adamc@142
|
1 (* Copyright (c) 2008, Adam Chlipala
|
adamc@142
|
2 *
|
adamc@142
|
3 * This work is licensed under a
|
adamc@142
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@142
|
5 * Unported License.
|
adamc@142
|
6 * The license text is available at:
|
adamc@142
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@142
|
8 *)
|
adamc@142
|
9
|
adamc@142
|
10 (* begin hide *)
|
adamc@142
|
11 Require Import List.
|
adamc@142
|
12
|
adamc@142
|
13 Require Import Tactics MoreSpecif.
|
adamc@142
|
14
|
adamc@142
|
15 Set Implicit Arguments.
|
adamc@142
|
16 (* end hide *)
|
adamc@142
|
17
|
adamc@142
|
18
|
adamc@142
|
19 (** %\chapter{Proof by Reflection}% *)
|
adamc@142
|
20
|
adamc@142
|
21 (** The last chapter highlighted a very heuristic approach to proving. In this chapter, we will study an alternative technique, %\textit{%#<i>#proof by reflection#</i>#%}%. We will write, in Gallina, decision procedures with proofs of correctness, and we will appeal to these procedures in writing very short proofs. Such a proof is checked by running the decision procedure. The term %\textit{%#<i>#reflection#</i>#%}% applies because we will need to translate Gallina propositions into values of inductive types representing syntax, so that Gallina programs may analyze them. *)
|
adamc@142
|
22
|
adamc@142
|
23
|
adamc@142
|
24 (** * Proving Evenness *)
|
adamc@142
|
25
|
adamc@142
|
26 (** Proving that particular natural number constants are even is certainly something we would rather have happen automatically. The Ltac-programming techniques that we learned in the last chapter make it easy to implement such a procedure. *)
|
adamc@142
|
27
|
adamc@142
|
28 Inductive isEven : nat -> Prop :=
|
adamc@144
|
29 | Even_O : isEven O
|
adamc@144
|
30 | Even_SS : forall n, isEven n -> isEven (S (S n)).
|
adamc@142
|
31
|
adamc@142
|
32 Ltac prove_even := repeat constructor.
|
adamc@142
|
33
|
adamc@142
|
34 Theorem even_256 : isEven 256.
|
adamc@142
|
35 prove_even.
|
adamc@142
|
36 Qed.
|
adamc@142
|
37
|
adamc@142
|
38 Print even_256.
|
adamc@142
|
39 (** [[
|
adamc@142
|
40
|
adamc@142
|
41 even_256 =
|
adamc@142
|
42 Even_SS
|
adamc@142
|
43 (Even_SS
|
adamc@142
|
44 (Even_SS
|
adamc@142
|
45 (Even_SS
|
adamc@142
|
46 ]]
|
adamc@142
|
47
|
adamc@142
|
48 ...and so on. This procedure always works (at least on machines with infinite resources), but it has a serious drawback, which we see when we print the proof it generates that 256 is even. The final proof term has length linear in the input value. This seems like a shame, since we could write a trivial and trustworthy program to verify evenness of constants. The proof checker could simply call our program where needed.
|
adamc@142
|
49
|
adamc@142
|
50 It is also unfortunate not to have static typing guarantees that our tactic always behaves appropriately. Other invocations of similar tactics might fail with dynamic type errors, and we would not know about the bugs behind these errors until we happened to attempt to prove complex enough goals.
|
adamc@142
|
51
|
adamc@142
|
52 The techniques of proof by reflection address both complaints. We will be able to write proofs like this with constant size overhead beyond the size of the input, and we will do it with verified decision procedures written in Gallina.
|
adamc@142
|
53
|
adamc@142
|
54 For this example, we begin by using a type from the [MoreSpecif] module to write a certified evenness checker. *)
|
adamc@142
|
55
|
adamc@142
|
56 Print partial.
|
adamc@142
|
57 (** [[
|
adamc@142
|
58
|
adamc@142
|
59 Inductive partial (P : Prop) : Set := Proved : P -> [P] | Uncertain : [P]
|
adamc@142
|
60 ]] *)
|
adamc@142
|
61
|
adamc@142
|
62 (** A [partial P] value is an optional proof of [P]. The notation [[P]] stands for [partial P]. *)
|
adamc@142
|
63
|
adamc@142
|
64 Open Local Scope partial_scope.
|
adamc@142
|
65
|
adamc@142
|
66 (** We bring into scope some notations for the [partial] type. These overlap with some of the notations we have seen previously for specification types, so they were placed in a separate scope that needs separate opening. *)
|
adamc@142
|
67
|
adamc@142
|
68 Definition check_even (n : nat) : [isEven n].
|
adamc@142
|
69 Hint Constructors isEven.
|
adamc@142
|
70
|
adamc@142
|
71 refine (fix F (n : nat) : [isEven n] :=
|
adamc@142
|
72 match n return [isEven n] with
|
adamc@142
|
73 | 0 => Yes
|
adamc@142
|
74 | 1 => No
|
adamc@142
|
75 | S (S n') => Reduce (F n')
|
adamc@142
|
76 end); auto.
