adam@379
|
1 (* Copyright (c) 2008-2012, Adam Chlipala
|
adamc@142
|
2 *
|
adamc@142
|
3 * This work is licensed under a
|
adamc@142
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@142
|
5 * Unported License.
|
adamc@142
|
6 * The license text is available at:
|
adamc@142
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@142
|
8 *)
|
adamc@142
|
9
|
adamc@142
|
10 (* begin hide *)
|
adamc@142
|
11 Require Import List.
|
adamc@142
|
12
|
adam@314
|
13 Require Import CpdtTactics MoreSpecif.
|
adamc@142
|
14
|
adamc@142
|
15 Set Implicit Arguments.
|
adamc@142
|
16 (* end hide *)
|
adamc@142
|
17
|
adamc@142
|
18
|
adamc@142
|
19 (** %\chapter{Proof by Reflection}% *)
|
adamc@142
|
20
|
adam@412
|
21 (** The last chapter highlighted a very heuristic approach to proving. In this chapter, we will study an alternative technique,%\index{proof by reflection}% _proof by reflection_ %\cite{reflection}%. We will write, in Gallina, decision procedures with proofs of correctness, and we will appeal to these procedures in writing very short proofs. Such a proof is checked by running the decision procedure. The term _reflection_ applies because we will need to translate Gallina propositions into values of inductive types representing syntax, so that Gallina programs may analyze them, and translating such a term back to the original form is called _reflecting_ it. *)
|
adamc@142
|
22
|
adamc@142
|
23
|
adamc@142
|
24 (** * Proving Evenness *)
|
adamc@142
|
25
|
adamc@142
|
26 (** Proving that particular natural number constants are even is certainly something we would rather have happen automatically. The Ltac-programming techniques that we learned in the last chapter make it easy to implement such a procedure. *)
|
adamc@142
|
27
|
adamc@142
|
28 Inductive isEven : nat -> Prop :=
|
adamc@144
|
29 | Even_O : isEven O
|
adamc@144
|
30 | Even_SS : forall n, isEven n -> isEven (S (S n)).
|
adamc@142
|
31
|
adamc@148
|
32 (* begin thide *)
|
adamc@142
|
33 Ltac prove_even := repeat constructor.
|
adamc@148
|
34 (* end thide *)
|
adamc@142
|
35
|
adamc@142
|
36 Theorem even_256 : isEven 256.
|
adamc@142
|
37 prove_even.
|
adamc@142
|
38 Qed.
|
adamc@142
|
39
|
adamc@142
|
40 Print even_256.
|
adamc@221
|
41 (** %\vspace{-.15in}% [[
|
adamc@142
|
42 even_256 =
|
adamc@142
|
43 Even_SS
|
adamc@142
|
44 (Even_SS
|
adamc@142
|
45 (Even_SS
|
adamc@142
|
46 (Even_SS
|
adamc@221
|
47
|
adamc@142
|
48 ]]
|
adamc@142
|
49
|
adam@360
|
50 %\noindent%...and so on. This procedure always works (at least on machines with infinite resources), but it has a serious drawback, which we see when we print the proof it generates that 256 is even. The final proof term has length super-linear in the input value. Coq's implicit arguments mechanism is hiding the values given for parameter [n] of [Even_SS], which is why the proof term only appears linear here. Also, proof terms are represented internally as syntax trees, with opportunity for sharing of node representations, but in this chapter we will measure proof term size as simple textual length or as the number of nodes in the term's syntax tree, two measures that are approximately equivalent. Sometimes apparently large proof terms have enough internal sharing that they take up less memory than we expect, but one avoids having to reason about such sharing by ensuring that the size of a sharing-free version of a term is low enough.
|
adam@360
|
51
|
adam@360
|
52 Superlinear evenness proof terms seem like a shame, since we could write a trivial and trustworthy program to verify evenness of constants. The proof checker could simply call our program where needed.
|
adamc@142
|
53
|
adamc@142
|
54 It is also unfortunate not to have static typing guarantees that our tactic always behaves appropriately. Other invocations of similar tactics might fail with dynamic type errors, and we would not know about the bugs behind these errors until we happened to attempt to prove complex enough goals.
|
adamc@142
|
55
|
adamc@142
|
56 The techniques of proof by reflection address both complaints. We will be able to write proofs like this with constant size overhead beyond the size of the input, and we will do it with verified decision procedures written in Gallina.
|
adamc@142
|
57
|
adamc@221
|
58 For this example, we begin by using a type from the [MoreSpecif] module (included in the book source) to write a certified evenness checker. *)
|
adamc@142
|
59
|
adam@432
|
60 (* begin hide *)
|
adam@437
|
61 (* begin thide *)
|
adam@432
|
62 Definition paartial := partial.
|
adam@437
|
63 (* end thide *)
|
adam@432
|
64 (* end hide *)
|
adam@432
|
65
|
adamc@142
|
66 Print partial.
|
adamc@221
|
67 (** %\vspace{-.15in}% [[
|
adamc@221
|
68 Inductive partial (P : Prop) : Set := Proved : P -> [P] | Uncertain : [P]
|
adamc@221
|
69
|
adamc@221
|
70 ]]
|
adamc@142
|
71
|
adamc@221
|
72 A [partial P] value is an optional proof of [P]. The notation [[P]] stands for [partial P]. *)
|
adamc@142
|
73
|
adamc@221
|
74 Local Open Scope partial_scope.
|
adamc@142
|
75
|
adamc@142
|
76 (** We bring into scope some notations for the [partial] type. These overlap with some of the notations we have seen previously for specification types, so they were placed in a separate scope that needs separate opening. *)
|
adamc@142
|
77
|
adamc@148
|
78 (* begin thide *)
|
adam@297
|
79 Definition check_even : forall n : nat, [isEven n].
|
adamc@142
|
80 Hint Constructors isEven.
|
adamc@142
|
81
|
adamc@142
|
82 refine (fix F (n : nat) : [isEven n] :=
|
adamc@221
|
83 match n with
|
adamc@142
|
84 | 0 => Yes
|
adamc@142
|
85 | 1 => No
|
adamc@142
|
86 | S (S n') => Reduce (F n')
|
adamc@142
|
87 end); auto.
