [formulaDenote] works with an assignment, and we use the [varmap_find] function to consult the assignment in the [Atomic] case. The first argument to [varmap_find] is a default value, in case the variable is not found. *)
|
adamc@147
|
410
|
adamc@144
|
411 Section my_tauto.
|
adamc@144
|
412 Variable atomics : asgn.
|
adamc@144
|
413
|
adamc@144
|
414 Definition holds (v : index) := varmap_find False v atomics.
|
adamc@144
|
415
|
adamc@147
|
416 (** We define some shorthand for a particular variable being true, and now we are ready to define some helpful functions based on the [ListSet] module of the standard library, which (unsurprisingly) presents a view of lists as sets. *)
|
adamc@147
|
417
|
adamc@144
|
418 Require Import ListSet.
|
adamc@144
|
419
|
adamc@144
|
420 Definition index_eq : forall x y : index, {x = y} + {x <> y}.
|
adamc@144
|
421 decide equality.
|
adamc@144
|
422 Defined.
|
adamc@144
|
423
|
adamc@144
|
424 Definition add (s : set index) (v : index) := set_add index_eq v s.
|
adamc@147
|
425
|
adamc@144
|
426 Definition In_dec : forall v (s : set index), {In v s} + {~In v s}.
|
adamc@144
|
427 Open Local Scope specif_scope.
|
adamc@144
|
428
|
adamc@144
|
429 intro; refine (fix F (s : set index) : {In v s} + {~In v s} :=
|
adamc@144
|
430 match s return {In v s} + {~In v s} with
|
adamc@144
|
431 | nil => No
|
adamc@144
|
432 | v' :: s' => index_eq v' v || F s'
|
adamc@144
|
433 end); crush.
|
adamc@144
|
434 Defined.
|
adamc@144
|
435
|
adamc@147
|
436 (** We define what it means for all members of an index set to represent true propositions, and we prove some lemmas about this notion. *)
|
adamc@147
|
437
|
adamc@144
|
438 Fixpoint allTrue (s : set index) : Prop :=
|
adamc@144
|
439 match s with
|
adamc@144
|
440 | nil => True
|
adamc@144
|
441 | v :: s' => holds v /\ allTrue s'
|
adamc@144
|
442 end.
|
adamc@144
|
443
|
adamc@144
|
444 Theorem allTrue_add : forall v s,
|
adamc@144
|
445 allTrue s
|
adamc@144
|
446 -> holds v
|
adamc@144
|
447 -> allTrue (add s v).
|
adamc@144
|
448 induction s; crush;
|
adamc@144
|
449 match goal with
|
adamc@144
|
450 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@144
|
451 end; crush.
|
adamc@144
|
452 Qed.
|
adamc@144
|
453
|
adamc@144
|
454 Theorem allTrue_In : forall v s,
|
adamc@144
|
455 allTrue s
|
adamc@144
|
456 -> set_In v s
|
adamc@144
|
457 -> varmap_find False v atomics.
|
adamc@144
|
458 induction s; crush.
|
adamc@144
|
459 Qed.
|
adamc@144
|
460
|
adamc@144
|
461 Hint Resolve allTrue_add allTrue_In.
|
adamc@144
|
462
|
adamc@144
|
463 Open Local Scope partial_scope.
|
adamc@144
|
464
|
adamc@147
|
465 (** Now we can write a function [forward] which implements deconstruction of hypotheses. It has a dependent type, in the style of Chapter 6, guaranteeing correctness. The arguments to [forward] are a goal formula [f], a set [known] of atomic formulas that we may assume are true, a hypothesis formula [hyp], and a success continuation [cont] that we call when we have extended [known] to hold new truths implied by [hyp]. *)
|
adamc@147
|
466
|
adamc@144
|
467 Definition forward (f : formula) (known : set index) (hyp : formula)
|
adamc@144
|
468 (cont : forall known', [allTrue known' -> formulaDenote atomics f])
|
adamc@144
|
469 : [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f].