|
adamc@142
|
77 Defined.
|
adamc@142
|
78
|
adamc@142
|
79 (** We can use dependent pattern-matching to write a function that performs a surprising feat. When given a [partial P], this function [partialOut] returns a proof of [P] if the [partial] value contains a proof, and it returns a (useless) proof of [True] otherwise. From the standpoint of ML and Haskell programming, it seems impossible to write such a type, but it is trivial with a [return] annotation. *)
|
adamc@142
|
80
|
adamc@142
|
81 Definition partialOut (P : Prop) (x : [P]) :=
|
adamc@142
|
82 match x return (match x with
|
adamc@142
|
83 | Proved _ => P
|
adamc@142
|
84 | Uncertain => True
|
adamc@142
|
85 end) with
|
adamc@142
|
86 | Proved pf => pf
|
adamc@142
|
87 | Uncertain => I
|
adamc@142
|
88 end.
|
adamc@142
|
89
|
adamc@142
|
90 (** It may seem strange to define a function like this. However, it turns out to be very useful in writing a reflective verison of our earlier [prove_even] tactic: *)
|
adamc@142
|
91
|
adamc@142
|
92 Ltac prove_even_reflective :=
|
adamc@142
|
93 match goal with
|
adamc@142
|
94 | [ |- isEven ?N] => exact (partialOut (check_even N))
|
adamc@142
|
95 end.
|
adamc@142
|
96
|
adamc@142
|
97 (** We identify which natural number we are considering, and we "prove" its evenness by pulling the proof out of the appropriate [check_even] call. *)
|
adamc@142
|
98
|
adamc@142
|
99 Theorem even_256' : isEven 256.
|
adamc@142
|
100 prove_even_reflective.
|
adamc@142
|
101 Qed.
|
adamc@142
|
102
|
adamc@142
|
103 Print even_256'.
|
adamc@142
|
104 (** [[
|
adamc@142
|
105
|
adamc@142
|
106 even_256' = partialOut (check_even 256)
|
adamc@142
|
107 : isEven 256
|
adamc@142
|
108 ]]
|
adamc@142
|
109
|
adamc@142
|
110 We can see a constant wrapper around the object of the proof. For any even number, this form of proof will suffice. What happens if we try the tactic with an odd number? *)
|
adamc@142
|
111
|
adamc@142
|
112 Theorem even_255 : isEven 255.
|
adamc@142
|
113 (** [[
|
adamc@142
|
114
|
adamc@142
|
115 prove_even_reflective.
|
adamc@142
|
116
|
adamc@142
|
117 [[
|
adamc@142
|
118
|
adamc@142
|
119 User error: No matching clauses for match goal
|
adamc@142
|
120 ]]
|
adamc@142
|
121
|
adamc@142
|
122 Thankfully, the tactic fails. To see more precisely what goes wrong, we can run manually the body of the [match].
|
adamc@142
|
123
|
adamc@142
|
124 [[
|
adamc@142
|
125
|
adamc@142
|
126 exact (partialOut (check_even 255)).
|
adamc@142
|
127
|
adamc@142
|
128 [[
|
adamc@142
|
129
|
adamc@142
|
130 Error: The term "partialOut (check_even 255)" has type
|
adamc@142
|
131 "match check_even 255 with
|
adamc@142
|
132 | Yes => isEven 255
|
adamc@142
|
133 | No => True
|
adamc@142
|
134 end" while it is expected to have type "isEven 255"
|
adamc@142
|
135 ]]
|
adamc@142
|
136
|
adamc@142
|
137 As usual, the type-checker performs no reductions to simplify error messages. If we reduced the first term ourselves, we would see that [check_even 255] reduces to a [No], so that the first term is equivalent to [True], which certainly does not unify with [isEven 255]. *)
|
adamc@142
|
138 Abort.
|
adamc@143
|
139
|
adamc@143
|
140
|
adamc@143
|
141 (** * Reflecting the Syntax of a Trivial Tautology Language *)
|
adamc@143
|
142
|
adamc@143
|
143 (** We might also like to have reflective proofs of trivial tautologies like this one: *)
|
adamc@143
|
144
|
adamc@143
|
145 Theorem true_galore : (True /\ True) -> (True \/ (True /\ (True -> True))).
|
adamc@143
|
146 tauto.
|
adamc@143
|
147 Qed.
|
adamc@143
|
148
|
adamc@143
|
149 Print true_galore.
|
adamc@143
|
150
|
adamc@143
|
151 (** [[
|
adamc@143
|
152
|
adamc@143
|
153 true_galore =
|
adamc@143
|
154 fun H : True /\ True =>
|
adamc@143
|
155 and_ind (fun _ _ : True => or_introl (True /\ (True -> True)) I) H
|
adamc@143
|
156 : True /\ True -> True \/ True /\ (True -> True)
|
adamc@143
|
157 ]]
|
adamc@143
|
158
|
adamc@143
|
159 As we might expect, the proof that [tauto] builds contains explicit applications of natural deduction rules. For large formulas, this can add a linear amount of proof size overhead, beyond the size of the input.