|
adamc@142
|
88 Defined.
|
adamc@142
|
89
|
adam@398
|
90 (** The function [check_even] may be viewed as a _verified decision procedure_, because its type guarantees that it never returns [Yes] for inputs that are not even.
|
adam@360
|
91
|
adam@360
|
92 Now we can use dependent pattern-matching to write a function that performs a surprising feat. When given a [partial P], this function [partialOut] returns a proof of [P] if the [partial] value contains a proof, and it returns a (useless) proof of [True] otherwise. From the standpoint of ML and Haskell programming, it seems impossible to write such a type, but it is trivial with a [return] annotation. *)
|
adamc@142
|
93
|
adamc@142
|
94 Definition partialOut (P : Prop) (x : [P]) :=
|
adamc@142
|
95 match x return (match x with
|
adamc@142
|
96 | Proved _ => P
|
adamc@142
|
97 | Uncertain => True
|
adamc@142
|
98 end) with
|
adamc@142
|
99 | Proved pf => pf
|
adamc@142
|
100 | Uncertain => I
|
adamc@142
|
101 end.
|
adamc@142
|
102
|
adam@289
|
103 (** It may seem strange to define a function like this. However, it turns out to be very useful in writing a reflective version of our earlier [prove_even] tactic: *)
|
adamc@142
|
104
|
adamc@142
|
105 Ltac prove_even_reflective :=
|
adamc@142
|
106 match goal with
|
adamc@142
|
107 | [ |- isEven ?N] => exact (partialOut (check_even N))
|
adamc@142
|
108 end.
|
adamc@148
|
109 (* end thide *)
|
adamc@142
|
110
|
adam@432
|
111 (** We identify which natural number we are considering, and we "prove" its evenness by pulling the proof out of the appropriate [check_even] call. Recall that the %\index{tactics!exact}%[exact] tactic proves a proposition [P] when given a proof term of precisely type [P]. *)
|
adamc@142
|
112
|
adamc@142
|
113 Theorem even_256' : isEven 256.
|
adamc@142
|
114 prove_even_reflective.
|
adamc@142
|
115 Qed.
|
adamc@142
|
116
|
adamc@142
|
117 Print even_256'.
|
adamc@221
|
118 (** %\vspace{-.15in}% [[
|
adamc@142
|
119 even_256' = partialOut (check_even 256)
|
adamc@142
|
120 : isEven 256
|
adamc@142
|
121 ]]
|
adamc@142
|
122
|
adam@289
|
123 We can see a constant wrapper around the object of the proof. For any even number, this form of proof will suffice. The size of the proof term is now linear in the number being checked, containing two repetitions of the unary form of that number, one of which is hidden above within the implicit argument to [partialOut].
|
adam@289
|
124
|
adam@289
|
125 What happens if we try the tactic with an odd number? *)
|
adamc@142
|
126
|
adamc@142
|
127 Theorem even_255 : isEven 255.
|
adam@360
|
128 (** %\vspace{-.275in}%[[
|
adamc@142
|
129 prove_even_reflective.
|
adam@360
|
130 ]]
|
adamc@142
|
131
|
adam@360
|
132 <<
|
adamc@142
|
133 User error: No matching clauses for match goal
|
adam@360
|
134 >>
|
adamc@142
|
135
|
adamc@142
|
136 Thankfully, the tactic fails. To see more precisely what goes wrong, we can run manually the body of the [match].
|
adamc@142
|
137
|
adam@360
|
138 %\vspace{-.15in}%[[
|
adamc@142
|
139 exact (partialOut (check_even 255)).
|
adam@360
|
140 ]]
|
adamc@142
|
141
|
adam@360
|
142 <<
|
adamc@142
|
143 Error: The term "partialOut (check_even 255)" has type
|
adamc@142
|
144 "match check_even 255 with
|
adamc@142
|
145 | Yes => isEven 255
|
adamc@142
|
146 | No => True
|
adamc@142
|
147 end" while it is expected to have type "isEven 255"
|
adam@360
|
148 >>
|
adamc@142
|
149
|
adam@360
|
150 As usual, the type checker performs no reductions to simplify error messages. If we reduced the first term ourselves, we would see that [check_even 255] reduces to a [No], so that the first term is equivalent to [True], which certainly does not unify with [isEven 255]. *)
|
adamc@221
|
151
|
adamc@142
|
152 Abort.
|
adamc@143
|
153
|
adam@362
|
154 (** Our tactic [prove_even_reflective] is reflective because it performs a proof search process (a trivial one, in this case) wholly within Gallina, where the only use of Ltac is to translate a goal into an appropriate use of [check_even]. *)
|
adamc@143
|
155
|
adam@360
|
156
|
adam@360
|
157 (** * Reifying the Syntax of a Trivial Tautology Language *)
|
adamc@143
|
158
|
adamc@143
|
159 (** We might also like to have reflective proofs of trivial tautologies like this one: *)
|
adamc@143
|
160
|
adamc@143
|
161 Theorem true_galore : (True /\ True) -> (True \/ (True /\ (True -> True))).
|
adamc@143
|
162 tauto.