|
adamc@144
|
470 refine (fix F (f : formula) (known : set index) (hyp : formula)
|
adamc@144
|
471 (cont : forall known', [allTrue known' -> formulaDenote atomics f]){struct hyp}
|
adamc@144
|
472 : [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f] :=
|
adamc@144
|
473 match hyp return [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f] with
|
adamc@144
|
474 | Atomic v => Reduce (cont (add known v))
|
adamc@144
|
475 | Truth => Reduce (cont known)
|
adamc@144
|
476 | Falsehood => Yes
|
adamc@144
|
477 | And h1 h2 =>
|
adamc@144
|
478 Reduce (F (Imp h2 f) known h1 (fun known' =>
|
adamc@144
|
479 Reduce (F f known' h2 cont)))
|
adamc@144
|
480 | Or h1 h2 => F f known h1 cont && F f known h2 cont
|
adamc@144
|
481 | Imp _ _ => Reduce (cont known)
|
adamc@144
|
482 end); crush.
|
adamc@144
|
483 Defined.
|
adamc@144
|
484
|
adamc@147
|
485 (** A [backward] function implements analysis of the final goal. It calls [forward] to handle implications. *)
|
adamc@147
|
486
|
adamc@144
|
487 Definition backward (known : set index) (f : formula) : [allTrue known -> formulaDenote atomics f].
|
adamc@144
|
488 refine (fix F (known : set index) (f : formula) : [allTrue known -> formulaDenote atomics f] :=
|
adamc@144
|
489 match f return [allTrue known -> formulaDenote atomics f] with
|
adamc@144
|
490 | Atomic v => Reduce (In_dec v known)
|
adamc@144
|
491 | Truth => Yes
|
adamc@144
|
492 | Falsehood => No
|
adamc@144
|
493 | And f1 f2 => F known f1 && F known f2
|
adamc@144
|
494 | Or f1 f2 => F known f1 || F known f2
|
adamc@144
|
495 | Imp f1 f2 => forward f2 known f1 (fun known' => F known' f2)
|
adamc@144
|
496 end); crush; eauto.
|
adamc@144
|
497 Defined.
|
adamc@144
|
498
|
adamc@147
|
499 (** A simple wrapper around [backward] gives us the usual type of a partial decision procedure. *)
|
adamc@147
|
500
|
adamc@144
|
501 Definition my_tauto (f : formula) : [formulaDenote atomics f].
|
adamc@144
|
502 intro; refine (Reduce (backward nil f)); crush.
|
adamc@144
|
503 Defined.
|
adamc@144
|
504 End my_tauto.
|
adamc@144
|
505
|
adamc@147
|
506 (** Our final tactic implementation is now fairly straightforward. First, we [intro] all quantifiers that do not bind [Prop]s. Then we call the [quote] tactic, which implements the reflection for us. Finally, we are able to construct an exact proof via [partialOut] and the [my_tauto] Gallina function. *)
|
adamc@147
|
507
|
adamc@144
|
508 Ltac my_tauto :=
|
adamc@144
|
509 repeat match goal with
|
adamc@144
|
510 | [ |- forall x : ?P, _ ] =>
|
adamc@144
|
511 match type of P with
|
adamc@144
|
512 | Prop => fail 1
|
adamc@144
|
513 | _ => intro
|
adamc@144
|
514 end
|
adamc@144
|
515 end;
|
adamc@144
|
516 quote formulaDenote;
|
adamc@144
|
517 match goal with
|
adamc@144
|
518 | [ |- formulaDenote ?m ?f ] => exact (partialOut (my_tauto m f))
|
adamc@144
|
519 end.
|
adamc@148
|
520 (* end thide *)
|
adamc@144
|
521
|
adamc@147
|
522 (** A few examples demonstrate how the tactic works. *)
|
adamc@147
|
523
|
adamc@144
|
524 Theorem mt1 : True.
|
adamc@144
|
525 my_tauto.
|
adamc@144
|
526 Qed.
|
adamc@144
|
527
|
adamc@144
|
528 Print mt1.
|
adamc@147
|
529 (** [[
|
adamc@147
|
530
|
adamc@147
|
531 mt1 = partialOut (my_tauto (Empty_vm Prop) Truth)
|
adamc@147
|
532 : True
|
adamc@147
|
533 ]]
|
adamc@147
|
534
|
adamc@147
|
535 We see [my_tauto] applied with an empty [varmap], since every subformula is handled by [formulaDenote]. *)
|
adamc@144
|
536
|
adamc@144
|
537 Theorem mt2 : forall x y : nat, x = y --> x = y.
|
adamc@144
|
538 my_tauto.