|
adamc@143
|
160
|
adamc@143
|
161 To write a reflective procedure for this class of goals, we will need to get into the actual "reflection" part of "proof by reflection." It is impossible to case-analyze a [Prop] in any way in Gallina. We must %\textit{%#<i>#reflect#</i>#%}% [Prop] into some type that we %\textit{%#<i>#can#</i>#%}% analyze. This inductive type is a good candidate: *)
|
adamc@143
|
162
|
adamc@143
|
163 Inductive taut : Set :=
|
adamc@143
|
164 | TautTrue : taut
|
adamc@143
|
165 | TautAnd : taut -> taut -> taut
|
adamc@143
|
166 | TautOr : taut -> taut -> taut
|
adamc@143
|
167 | TautImp : taut -> taut -> taut.
|
adamc@143
|
168
|
adamc@143
|
169 (** We write a recursive function to "unreflect" this syntax back to [Prop]. *)
|
adamc@143
|
170
|
adamc@143
|
171 Fixpoint tautDenote (t : taut) : Prop :=
|
adamc@143
|
172 match t with
|
adamc@143
|
173 | TautTrue => True
|
adamc@143
|
174 | TautAnd t1 t2 => tautDenote t1 /\ tautDenote t2
|
adamc@143
|
175 | TautOr t1 t2 => tautDenote t1 \/ tautDenote t2
|
adamc@143
|
176 | TautImp t1 t2 => tautDenote t1 -> tautDenote t2
|
adamc@143
|
177 end.
|
adamc@143
|
178
|
adamc@143
|
179 (** It is easy to prove that every formula in the range of [tautDenote] is true. *)
|
adamc@143
|
180
|
adamc@143
|
181 Theorem tautTrue : forall t, tautDenote t.
|
adamc@143
|
182 induction t; crush.
|
adamc@143
|
183 Qed.
|
adamc@143
|
184
|
adamc@143
|
185 (** To use [tautTrue] to prove particular formulas, we need to implement the syntax reflection process. A recursive Ltac function does the job. *)
|
adamc@143
|
186
|
adamc@143
|
187 Ltac tautReflect P :=
|
adamc@143
|
188 match P with
|
adamc@143
|
189 | True => TautTrue
|
adamc@143
|
190 | ?P1 /\ ?P2 =>
|
adamc@143
|
191 let t1 := tautReflect P1 in
|
adamc@143
|
192 let t2 := tautReflect P2 in
|
adamc@143
|
193 constr:(TautAnd t1 t2)
|
adamc@143
|
194 | ?P1 \/ ?P2 =>
|
adamc@143
|
195 let t1 := tautReflect P1 in
|
adamc@143
|
196 let t2 := tautReflect P2 in
|
adamc@143
|
197 constr:(TautOr t1 t2)
|
adamc@143
|
198 | ?P1 -> ?P2 =>
|
adamc@143
|
199 let t1 := tautReflect P1 in
|
adamc@143
|
200 let t2 := tautReflect P2 in
|
adamc@143
|
201 constr:(TautImp t1 t2)
|
adamc@143
|
202 end.
|
adamc@143
|
203
|
adamc@143
|
204 (** With [tautReflect] available, it is easy to finish our reflective tactic. We look at the goal formula, reflect it, and apply [tautTrue] to the reflected formula. *)
|
adamc@143
|
205
|
adamc@143
|
206 Ltac obvious :=
|
adamc@143
|
207 match goal with
|
adamc@143
|
208 | [ |- ?P ] =>
|
adamc@143
|
209 let t := tautReflect P in
|
adamc@143
|
210 exact (tautTrue t)
|
adamc@143
|
211 end.
|
adamc@143
|
212
|
adamc@143
|
213 (** We can verify that [obvious] solves our original example, with a proof term that does not mention details of the proof. *)
|
adamc@143
|
214
|
adamc@143
|
215 Theorem true_galore' : (True /\ True) -> (True \/ (True /\ (True -> True))).
|
adamc@143
|
216 obvious.
|
adamc@143
|
217 Qed.
|
adamc@143
|
218
|
adamc@143
|
219 Print true_galore'.
|
adamc@143
|
220
|
adamc@143
|
221 (** [[
|
adamc@143
|
222
|
adamc@143
|
223 true_galore' =
|
adamc@143
|
224 tautTrue
|
adamc@143
|
225 (TautImp (TautAnd TautTrue TautTrue)
|
adamc@143
|
226 (TautOr TautTrue (TautAnd TautTrue (TautImp TautTrue TautTrue))))
|
adamc@143
|
227 : True /\ True -> True \/ True /\ (True -> True)
|
adamc@143
|
228
|
adamc@143
|
229 ]]
|
adamc@143
|
230
|
adamc@143
|
231 It is worth considering how the reflective tactic improves on a pure-Ltac implementation. The formula reflection process is just as ad-hoc as before, so we gain little there. In general, proofs will be more complicated than formula translation, and the "generic proof rule" that we apply here %\textit{%#<i>#is#</i>#%}% on much better formal footing than a recursive Ltac function. The dependent type of the proof guarantees that it "works" on any input formula. This is all in addition to the proof-size improvement that we have already seen. *)
|
adamc@144
|
232
|
adamc@144
|
233
|
adamc@145
|
234 (** * A Monoid Expression Simplifier *)
|
adamc@145
|
235
|
adamc@146
|
236 (** Proof by reflection does not require encoding of all of the syntax in a goal. We can insert "variables" in our syntax types to allow injection of arbitrary pieces, even if we cannot apply specialized reasoning to them. In this section, we explore that possibility by writing a tactic for normalizing monoid equations. *)