|
adamc@143
|
163 Qed.
|
adamc@143
|
164
|
adam@432
|
165 (* begin hide *)
|
adam@437
|
166 (* begin thide *)
|
adam@432
|
167 Definition tg := (and_ind, or_introl).
|
adam@437
|
168 (* end thide *)
|
adam@432
|
169 (* end hide *)
|
adam@432
|
170
|
adamc@143
|
171 Print true_galore.
|
adamc@221
|
172 (** %\vspace{-.15in}% [[
|
adamc@143
|
173 true_galore =
|
adamc@143
|
174 fun H : True /\ True =>
|
adamc@143
|
175 and_ind (fun _ _ : True => or_introl (True /\ (True -> True)) I) H
|
adamc@143
|
176 : True /\ True -> True \/ True /\ (True -> True)
|
adamc@221
|
177
|
adamc@143
|
178 ]]
|
adamc@143
|
179
|
adamc@143
|
180 As we might expect, the proof that [tauto] builds contains explicit applications of natural deduction rules. For large formulas, this can add a linear amount of proof size overhead, beyond the size of the input.
|
adamc@143
|
181
|
adam@432
|
182 To write a reflective procedure for this class of goals, we will need to get into the actual "reflection" part of "proof by reflection." It is impossible to case-analyze a [Prop] in any way in Gallina. We must%\index{reification}% _reify_ [Prop] into some type that we _can_ analyze. This inductive type is a good candidate: *)
|
adamc@143
|
183
|
adamc@148
|
184 (* begin thide *)
|
adamc@143
|
185 Inductive taut : Set :=
|
adamc@143
|
186 | TautTrue : taut
|
adamc@143
|
187 | TautAnd : taut -> taut -> taut
|
adamc@143
|
188 | TautOr : taut -> taut -> taut
|
adamc@143
|
189 | TautImp : taut -> taut -> taut.
|
adamc@143
|
190
|
adam@432
|
191 (** We write a recursive function to _reflect_ this syntax back to [Prop]. Such functions are also called%\index{interpretation function}% _interpretation functions_, and we have used them in previous examples to give semantics to small programming languages. *)
|
adamc@143
|
192
|
adamc@143
|
193 Fixpoint tautDenote (t : taut) : Prop :=
|
adamc@143
|
194 match t with
|
adamc@143
|
195 | TautTrue => True
|
adamc@143
|
196 | TautAnd t1 t2 => tautDenote t1 /\ tautDenote t2
|
adamc@143
|
197 | TautOr t1 t2 => tautDenote t1 \/ tautDenote t2
|
adamc@143
|
198 | TautImp t1 t2 => tautDenote t1 -> tautDenote t2
|
adamc@143
|
199 end.
|
adamc@143
|
200
|
adamc@143
|
201 (** It is easy to prove that every formula in the range of [tautDenote] is true. *)
|
adamc@143
|
202
|
adamc@143
|
203 Theorem tautTrue : forall t, tautDenote t.
|
adamc@143
|
204 induction t; crush.
|
adamc@143
|
205 Qed.
|
adamc@143
|
206
|
adam@360
|
207 (** To use [tautTrue] to prove particular formulas, we need to implement the syntax reification process. A recursive Ltac function does the job. *)
|
adamc@143
|
208
|
adam@360
|
209 Ltac tautReify P :=
|
adamc@143
|
210 match P with
|
adamc@143
|
211 | True => TautTrue
|
adamc@143
|
212 | ?P1 /\ ?P2 =>
|
adam@360
|
213 let t1 := tautReify P1 in
|
adam@360
|
214 let t2 := tautReify P2 in
|
adamc@143
|
215 constr:(TautAnd t1 t2)
|
adamc@143
|
216 | ?P1 \/ ?P2 =>
|
adam@360
|
217 let t1 := tautReify P1 in
|
adam@360
|
218 let t2 := tautReify P2 in
|
adamc@143
|
219 constr:(TautOr t1 t2)
|
adamc@143
|
220 | ?P1 -> ?P2 =>
|
adam@360
|
221 let t1 := tautReify P1 in
|
adam@360
|
222 let t2 := tautReify P2 in
|
adamc@143
|
223 constr:(TautImp t1 t2)
|
adamc@143
|
224 end.
|
adamc@143
|
225
|
adam@360
|
226 (** With [tautReify] available, it is easy to finish our reflective tactic. We look at the goal formula, reflect it, and apply [tautTrue] to the reflected formula. *)
|
adamc@143
|
227
|
adamc@143
|
228 Ltac obvious :=
|
adamc@143
|
229 match goal with
|
adamc@143
|
230 | [ |- ?P ] =>
|
adam@360
|
231 let t := tautReify P in
|
adamc@143
|
232 exact (tautTrue t)
|
adamc@143
|
233 end.
|
adamc@143
|
234
|
adamc@143
|
235 (** We can verify that [obvious] solves our original example, with a proof term that does not mention details of the proof. *)
|
adamc@148
|
236 (* end thide *)
|
adamc@143
|
237
|
adamc@143
|
238 Theorem true_galore' : (True /\ True) -> (True \/ (True /\ (True -> True))).
|
adamc@143
|
239 obvious.