|
adamc@144
|
539 Qed.
|
adamc@144
|
540
|
adamc@144
|
541 Print mt2.
|
adamc@147
|
542 (** [[
|
adamc@147
|
543
|
adamc@147
|
544 mt2 =
|
adamc@147
|
545 fun x y : nat =>
|
adamc@147
|
546 partialOut
|
adamc@147
|
547 (my_tauto (Node_vm (x = y) (Empty_vm Prop) (Empty_vm Prop))
|
adamc@147
|
548 (Imp (Atomic End_idx) (Atomic End_idx)))
|
adamc@147
|
549 : forall x y : nat, x = y --> x = y
|
adamc@147
|
550 ]]
|
adamc@147
|
551
|
adamc@147
|
552 Crucially, both instances of [x = y] are represented with the same index, [End_idx]. The value of this index only needs to appear once in the [varmap], whose form reveals that [varmap]s are represented as binary trees, where [index] values denote paths from tree roots to leaves. *)
|
adamc@144
|
553
|
adamc@144
|
554 Theorem mt3 : forall x y z,
|
adamc@144
|
555 (x < y /\ y > z) \/ (y > z /\ x < S y)
|
adamc@144
|
556 --> y > z /\ (x < y \/ x < S y).
|
adamc@144
|
557 my_tauto.
|
adamc@144
|
558 Qed.
|
adamc@144
|
559
|
adamc@144
|
560 Print mt3.
|
adamc@147
|
561 (** [[
|
adamc@147
|
562
|
adamc@147
|
563 fun x y z : nat =>
|
adamc@147
|
564 partialOut
|
adamc@147
|
565 (my_tauto
|
adamc@147
|
566 (Node_vm (x < S y) (Node_vm (x < y) (Empty_vm Prop) (Empty_vm Prop))
|
adamc@147
|
567 (Node_vm (y > z) (Empty_vm Prop) (Empty_vm Prop)))
|
adamc@147
|
568 (Imp
|
adamc@147
|
569 (Or (And (Atomic (Left_idx End_idx)) (Atomic (Right_idx End_idx)))
|
adamc@147
|
570 (And (Atomic (Right_idx End_idx)) (Atomic End_idx)))
|
adamc@147
|
571 (And (Atomic (Right_idx End_idx))
|
adamc@147
|
572 (Or (Atomic (Left_idx End_idx)) (Atomic End_idx)))))
|
adamc@147
|
573 : forall x y z : nat,
|
adamc@147
|
574 x < y /\ y > z \/ y > z /\ x < S y --> y > z /\ (x < y \/ x < S y)
|
adamc@147
|
575 ]]
|
adamc@147
|
576
|
adamc@147
|
577 Our goal contained three distinct atomic formulas, and we see that a three-element [varmap] is generated.
|
adamc@147
|
578
|
adamc@147
|
579 It can be interesting to observe differences between the level of repetition in proof terms generated by [my_tauto] and [tauto] for especially trivial theorems. *)
|
adamc@144
|
580
|
adamc@144
|
581 Theorem mt4 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False.
|
adamc@144
|
582 my_tauto.
|
adamc@144
|
583 Qed.
|
adamc@144
|
584
|
adamc@144
|
585 Print mt4.
|
adamc@147
|
586 (** [[
|
adamc@147
|
587
|
adamc@147
|
588 mt4 =
|
adamc@147
|
589 partialOut
|
adamc@147
|
590 (my_tauto (Empty_vm Prop)
|
adamc@147
|
591 (Imp
|
adamc@147
|
592 (And Truth
|
adamc@147
|
593 (And Truth
|
adamc@147
|
594 (And Truth (And Truth (And Truth (And Truth Falsehood))))))
|
adamc@147
|
595 Falsehood))
|
adamc@147
|
596 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False
|
adamc@147
|
597 ]] *)
|
adamc@144
|
598
|
adamc@144
|
599 Theorem mt4' : True /\ True /\ True /\ True /\ True /\ True /\ False -> False.
|
adamc@144
|
600 tauto.