|
adamc@146
|
237
|
adamc@145
|
238 Section monoid.
|
adamc@145
|
239 Variable A : Set.
|
adamc@145
|
240 Variable e : A.
|
adamc@145
|
241 Variable f : A -> A -> A.
|
adamc@145
|
242
|
adamc@145
|
243 Infix "+" := f.
|
adamc@145
|
244
|
adamc@145
|
245 Hypothesis assoc : forall a b c, (a + b) + c = a + (b + c).
|
adamc@145
|
246 Hypothesis identl : forall a, e + a = a.
|
adamc@145
|
247 Hypothesis identr : forall a, a + e = a.
|
adamc@145
|
248
|
adamc@146
|
249 (** We add variables and hypotheses characterizing an arbitrary instance of the algebraic structure of monoids. We have an associative binary operator and an identity element for it.
|
adamc@146
|
250
|
adamc@146
|
251 It is easy to define an expression tree type for monoid expressions. A [Var] constructor is a "catch-all" case for subexpressions that we cannot model. These subexpressions could be actual Gallina variables, or they could just use functions that our tactic is unable to understand. *)
|
adamc@146
|
252
|
adamc@145
|
253 Inductive mexp : Set :=
|
adamc@145
|
254 | Ident : mexp
|
adamc@145
|
255 | Var : A -> mexp
|
adamc@145
|
256 | Op : mexp -> mexp -> mexp.
|
adamc@145
|
257
|
adamc@146
|
258 (** Next, we write an "un-reflect" function. *)
|
adamc@146
|
259
|
adamc@145
|
260 Fixpoint mdenote (me : mexp) : A :=
|
adamc@145
|
261 match me with
|
adamc@145
|
262 | Ident => e
|
adamc@145
|
263 | Var v => v
|
adamc@145
|
264 | Op me1 me2 => mdenote me1 + mdenote me2
|
adamc@145
|
265 end.
|
adamc@145
|
266
|
adamc@146
|
267 (** We will normalize expressions by flattening them into lists, via associativity, so it is helpful to have a denotation function for lists of monoid values. *)
|
adamc@146
|
268
|
adamc@145
|
269 Fixpoint mldenote (ls : list A) : A :=
|
adamc@145
|
270 match ls with
|
adamc@145
|
271 | nil => e
|
adamc@145
|
272 | x :: ls' => x + mldenote ls'
|
adamc@145
|
273 end.
|
adamc@145
|
274
|
adamc@146
|
275 (** The flattening function itself is easy to implement. *)
|
adamc@146
|
276
|
adamc@145
|
277 Fixpoint flatten (me : mexp) : list A :=
|
adamc@145
|
278 match me with
|
adamc@145
|
279 | Ident => nil
|
adamc@145
|
280 | Var x => x :: nil
|
adamc@145
|
281 | Op me1 me2 => flatten me1 ++ flatten me2
|
adamc@145
|
282 end.
|
adamc@145
|
283
|
adamc@146
|
284 (** [flatten] has a straightforward correctness proof in terms of our [denote] functions. *)
|
adamc@146
|
285
|
adamc@146
|
286 Lemma flatten_correct' : forall ml2 ml1,
|
adamc@146
|
287 mldenote ml1 + mldenote ml2 = mldenote (ml1 ++ ml2).
|
adamc@145
|
288 induction ml1; crush.
|
adamc@145
|
289 Qed.
|
adamc@145
|
290
|
adamc@145
|
291 Theorem flatten_correct : forall me, mdenote me = mldenote (flatten me).
|
adamc@145
|
292 Hint Resolve flatten_correct'.
|
adamc@145
|
293
|
adamc@145
|
294 induction me; crush.
|
adamc@145
|
295 Qed.
|
adamc@145
|
296
|
adamc@146
|
297 (** Now it is easy to prove a theorem that will be the main tool behind our simplification tactic. *)
|
adamc@146
|
298
|
adamc@146
|
299 Theorem monoid_reflect : forall me1 me2,
|
adamc@146
|
300 mldenote (flatten me1) = mldenote (flatten me2)
|
adamc@146
|
301 -> mdenote me1 = mdenote me2.
|
adamc@145
|
302 intros; repeat rewrite flatten_correct; assumption.
|
adamc@145
|
303 Qed.
|
adamc@145
|
304
|
adamc@146
|
305 (** We implement reflection into the [mexp] type. *)
|
adamc@146
|
306
|
adamc@146
|
307 Ltac reflect me :=
|
adamc@146
|
308 match me with
|
adamc@145
|
309 | e => Ident
|
adamc@146
|
310 | ?me1 + ?me2 =>
|
adamc@146
|
311 let r1 := reflect me1 in
|
adamc@146
|
312 let r2 := reflect me2 in
|
adamc@145
|
313 constr:(Op r1 r2)
|
adamc@146
|
314 | _ => constr:(Var me)
|
adamc@145
|
315 end.