|
adamc@143
|
240 Qed.
|
adamc@143
|
241
|
adamc@143
|
242 Print true_galore'.
|
adamc@143
|
243
|
adamc@221
|
244 (** %\vspace{-.15in}% [[
|
adamc@143
|
245 true_galore' =
|
adamc@143
|
246 tautTrue
|
adamc@143
|
247 (TautImp (TautAnd TautTrue TautTrue)
|
adamc@143
|
248 (TautOr TautTrue (TautAnd TautTrue (TautImp TautTrue TautTrue))))
|
adamc@143
|
249 : True /\ True -> True \/ True /\ (True -> True)
|
adamc@143
|
250 ]]
|
adamc@143
|
251
|
adam@432
|
252 It is worth considering how the reflective tactic improves on a pure-Ltac implementation. The formula reification process is just as ad-hoc as before, so we gain little there. In general, proofs will be more complicated than formula translation, and the "generic proof rule" that we apply here _is_ on much better formal footing than a recursive Ltac function. The dependent type of the proof guarantees that it "works" on any input formula. This is all in addition to the proof-size improvement that we have already seen.
|
adam@360
|
253
|
adam@360
|
254 It may also be worth pointing out that our previous example of evenness testing used a function [partialOut] for sound handling of input goals that the verified decision procedure fails to prove. Here, we prove that our procedure [tautTrue] (recall that an inductive proof may be viewed as a recursive procedure) is able to prove any goal representable in [taut], so no extra step is necessary. *)
|
adamc@144
|
255
|
adamc@144
|
256
|
adamc@145
|
257 (** * A Monoid Expression Simplifier *)
|
adamc@145
|
258
|
adam@432
|
259 (** Proof by reflection does not require encoding of all of the syntax in a goal. We can insert "variables" in our syntax types to allow injection of arbitrary pieces, even if we cannot apply specialized reasoning to them. In this section, we explore that possibility by writing a tactic for normalizing monoid equations. *)
|
adamc@146
|
260
|
adamc@145
|
261 Section monoid.
|
adamc@145
|
262 Variable A : Set.
|
adamc@145
|
263 Variable e : A.
|
adamc@145
|
264 Variable f : A -> A -> A.
|
adamc@145
|
265
|
adamc@145
|
266 Infix "+" := f.
|
adamc@145
|
267
|
adamc@145
|
268 Hypothesis assoc : forall a b c, (a + b) + c = a + (b + c).
|
adamc@145
|
269 Hypothesis identl : forall a, e + a = a.
|
adamc@145
|
270 Hypothesis identr : forall a, a + e = a.
|
adamc@145
|
271
|
adamc@146
|
272 (** We add variables and hypotheses characterizing an arbitrary instance of the algebraic structure of monoids. We have an associative binary operator and an identity element for it.
|
adamc@146
|
273
|
adam@432
|
274 It is easy to define an expression tree type for monoid expressions. A [Var] constructor is a "catch-all" case for subexpressions that we cannot model. These subexpressions could be actual Gallina variables, or they could just use functions that our tactic is unable to understand. *)
|
adamc@146
|
275
|
adamc@148
|
276 (* begin thide *)
|
adamc@145
|
277 Inductive mexp : Set :=
|
adamc@145
|
278 | Ident : mexp
|
adamc@145
|
279 | Var : A -> mexp
|
adamc@145
|
280 | Op : mexp -> mexp -> mexp.
|
adamc@145
|
281
|
adam@360
|
282 (** Next, we write an interpretation function. *)
|
adamc@146
|
283
|
adamc@145
|
284 Fixpoint mdenote (me : mexp) : A :=
|
adamc@145
|
285 match me with
|
adamc@145
|
286 | Ident => e
|
adamc@145
|
287 | Var v => v
|
adamc@145
|
288 | Op me1 me2 => mdenote me1 + mdenote me2
|
adamc@145
|
289 end.
|
adamc@145
|
290
|
adamc@146
|
291 (** We will normalize expressions by flattening them into lists, via associativity, so it is helpful to have a denotation function for lists of monoid values. *)
|
adamc@146
|
292
|
adamc@145
|
293 Fixpoint mldenote (ls : list A) : A :=
|
adamc@145
|
294 match ls with
|
adamc@145
|
295 | nil => e
|
adamc@145
|
296 | x :: ls' => x + mldenote ls'
|
adamc@145
|
297 end.
|
adamc@145
|
298
|
adamc@146
|
299 (** The flattening function itself is easy to implement. *)
|
adamc@146
|
300
|
adamc@145
|
301 Fixpoint flatten (me : mexp) : list A :=
|
adamc@145
|
302 match me with
|
adamc@145
|
303 | Ident => nil
|
adamc@145
|
304 | Var x => x :: nil
|
adamc@145
|
305 | Op me1 me2 => flatten me1 ++ flatten me2
|
adamc@145
|
306 end.
|
adamc@145
|
307
|
adamc@146
|
308 (** [flatten] has a straightforward correctness proof in terms of our [denote] functions. *)
|
adamc@146
|
309
|
adamc@146
|
310 Lemma flatten_correct' : forall ml2 ml1,
|
adamc@146
|
311 mldenote ml1 + mldenote ml2 = mldenote (ml1 ++ ml2).