|
adamc@144
|
601 Qed.
|
adamc@144
|
602
|
adamc@144
|
603 Print mt4'.
|
adamc@147
|
604 (** [[
|
adamc@147
|
605
|
adamc@147
|
606 mt4' =
|
adamc@147
|
607 fun H : True /\ True /\ True /\ True /\ True /\ True /\ False =>
|
adamc@147
|
608 and_ind
|
adamc@147
|
609 (fun (_ : True) (H1 : True /\ True /\ True /\ True /\ True /\ False) =>
|
adamc@147
|
610 and_ind
|
adamc@147
|
611 (fun (_ : True) (H3 : True /\ True /\ True /\ True /\ False) =>
|
adamc@147
|
612 and_ind
|
adamc@147
|
613 (fun (_ : True) (H5 : True /\ True /\ True /\ False) =>
|
adamc@147
|
614 and_ind
|
adamc@147
|
615 (fun (_ : True) (H7 : True /\ True /\ False) =>
|
adamc@147
|
616 and_ind
|
adamc@147
|
617 (fun (_ : True) (H9 : True /\ False) =>
|
adamc@147
|
618 and_ind (fun (_ : True) (H11 : False) => False_ind False H11)
|
adamc@147
|
619 H9) H7) H5) H3) H1) H
|
adamc@147
|
620 : True /\ True /\ True /\ True /\ True /\ True /\ False -> False
|
adamc@147
|
621 ]] *)
|
adamc@147
|
622
|
adamc@149
|
623
|
adamc@149
|
624 (** * Exercises *)
|
adamc@149
|
625
|
adamc@149
|
626 (** %\begin{enumerate}%#<ol>#
|
adamc@149
|
627
|
adamc@149
|
628 %\item%#<li># Implement a reflective procedure for normalizing systems of linear equations over rational numbers. In particular, the tactic should identify all hypotheses that are linear equations over rationals where the equation righthand sides are constants. It should normalize each hypothesis to have a lefthand side that is a sum of products of constants and variables, with no variable appearing multiple times. Then, your tactic should add together all of these equations to form a single new equation, possibly clearing the original equations. Some coefficients may cancel in the addition, reducing the number of variables that appear.
|
adamc@149
|
629
|
adamc@149
|
630 To work with rational numbers, import module [QArith] and use [Open Local Scope Q_scope]. All of the usual arithmetic operator notations will then work with rationals, and there are shorthands for constants 0 and 1. Other rationals must be written as [num # den] for numerator [num] and denominator [den]. Use the infix operator [==] in place of [=], to deal with different ways of expressing the same number as a fraction. For instance, a theorem and proof like this one should work with your tactic:
|
adamc@149
|
631
|
adamc@149
|
632 [[
|
adamc@149
|
633 Theorem t2 : forall x y z, (2 # 1) * (x - (3 # 2) * y) == 15 # 1
|
adamc@149
|
634 -> z + (8 # 1) * x == 20 # 1
|
adamc@149
|
635 -> (-6 # 2) * y + (10 # 1) * x + z == 35 # 1.
|
adamc@149
|
636 [[
|
adamc@149
|
637
|
adamc@149
|
638 intros; reflectContext; assumption.
|
adamc@149
|
639 [[
|
adamc@149
|
640 Qed.
|
adamc@149
|
641
|
adamc@149
|
642 Your solution can work in any way that involves reflecting syntax and doing most calculation with a Gallina function. These hints outline a particular possible solution. Throughout, the [ring] tactic will be helpful for proving many simple facts about rationals, and tactics like [rewrite] are correctly overloaded to work with rational equality [==].