|
adamc@145
|
316
|
adamc@146
|
317 (** The final [monoid] tactic works on goals that equate two monoid terms. We reflect each and change the goal to refer to the reflected versions, finishing off by applying [monoid_reflect] and simplifying uses of [mldenote]. *)
|
adamc@146
|
318
|
adamc@145
|
319 Ltac monoid :=
|
adamc@145
|
320 match goal with
|
adamc@146
|
321 | [ |- ?me1 = ?me2 ] =>
|
adamc@146
|
322 let r1 := reflect me1 in
|
adamc@146
|
323 let r2 := reflect me2 in
|
adamc@145
|
324 change (mdenote r1 = mdenote r2);
|
adamc@145
|
325 apply monoid_reflect; simpl mldenote
|
adamc@145
|
326 end.
|
adamc@145
|
327
|
adamc@146
|
328 (** We can make short work of theorems like this one: *)
|
adamc@146
|
329
|
adamc@145
|
330 Theorem t1 : forall a b c d, a + b + c + d = a + (b + c) + d.
|
adamc@146
|
331 intros; monoid.
|
adamc@146
|
332 (** [[
|
adamc@146
|
333
|
adamc@146
|
334 ============================
|
adamc@146
|
335 a + (b + (c + (d + e))) = a + (b + (c + (d + e)))
|
adamc@146
|
336 ]]
|
adamc@146
|
337
|
adamc@146
|
338 [monoid] has canonicalized both sides of the equality, such that we can finish the proof by reflexivity. *)
|
adamc@146
|
339
|
adamc@145
|
340 reflexivity.
|
adamc@145
|
341 Qed.
|
adamc@146
|
342
|
adamc@146
|
343 (** It is interesting to look at the form of the proof. *)
|
adamc@146
|
344
|
adamc@146
|
345 Print t1.
|
adamc@146
|
346 (** [[
|
adamc@146
|
347
|
adamc@146
|
348 t1 =
|
adamc@146
|
349 fun a b c d : A =>
|
adamc@146
|
350 monoid_reflect (Op (Op (Op (Var a) (Var b)) (Var c)) (Var d))
|
adamc@146
|
351 (Op (Op (Var a) (Op (Var b) (Var c))) (Var d))
|
adamc@146
|
352 (refl_equal (a + (b + (c + (d + e)))))
|
adamc@146
|
353 : forall a b c d : A, a + b + c + d = a + (b + c) + d
|
adamc@146
|
354 ]]
|
adamc@146
|
355
|
adamc@146
|
356 The proof term contains only restatements of the equality operands in reflected form, followed by a use of reflexivity on the shared canonical form. *)
|
adamc@145
|
357 End monoid.
|
adamc@145
|
358
|
adamc@146
|
359 (** Extensions of this basic approach are used in the implementations of the [ring] and [field] tactics that come packaged with Coq. *)
|
adamc@146
|
360
|
adamc@145
|
361
|
adamc@144
|
362 (** * A Smarter Tautology Solver *)
|
adamc@144
|
363
|
adamc@147
|
364 (** Now we are ready to revisit our earlier tautology solver example. We want to broaden the scope of the tactic to include formulas whose truth is not syntactically apparent. We will want to allow injection of arbitrary formulas, like we allowed arbitrary monoid expressions in the last example. Since we are working in a richer theory, it is important to be able to use equalities between different injected formulas. For instance, we cannott prove [P -> P] by translating the formula into a value like [Imp (Var P) (Var P)], because a Gallina function has no way of comparing the two [P]s for equality.
|
adamc@147
|
365
|
adamc@147
|
366 To arrive at a nice implementation satisfying these criteria, we introduce the [quote] tactic and its associated library. *)
|
adamc@147
|
367
|
adamc@144
|
368 Require Import Quote.
|
adamc@144
|
369
|
adamc@144
|
370 Inductive formula : Set :=
|
adamc@144
|
371 | Atomic : index -> formula
|
adamc@144
|
372 | Truth : formula
|
adamc@144
|
373 | Falsehood : formula
|
adamc@144
|
374 | And : formula -> formula -> formula
|
adamc@144
|
375 | Or : formula -> formula -> formula
|
adamc@144
|
376 | Imp : formula -> formula -> formula.
|
adamc@144
|
377
|
adamc@147
|
378 (** The type [index] comes from the [Quote] library and represents a countable variable type. The rest of [formula]'s definition should be old hat by now.