|
adamc@145
|
312 induction ml1; crush.
|
adamc@145
|
313 Qed.
|
adamc@145
|
314
|
adamc@145
|
315 Theorem flatten_correct : forall me, mdenote me = mldenote (flatten me).
|
adamc@145
|
316 Hint Resolve flatten_correct'.
|
adamc@145
|
317
|
adamc@145
|
318 induction me; crush.
|
adamc@145
|
319 Qed.
|
adamc@145
|
320
|
adamc@146
|
321 (** Now it is easy to prove a theorem that will be the main tool behind our simplification tactic. *)
|
adamc@146
|
322
|
adamc@146
|
323 Theorem monoid_reflect : forall me1 me2,
|
adamc@146
|
324 mldenote (flatten me1) = mldenote (flatten me2)
|
adamc@146
|
325 -> mdenote me1 = mdenote me2.
|
adamc@145
|
326 intros; repeat rewrite flatten_correct; assumption.
|
adamc@145
|
327 Qed.
|
adamc@145
|
328
|
adam@360
|
329 (** We implement reification into the [mexp] type. *)
|
adamc@146
|
330
|
adam@360
|
331 Ltac reify me :=
|
adamc@146
|
332 match me with
|
adamc@145
|
333 | e => Ident
|
adamc@146
|
334 | ?me1 + ?me2 =>
|
adam@360
|
335 let r1 := reify me1 in
|
adam@360
|
336 let r2 := reify me2 in
|
adamc@145
|
337 constr:(Op r1 r2)
|
adamc@146
|
338 | _ => constr:(Var me)
|
adamc@145
|
339 end.
|
adamc@145
|
340
|
adam@360
|
341 (** The final [monoid] tactic works on goals that equate two monoid terms. We reify each and change the goal to refer to the reified versions, finishing off by applying [monoid_reflect] and simplifying uses of [mldenote]. Recall that the %\index{tactics!change}%[change] tactic replaces a conclusion formula with another that is definitionally equal to it. *)
|
adamc@146
|
342
|
adamc@145
|
343 Ltac monoid :=
|
adamc@145
|
344 match goal with
|
adamc@146
|
345 | [ |- ?me1 = ?me2 ] =>
|
adam@360
|
346 let r1 := reify me1 in
|
adam@360
|
347 let r2 := reify me2 in
|
adamc@145
|
348 change (mdenote r1 = mdenote r2);
|
adam@360
|
349 apply monoid_reflect; simpl
|
adamc@145
|
350 end.
|
adamc@145
|
351
|
adamc@146
|
352 (** We can make short work of theorems like this one: *)
|
adamc@146
|
353
|
adamc@148
|
354 (* end thide *)
|
adamc@148
|
355
|
adamc@145
|
356 Theorem t1 : forall a b c d, a + b + c + d = a + (b + c) + d.
|
adamc@146
|
357 intros; monoid.
|
adamc@146
|
358 (** [[
|
adamc@146
|
359 ============================
|
adamc@146
|
360 a + (b + (c + (d + e))) = a + (b + (c + (d + e)))
|
adamc@221
|
361
|
adamc@146
|
362 ]]
|
adamc@146
|
363
|
adam@360
|
364 Our tactic has canonicalized both sides of the equality, such that we can finish the proof by reflexivity. *)
|
adamc@146
|
365
|
adamc@145
|
366 reflexivity.
|
adamc@145
|
367 Qed.
|
adamc@146
|
368
|
adamc@146
|
369 (** It is interesting to look at the form of the proof. *)
|
adamc@146
|
370
|
adamc@146
|
371 Print t1.
|
adamc@221
|
372 (** %\vspace{-.15in}% [[
|
adamc@146
|
373 t1 =
|
adamc@146
|
374 fun a b c d : A =>
|
adamc@146
|
375 monoid_reflect (Op (Op (Op (Var a) (Var b)) (Var c)) (Var d))
|
adamc@146
|
376 (Op (Op (Var a) (Op (Var b) (Var c))) (Var d))
|
adam@426
|
377 (eq_refl (a + (b + (c + (d + e)))))
|
adamc@146
|
378 : forall a b c d : A, a + b + c + d = a + (b + c) + d
|
adamc@146
|
379 ]]
|
adamc@146
|
380
|
adam@360
|
381 The proof term contains only restatements of the equality operands in reified form, followed by a use of reflexivity on the shared canonical form. *)
|
adamc@221
|
382
|
adamc@145
|
383 End monoid.
|
adamc@145
|
384
|
adam@360
|
385 (** Extensions of this basic approach are used in the implementations of the %\index{tactics!ring}%[ring] and %\index{tactics!field}%[field] tactics that come packaged with Coq. *)
|
adamc@146
|
386
|
adamc@145
|
387
|
adamc@144
|
388 (** * A Smarter Tautology Solver *)
|
adamc@144
|
389
|
adam@412
|
390 (** Now we are ready to revisit our earlier tautology solver example. We want to broaden the scope of the tactic to include formulas whose truth is not syntactically apparent. We will want to allow injection of arbitrary formulas, like we allowed arbitrary monoid expressions in the last example. Since we are working in a richer theory, it is important to be able to use equalities between different injected formulas. For instance, we cannot prove [P -> P] by translating the formula into a value like [Imp (Var P) (Var P)], because a Gallina function has no way of comparing the two [P]s for equality.