|
adamc@149
|
643
|
adamc@149
|
644 %\begin{enumerate}%#<ol>#
|
adamc@149
|
645 %\item%#<li># Define an inductive type [exp] of expressions over rationals (which inhabit the Coq type [Q]). Include variables (represented as natural numbers), constants, addition, substraction, and multiplication.#</li>#
|
adamc@149
|
646 %\item%#<li># Define a function [lookup] for reading an element out of a list of rationals, by its position in the list.#</li>#
|
adamc@149
|
647 %\item%#<li># Define a function [expDenote] that translates [exp]s, along with lists of rationals representing variable values, to [Q].#</li>#
|
adamc@149
|
648 %\item%#<li># Define a recursive function [eqsDenote] over [list (exp * Q)], characterizing when all of the equations are true.#</li>#
|
adamc@149
|
649 %\item%#<li># Fix a representation [lhs] of flattened expressions. Where [len] is the number of variables, represent a flattened equation as [ilist Q len]. Each position of the list gives the coefficient of the corresponding variable.#</li>#
|
adamc@151
|
650 %\item%#<li># Write a recursive function [linearize] that takes a constant [k] and an expression [e] and optionally returns an [lhs] equivalent to [k * e]. This function returns [None] when it discovers that the input expression is not linear. The parameter [len] of [lhs] should be a parameter of [linearize], too. The functions [singleton], [everywhere], and [map2] from [DepList] will probably be helpful. It is also helpful to know that [Qplus] is the identifier for rational addition.#</li>#
|
adamc@149
|
651 %\item%#<li># Write a recursive function [linearizeEqs : list (exp * Q) -> option (lhs * Q)]. This function linearizes all of the equations in the list in turn, building up the sum of the equations. It returns [None] if the linearization of any constituent equation fails.#</li>#
|
adamc@149
|
652 %\item%#<li># Define a denotation function for [lhs].#</li>#
|
adamc@149
|
653 %\item%#<li># Prove that, when [exp] linearization succeeds on constant [k] and expression [e], the linearized version has the same meaning as [k * e].#</li>#
|
adamc@149
|
654 %\item%#<li># Prove that, when [linearizeEqs] succeeds on an equation list [eqs], then the final summed-up equation is true whenever the original equation list is true.#</li>#
|
adamc@149
|
655 %\item%#<li># Write a tactic [findVarsHyps] to search through all equalities on rationals in the context, recursing through addition, subtraction, and multiplication to find the list of expressions that should be treated as variables. This list should be suitable as an argument to [expDenote] and [eqsDenote], associating a [Q] value to each natural number that stands for a variable.#</li>#
|
adamc@149
|
656 %\item%#<li># Write a tactic [reflect] to reflect a [Q] expression into [exp], with respect to a given list of variable values.#</li>#
|
adamc@149
|
657 %\item%#<li># Write a tactic [reflectEqs] to reflect a formula that begins with a sequence of implications from linear equalities whose lefthand sides are expressed with [expDenote]. This tactic should build a [list (exp * Q)] representing the equations. Remember to give an explicit type annotation when returning a nil list, as in [constr:(@nil (exp * Q))].#</li>#
|
adamc@149
|
658 %\item%#<li># Now this final tactic should do the job:
|
adamc@149
|
659 [[
|
adamc@149
|
660 Ltac reflectContext :=
|
adamc@149
|
661 let ls := findVarsHyps in
|
adamc@149
|
662 repeat match goal with
|
adamc@149
|
663 | [ H : ?e == ?num # ?den |- _ ] =>
|
adamc@149
|
664 let r := reflect ls e in
|
adamc@149
|
665 change (expDenote ls r == num # den) in H;
|
adamc@149
|
666 generalize H
|
adamc@149
|
667 end;
|
adamc@149
|
668 match goal with
|
adamc@149
|
669 | [ |- ?g ] => let re := reflectEqs g in
|
adamc@149
|
670 intros;
|
adamc@149
|
671 let H := fresh "H" in
|
adamc@149
|
672 assert (H : eqsDenote ls re); [ simpl in *; tauto
|
adamc@149
|
673 | repeat match goal with
|
adamc@149
|
674 | [ H : expDenote _ _ == _ |- _ ] => clear H
|
adamc@149
|
675 end;
|
adamc@149
|
676 generalize (linearizeEqsCorrect ls re H); clear H; simpl;
|
adamc@149
|
677 match goal with
|
adamc@149
|
678 | [ |- ?X == ?Y -> _ ] =>
|
adamc@149
|
679 ring_simplify X Y; intro
|
adamc@149
|
680 end ]
|
adamc@149
|
681 end.
|
adamc@149
|
682
|
adamc@149
|
683 #</ol>#%\end{enumerate}%
|
adamc@149
|
684 #</li>#
|
adamc@149
|
685
|
adamc@149
|
686 #</ol>#%\end{enumerate}% *)
|