|
adamc@147
|
379
|
adamc@147
|
380 The [quote] tactic will implement injection from [Prop] into [formula] for us, but it is not quite as smart as we might like. In particular, it interprets implications incorrectly, so we will need to declare a wrapper definition for implication, as we did in the last chapter. *)
|
adamc@144
|
381
|
adamc@144
|
382 Definition imp (P1 P2 : Prop) := P1 -> P2.
|
adamc@144
|
383 Infix "-->" := imp (no associativity, at level 95).
|
adamc@144
|
384
|
adamc@147
|
385 (** Now we can define our denotation function. *)
|
adamc@147
|
386
|
adamc@147
|
387 Definition asgn := varmap Prop.
|
adamc@147
|
388
|
adamc@144
|
389 Fixpoint formulaDenote (atomics : asgn) (f : formula) : Prop :=
|
adamc@144
|
390 match f with
|
adamc@144
|
391 | Atomic v => varmap_find False v atomics
|
adamc@144
|
392 | Truth => True
|
adamc@144
|
393 | Falsehood => False
|
adamc@144
|
394 | And f1 f2 => formulaDenote atomics f1 /\ formulaDenote atomics f2
|
adamc@144
|
395 | Or f1 f2 => formulaDenote atomics f1 \/ formulaDenote atomics f2
|
adamc@144
|
396 | Imp f1 f2 => formulaDenote atomics f1 --> formulaDenote atomics f2
|
adamc@144
|
397 end.
|
adamc@144
|
398
|
adamc@147
|
399 (** The [varmap] type family implements maps from [index] values. In this case, we define an assignment as a map from variables to [Prop]s. [formulaDenote] works with an assignment, and we use the [varmap_find] function to consult the assignment in the [Atomic] case. The first argument to [varmap_find] is a default value, in case the variable is not found. *)
|
adamc@147
|
400
|
adamc@144
|
401 Section my_tauto.
|
adamc@144
|
402 Variable atomics : asgn.
|
adamc@144
|
403
|
adamc@144
|
404 Definition holds (v : index) := varmap_find False v atomics.
|
adamc@144
|
405
|
adamc@147
|
406 (** We define some shorthand for a particular variable being true, and now we are ready to define some helpful functions based on the [ListSet] module of the standard library, which (unsurprisingly) presents a view of lists as sets. *)
|
adamc@147
|
407
|
adamc@144
|
408 Require Import ListSet.
|
adamc@144
|
409
|
adamc@144
|
410 Definition index_eq : forall x y : index, {x = y} + {x <> y}.
|
adamc@144
|
411 decide equality.
|
adamc@144
|
412 Defined.
|
adamc@144
|
413
|
adamc@144
|
414 Definition add (s : set index) (v : index) := set_add index_eq v s.
|
adamc@147
|
415
|
adamc@144
|
416 Definition In_dec : forall v (s : set index), {In v s} + {~In v s}.
|
adamc@144
|
417 Open Local Scope specif_scope.
|
adamc@144
|
418
|
adamc@144
|
419 intro; refine (fix F (s : set index) : {In v s} + {~In v s} :=
|
adamc@144
|
420 match s return {In v s} + {~In v s} with
|
adamc@144
|
421 | nil => No
|
adamc@144
|
422 | v' :: s' => index_eq v' v || F s'
|
adamc@144
|
423 end); crush.
|
adamc@144
|
424 Defined.
|
adamc@144
|
425
|
adamc@147
|
426 (** We define what it means for all members of an index set to represent true propositions, and we prove some lemmas about this notion. *)
|
adamc@147
|
427
|
adamc@144
|
428 Fixpoint allTrue (s : set index) : Prop :=
|
adamc@144
|
429 match s with
|
adamc@144
|
430 | nil => True
|
adamc@144
|
431 | v :: s' => holds v /\ allTrue s'
|
adamc@144
|
432 end.
|
adamc@144
|
433
|
adamc@144
|
434 Theorem allTrue_add : forall v s,
|
adamc@144
|
435 allTrue s
|
adamc@144
|
436 -> holds v
|
adamc@144
|
437 -> allTrue (add s v).
|
adamc@144
|
438 induction s; crush;
|
adamc@144
|
439 match goal with
|
adamc@144
|
440 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@144
|
441 end; crush.
|
adamc@144
|
442 Qed.
|
adamc@144
|
443
|
adamc@144
|
444 Theorem allTrue_In : forall v s,
|
adamc@144
|
445 allTrue s
|
adamc@144
|
446 -> set_In v s
|
adamc@144
|
447 -> varmap_find False v atomics.
|
adamc@144
|
448 induction s; crush.
|
adamc@144
|
449 Qed.
|
adamc@144
|
450
|
adamc@144
|
451 Hint Resolve allTrue_add allTrue_In.
|
adamc@144
|
452
|
adamc@144
|
453 Open Local Scope partial_scope.
|
adamc@144
|
454
|
adamc@147
|
455 (** Now we can write a function [forward] which implements deconstruction of hypotheses. It has a dependent type, in the style of Chapter 6, guaranteeing correctness. The arguments to [forward] are a goal formula [f], a set [known] of atomic formulas that we may assume are true, a hypothesis formula [hyp], and a success continuation [cont] that we call when we have extended [known] to hold new truths implied by [hyp]. *)
|
adamc@147
|
456
|
adamc@144
|
457 Definition forward (f : formula) (known : set index) (hyp : formula)
|
adamc@144
|
458 (cont : forall known', [allTrue known' -> formulaDenote atomics f])
|
adamc@144
|
459 : [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f].