|
adamc@147
|
391
|
adam@360
|
392 To arrive at a nice implementation satisfying these criteria, we introduce the %\index{tactics!quote}%[quote] tactic and its associated library. *)
|
adamc@147
|
393
|
adamc@144
|
394 Require Import Quote.
|
adamc@144
|
395
|
adamc@148
|
396 (* begin thide *)
|
adamc@144
|
397 Inductive formula : Set :=
|
adamc@144
|
398 | Atomic : index -> formula
|
adamc@144
|
399 | Truth : formula
|
adamc@144
|
400 | Falsehood : formula
|
adamc@144
|
401 | And : formula -> formula -> formula
|
adamc@144
|
402 | Or : formula -> formula -> formula
|
adamc@144
|
403 | Imp : formula -> formula -> formula.
|
adam@362
|
404 (* end thide *)
|
adamc@144
|
405
|
adam@360
|
406 (** The type %\index{Gallina terms!index}%[index] comes from the [Quote] library and represents a countable variable type. The rest of [formula]'s definition should be old hat by now.
|
adamc@147
|
407
|
adamc@147
|
408 The [quote] tactic will implement injection from [Prop] into [formula] for us, but it is not quite as smart as we might like. In particular, it interprets implications incorrectly, so we will need to declare a wrapper definition for implication, as we did in the last chapter. *)
|
adamc@144
|
409
|
adamc@144
|
410 Definition imp (P1 P2 : Prop) := P1 -> P2.
|
adamc@144
|
411 Infix "-->" := imp (no associativity, at level 95).
|
adamc@144
|
412
|
adamc@147
|
413 (** Now we can define our denotation function. *)
|
adamc@147
|
414
|
adamc@147
|
415 Definition asgn := varmap Prop.
|
adamc@147
|
416
|
adam@362
|
417 (* begin thide *)
|
adamc@144
|
418 Fixpoint formulaDenote (atomics : asgn) (f : formula) : Prop :=
|
adamc@144
|
419 match f with
|
adamc@144
|
420 | Atomic v => varmap_find False v atomics
|
adamc@144
|
421 | Truth => True
|
adamc@144
|
422 | Falsehood => False
|
adamc@144
|
423 | And f1 f2 => formulaDenote atomics f1 /\ formulaDenote atomics f2
|
adamc@144
|
424 | Or f1 f2 => formulaDenote atomics f1 \/ formulaDenote atomics f2
|
adamc@144
|
425 | Imp f1 f2 => formulaDenote atomics f1 --> formulaDenote atomics f2
|
adamc@144
|
426 end.
|
adam@362
|
427 (* end thide *)
|
adamc@144
|
428
|
adam@360
|
429 (** The %\index{Gallina terms!varmap}%[varmap] type family implements maps from [index] values. In this case, we define an assignment as a map from variables to [Prop]s. Our reifier [formulaDenote] works with an assignment, and we use the [varmap_find] function to consult the assignment in the [Atomic] case. The first argument to [varmap_find] is a default value, in case the variable is not found. *)
|
adamc@147
|
430
|
adamc@144
|
431 Section my_tauto.
|
adamc@144
|
432 Variable atomics : asgn.
|
adamc@144
|
433
|
adamc@144
|
434 Definition holds (v : index) := varmap_find False v atomics.
|
adamc@144
|
435
|
adamc@147
|
436 (** We define some shorthand for a particular variable being true, and now we are ready to define some helpful functions based on the [ListSet] module of the standard library, which (unsurprisingly) presents a view of lists as sets. *)
|
adamc@147
|
437
|
adamc@144
|
438 Require Import ListSet.
|
adamc@144
|
439
|
adamc@144
|
440 Definition index_eq : forall x y : index, {x = y} + {x <> y}.
|
adamc@144
|
441 decide equality.
|
adamc@144
|
442 Defined.
|
adamc@144
|
443
|
adamc@144
|
444 Definition add (s : set index) (v : index) := set_add index_eq v s.
|
adamc@147
|
445
|
adamc@221
|
446 Definition In_dec : forall v (s : set index), {In v s} + {~ In v s}.
|
adamc@221
|
447 Local Open Scope specif_scope.
|
adamc@144
|
448
|
adamc@221
|
449 intro; refine (fix F (s : set index) : {In v s} + {~ In v s} :=
|
adamc@221
|
450 match s with
|
adamc@144
|
451 | nil => No
|
adamc@144
|
452 | v' :: s' => index_eq v' v || F s'
|
adamc@144
|
453 end); crush.
|
adamc@144
|
454 Defined.
|
adamc@144
|
455
|
adamc@147
|
456 (** We define what it means for all members of an index set to represent true propositions, and we prove some lemmas about this notion. *)
|
adamc@147
|
457
|
adamc@144
|
458 Fixpoint allTrue (s : set index) : Prop :=
|
adamc@144
|
459 match s with
|
adamc@144
|
460 | nil => True
|
adamc@144
|
461 | v :: s' => holds v /\ allTrue s'
|
adamc@144
|
462 end.
|
adamc@144
|
463
|
adamc@144
|
464 Theorem allTrue_add : forall v s,
|
adamc@144
|
465 allTrue s
|
adamc@144
|
466 -> holds v
|
adamc@144
|
467 -> allTrue (add s v).
|
adamc@144
|
468 induction s; crush;
|
adamc@144
|
469 match goal with
|
adamc@144
|
470 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@144
|
471 end; crush.
|
adamc@144
|
472 Qed.
|
adamc@144
|
473
|
adamc@144
|
474 Theorem allTrue_In : forall v s,
|
adamc@144
|
475 allTrue s
|
adamc@144
|
476 -> set_In v s
|
adamc@144
|
477 -> varmap_find False v atomics.
|
adamc@144
|
478 induction s; crush.
|
adamc@144
|
479 Qed.
|
adamc@144
|
480
|
adamc@144
|
481 Hint Resolve allTrue_add allTrue_In.
|
adamc@144
|
482
|
adamc@221
|
483 Local Open Scope partial_scope.
|
adamc@144
|
484
|
adam@353
|
485 (** Now we can write a function [forward] which implements deconstruction of hypotheses. It has a dependent type, in the style of Chapter 6, guaranteeing correctness. The arguments to [forward] are a goal formula [f], a set [known] of atomic formulas that we may assume are true, a hypothesis formula [hyp], and a success continuation [cont] that we call when we have extended [known] to hold new truths implied by [hyp]. *)
|
adamc@147
|
486
|
adam@297
|
487 Definition forward : forall (f : formula) (known : set index) (hyp : formula)
|
adam@297
|
488 (cont : forall known', [allTrue known' -> formulaDenote atomics f]),
|
adam@297
|
489 [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f].
|
adamc@144
|
490 refine (fix F (f : formula) (known : set index) (hyp : formula)
|
adamc@221
|
491 (cont : forall known', [allTrue known' -> formulaDenote atomics f])
|
adamc@144
|
492 : [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f] :=
|
adamc@221
|
493 match hyp with
|
adamc@144
|
494 | Atomic v => Reduce (cont (add known v))
|
adamc@144
|
495 | Truth => Reduce (cont known)
|
adamc@144
|
496 | Falsehood => Yes
|
adamc@144
|
497 | And h1 h2 =>
|
adamc@144
|
498 Reduce (F (Imp h2 f) known h1 (fun known' =>
|
adamc@144
|
499 Reduce (F f known' h2 cont)))
|
adamc@144
|
500 | Or h1 h2 => F f known h1 cont && F f known h2 cont
|
adamc@144
|
501 | Imp _ _ => Reduce (cont known)
|
adamc@144
|
502 end); crush.
|
adamc@144
|
503 Defined.
|
adamc@144
|
504
|
adamc@147
|
505 (** A [backward] function implements analysis of the final goal. It calls [forward] to handle implications. *)
|
adamc@147
|
506
|
adam@362
|
507 (* begin thide *)
|
adam@297
|
508 Definition backward : forall (known : set index) (f : formula),
|
adam@297
|
509 [allTrue known -> formulaDenote atomics f].
|
adamc@221
|
510 refine (fix F (known : set index) (f : formula)
|
adamc@221
|
511 : [allTrue known -> formulaDenote atomics f] :=
|
adamc@221
|
512 match f with
|
adamc@144
|
513 | Atomic v => Reduce (In_dec v known)
|
adamc@144
|
514 | Truth => Yes
|
adamc@144
|
515 | Falsehood => No
|
adamc@144
|
516 | And f1 f2 => F known f1 && F known f2
|
adamc@144
|
517 | Or f1 f2 => F known f1 || F known f2
|
adamc@144
|
518 | Imp f1 f2 => forward f2 known f1 (fun known' => F known' f2)
|
adamc@144
|
519 end); crush; eauto.
|
adamc@144
|
520 Defined.
|
adam@362
|
521 (* end thide *)
|
adamc@144
|
522
|
adamc@147
|
523 (** A simple wrapper around [backward] gives us the usual type of a partial decision procedure. *)
|
adamc@147
|
524
|
adam@297
|
525 Definition my_tauto : forall f : formula, [formulaDenote atomics f].
|
adam@362
|
526 (* begin thide *)
|
adamc@144
|
527 intro; refine (Reduce (backward nil f)); crush.
|
adamc@144
|
528 Defined.
|
adam@362
|
529 (* end thide *)
|
adamc@144
|
530 End my_tauto.
|
adamc@144
|
531
|
adam@360
|
532 (** Our final tactic implementation is now fairly straightforward. First, we [intro] all quantifiers that do not bind [Prop]s. Then we call the [quote] tactic, which implements the reification for us. Finally, we are able to construct an exact proof via [partialOut] and the [my_tauto] Gallina function. *)
|
adamc@147
|
533
|
adamc@144
|
534 Ltac my_tauto :=
|
adamc@144
|
535 repeat match goal with
|
adamc@144
|
536 | [ |- forall x : ?P, _ ] =>
|
adamc@144
|
537 match type of P with
|
adamc@144
|
538 | Prop => fail 1
|
adamc@144
|
539 | _ => intro
|
adamc@144
|
540 end
|
adamc@144
|
541 end;
|
adamc@144
|
542 quote formulaDenote;
|
adamc@144
|
543 match goal with
|
adamc@144
|
544 | [ |- formulaDenote ?m ?f ] => exact (partialOut (my_tauto m f))
|
adamc@144
|
545 end.
|
adamc@148
|
546 (* end thide *)
|
adamc@144
|
547
|
adamc@147
|
548 (** A few examples demonstrate how the tactic works. *)
|
adamc@147
|
549
|
adamc@144
|
550 Theorem mt1 : True.
|
adamc@144
|
551 my_tauto.