|
adamc@144
|
460 refine (fix F (f : formula) (known : set index) (hyp : formula)
|
adamc@144
|
461 (cont : forall known', [allTrue known' -> formulaDenote atomics f]){struct hyp}
|
adamc@144
|
462 : [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f] :=
|
adamc@144
|
463 match hyp return [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f] with
|
adamc@144
|
464 | Atomic v => Reduce (cont (add known v))
|
adamc@144
|
465 | Truth => Reduce (cont known)
|
adamc@144
|
466 | Falsehood => Yes
|
adamc@144
|
467 | And h1 h2 =>
|
adamc@144
|
468 Reduce (F (Imp h2 f) known h1 (fun known' =>
|
adamc@144
|
469 Reduce (F f known' h2 cont)))
|
adamc@144
|
470 | Or h1 h2 => F f known h1 cont && F f known h2 cont
|
adamc@144
|
471 | Imp _ _ => Reduce (cont known)
|
adamc@144
|
472 end); crush.
|
adamc@144
|
473 Defined.
|
adamc@144
|
474
|
adamc@147
|
475 (** A [backward] function implements analysis of the final goal. It calls [forward] to handle implications. *)
|
adamc@147
|
476
|
adamc@144
|
477 Definition backward (known : set index) (f : formula) : [allTrue known -> formulaDenote atomics f].
|
adamc@144
|
478 refine (fix F (known : set index) (f : formula) : [allTrue known -> formulaDenote atomics f] :=
|
adamc@144
|
479 match f return [allTrue known -> formulaDenote atomics f] with
|
adamc@144
|
480 | Atomic v => Reduce (In_dec v known)
|
adamc@144
|
481 | Truth => Yes
|
adamc@144
|
482 | Falsehood => No
|
adamc@144
|
483 | And f1 f2 => F known f1 && F known f2
|
adamc@144
|
484 | Or f1 f2 => F known f1 || F known f2
|
adamc@144
|
485 | Imp f1 f2 => forward f2 known f1 (fun known' => F known' f2)
|
adamc@144
|
486 end); crush; eauto.
|
adamc@144
|
487 Defined.
|
adamc@144
|
488
|
adamc@147
|
489 (** A simple wrapper around [backward] gives us the usual type of a partial decision procedure. *)
|
adamc@147
|
490
|
adamc@144
|
491 Definition my_tauto (f : formula) : [formulaDenote atomics f].
|
adamc@144
|
492 intro; refine (Reduce (backward nil f)); crush.
|
adamc@144
|
493 Defined.
|
adamc@144
|
494 End my_tauto.
|
adamc@144
|
495
|
adamc@147
|
496 (** Our final tactic implementation is now fairly straightforward. First, we [intro] all quantifiers that do not bind [Prop]s. Then we call the [quote] tactic, which implements the reflection for us. Finally, we are able to construct an exact proof via [partialOut] and the [my_tauto] Gallina function. *)
|
adamc@147
|
497
|
adamc@144
|
498 Ltac my_tauto :=
|
adamc@144
|
499 repeat match goal with
|
adamc@144
|
500 | [ |- forall x : ?P, _ ] =>
|
adamc@144
|
501 match type of P with
|
adamc@144
|
502 | Prop => fail 1
|
adamc@144
|
503 | _ => intro
|
adamc@144
|
504 end
|
adamc@144
|
505 end;
|
adamc@144
|
506 quote formulaDenote;
|
adamc@144
|
507 match goal with
|
adamc@144
|
508 | [ |- formulaDenote ?m ?f ] => exact (partialOut (my_tauto m f))
|
adamc@144
|
509 end.
|
adamc@144
|
510
|
adamc@147
|
511 (** A few examples demonstrate how the tactic works. *)
|
adamc@147
|
512
|
adamc@144
|
513 Theorem mt1 : True.
|
adamc@144
|
514 my_tauto.
|
adamc@144
|
515 Qed.
|
adamc@144
|
516
|
adamc@144
|
517 Print mt1.
|
adamc@147
|
518 (** [[
|
adamc@147
|
519
|
adamc@147
|
520 mt1 = partialOut (my_tauto (Empty_vm Prop) Truth)
|
adamc@147
|
521 : True
|
adamc@147
|
522 ]]
|
adamc@147
|
523
|
adamc@147
|
524 We see [my_tauto] applied with an empty [varmap], since every subformula is handled by [formulaDenote]. *)
|
adamc@144
|
525
|
adamc@144
|
526 Theorem mt2 : forall x y : nat, x = y --> x = y.
|
adamc@144
|
527 my_tauto.
|
adamc@144
|
528 Qed.
|
adamc@144
|
529
|
adamc@144
|
530 Print mt2.
|
adamc@147
|
531 (** [[
|
adamc@147
|
532
|
adamc@147
|
533 mt2 =
|
adamc@147
|
534 fun x y : nat =>
|
adamc@147
|
535 partialOut
|
adamc@147
|
536 (my_tauto (Node_vm (x = y) (Empty_vm Prop) (Empty_vm Prop))
|
adamc@147
|
537 (Imp (Atomic End_idx) (Atomic End_idx)))
|
adamc@147
|
538 : forall x y : nat, x = y --> x = y
|
adamc@147
|
539 ]]
|
adamc@147
|
540
|
adamc@147
|
541 Crucially, both instances of [x = y] are represented with the same index, [End_idx]. The value of this index only needs to appear once in the [varmap], whose form reveals that [varmap]s are represented as binary trees, where [index] values denote paths from tree roots to leaves. *)
|
adamc@144
|
542
|
adamc@144
|
543 Theorem mt3 : forall x y z,
|
adamc@144
|
544 (x < y /\ y > z) \/ (y > z /\ x < S y)
|
adamc@144
|
545 --> y > z /\ (x < y \/ x < S y).
|
adamc@144
|
546 my_tauto.
|
adamc@144
|
547 Qed.
|
adamc@144
|
548
|
adamc@144
|
549 Print mt3.
|
adamc@147
|
550 (** [[
|
adamc@147
|
551
|
adamc@147
|
552 fun x y z : nat =>
|
adamc@147
|
553 partialOut
|
adamc@147
|
554 (my_tauto
|
adamc@147
|
555 (Node_vm (x < S y) (Node_vm (x < y) (Empty_vm Prop) (Empty_vm Prop))
|
adamc@147
|
556 (Node_vm (y > z) (Empty_vm Prop) (Empty_vm Prop)))
|
adamc@147
|
557 (Imp
|
adamc@147
|
558 (Or (And (Atomic (Left_idx End_idx)) (Atomic (Right_idx End_idx)))
|
adamc@147
|
559 (And (Atomic (Right_idx End_idx)) (Atomic End_idx)))
|
adamc@147
|
560 (And (Atomic (Right_idx End_idx))
|
adamc@147
|
561 (Or (Atomic (Left_idx End_idx)) (Atomic End_idx)))))
|
adamc@147
|
562 : forall x y z : nat,
|
adamc@147
|
563 x < y /\ y > z \/ y > z /\ x < S y --> y > z /\ (x < y \/ x < S y)
|
adamc@147
|
564 ]]
|
adamc@147
|
565
|
adamc@147
|
566 Our goal contained three distinct atomic formulas, and we see that a three-element [varmap] is generated.
|
adamc@147
|
567
|
adamc@147
|
568 It can be interesting to observe differences between the level of repetition in proof terms generated by [my_tauto] and [tauto] for especially trivial theorems. *)
|
adamc@144
|
569
|
adamc@144
|
570 Theorem mt4 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False.
|
adamc@144
|
571 my_tauto.
|
adamc@144
|
572 Qed.
|
adamc@144
|
573
|
adamc@144
|
574 Print mt4.
|
adamc@147
|
575 (** [[
|
adamc@147
|
576
|
adamc@147
|
577 mt4 =
|
adamc@147
|
578 partialOut
|
adamc@147
|
579 (my_tauto (Empty_vm Prop)
|
adamc@147
|
580 (Imp
|
adamc@147
|
581 (And Truth
|
adamc@147
|
582 (And Truth
|
adamc@147
|
583 (And Truth (And Truth (And Truth (And Truth Falsehood))))))
|
adamc@147
|
584 Falsehood))
|
adamc@147
|
585 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False
|
adamc@147
|
586 ]] *)
|
adamc@144
|
587
|
adamc@144
|
588 Theorem mt4' : True /\ True /\ True /\ True /\ True /\ True /\ False -> False.
|
adamc@144
|
589 tauto.
|
adamc@144
|
590 Qed.
|
adamc@144
|
591
|
adamc@144
|
592 Print mt4'.
|
adamc@147
|
593 (** [[
|
adamc@147
|
594
|
adamc@147
|
595 mt4' =
|
adamc@147
|
596 fun H : True /\ True /\ True /\ True /\ True /\ True /\ False =>
|
adamc@147
|
597 and_ind
|
adamc@147
|
598 (fun (_ : True) (H1 : True /\ True /\ True /\ True /\ True /\ False) =>
|
adamc@147
|
599 and_ind
|
adamc@147
|
600 (fun (_ : True) (H3 : True /\ True /\ True /\ True /\ False) =>
|
adamc@147
|
601 and_ind
|
adamc@147
|
602 (fun (_ : True) (H5 : True /\ True /\ True /\ False) =>
|
adamc@147
|
603 and_ind
|
adamc@147
|
604 (fun (_ : True) (H7 : True /\ True /\ False) =>
|
adamc@147
|
605 and_ind
|
adamc@147
|
606 (fun (_ : True) (H9 : True /\ False) =>
|
adamc@147
|
607 and_ind (fun (_ : True) (H11 : False) => False_ind False H11)
|
adamc@147
|
608 H9) H7) H5) H3) H1) H
|
adamc@147
|
609 : True /\ True /\ True /\ True /\ True /\ True /\ False -> False
|
adamc@147
|
610 ]] *)
|
adamc@147
|
611
|