|
adamc@144
|
552 Qed.
|
adamc@144
|
553
|
adamc@144
|
554 Print mt1.
|
adamc@221
|
555 (** %\vspace{-.15in}% [[
|
adamc@147
|
556 mt1 = partialOut (my_tauto (Empty_vm Prop) Truth)
|
adamc@147
|
557 : True
|
adamc@147
|
558 ]]
|
adamc@147
|
559
|
adamc@147
|
560 We see [my_tauto] applied with an empty [varmap], since every subformula is handled by [formulaDenote]. *)
|
adamc@144
|
561
|
adamc@144
|
562 Theorem mt2 : forall x y : nat, x = y --> x = y.
|
adamc@144
|
563 my_tauto.
|
adamc@144
|
564 Qed.
|
adamc@144
|
565
|
adam@432
|
566 (* begin hide *)
|
adam@437
|
567 (* begin thide *)
|
adam@432
|
568 Definition nvm := (Node_vm, Empty_vm, End_idx, Left_idx, Right_idx).
|
adam@437
|
569 (* end thide *)
|
adam@432
|
570 (* end hide *)
|
adam@432
|
571
|
adamc@144
|
572 Print mt2.
|
adamc@221
|
573 (** %\vspace{-.15in}% [[
|
adamc@147
|
574 mt2 =
|
adamc@147
|
575 fun x y : nat =>
|
adamc@147
|
576 partialOut
|
adamc@147
|
577 (my_tauto (Node_vm (x = y) (Empty_vm Prop) (Empty_vm Prop))
|
adamc@147
|
578 (Imp (Atomic End_idx) (Atomic End_idx)))
|
adamc@147
|
579 : forall x y : nat, x = y --> x = y
|
adamc@147
|
580 ]]
|
adamc@147
|
581
|
adamc@147
|
582 Crucially, both instances of [x = y] are represented with the same index, [End_idx]. The value of this index only needs to appear once in the [varmap], whose form reveals that [varmap]s are represented as binary trees, where [index] values denote paths from tree roots to leaves. *)
|
adamc@144
|
583
|
adamc@144
|
584 Theorem mt3 : forall x y z,
|
adamc@144
|
585 (x < y /\ y > z) \/ (y > z /\ x < S y)
|
adamc@144
|
586 --> y > z /\ (x < y \/ x < S y).
|
adamc@144
|
587 my_tauto.
|
adamc@144
|
588 Qed.
|
adamc@144
|
589
|
adamc@144
|
590 Print mt3.
|
adamc@221
|
591 (** %\vspace{-.15in}% [[
|
adamc@147
|
592 fun x y z : nat =>
|
adamc@147
|
593 partialOut
|
adamc@147
|
594 (my_tauto
|
adamc@147
|
595 (Node_vm (x < S y) (Node_vm (x < y) (Empty_vm Prop) (Empty_vm Prop))
|
adamc@147
|
596 (Node_vm (y > z) (Empty_vm Prop) (Empty_vm Prop)))
|
adamc@147
|
597 (Imp
|
adamc@147
|
598 (Or (And (Atomic (Left_idx End_idx)) (Atomic (Right_idx End_idx)))
|
adamc@147
|
599 (And (Atomic (Right_idx End_idx)) (Atomic End_idx)))
|
adamc@147
|
600 (And (Atomic (Right_idx End_idx))
|
adamc@147
|
601 (Or (Atomic (Left_idx End_idx)) (Atomic End_idx)))))
|
adamc@147
|
602 : forall x y z : nat,
|
adamc@147
|
603 x < y /\ y > z \/ y > z /\ x < S y --> y > z /\ (x < y \/ x < S y)
|
adamc@147
|
604 ]]
|
adamc@147
|
605
|
adamc@147
|
606 Our goal contained three distinct atomic formulas, and we see that a three-element [varmap] is generated.
|
adamc@147
|
607
|
adamc@147
|
608 It can be interesting to observe differences between the level of repetition in proof terms generated by [my_tauto] and [tauto] for especially trivial theorems. *)
|
adamc@144
|
609
|
adamc@144
|
610 Theorem mt4 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False.
|
adamc@144
|
611 my_tauto.
|
adamc@144
|
612 Qed.
|
adamc@144
|
613
|
adamc@144
|
614 Print mt4.
|
adamc@221
|
615 (** %\vspace{-.15in}% [[
|
adamc@147
|
616 mt4 =
|
adamc@147
|
617 partialOut
|
adamc@147
|
618 (my_tauto (Empty_vm Prop)
|
adamc@147
|
619 (Imp
|
adamc@147
|
620 (And Truth
|
adamc@147
|
621 (And Truth
|
adamc@147
|
622 (And Truth (And Truth (And Truth (And Truth Falsehood))))))
|
adamc@147
|
623 Falsehood))
|
adamc@147
|
624 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False
|
adam@302
|
625 ]]
|
adam@302
|
626 *)
|
adamc@144
|
627
|
adamc@144
|
628 Theorem mt4' : True /\ True /\ True /\ True /\ True /\ True /\ False -> False.
|
adamc@144
|
629 tauto.
|
adamc@144
|
630 Qed.
|
adamc@144
|
631
|
adam@432
|
632 (* begin hide *)
|
adam@437
|
633 (* begin thide *)
|
adam@432
|
634 Definition fi := False_ind.
|
adam@437
|
635 (* end thide *)
|
adam@432
|
636 (* end hide *)
|
adam@432
|
637
|
adamc@144
|
638 Print mt4'.
|
adamc@221
|
639 (** %\vspace{-.15in}% [[
|
adamc@147
|
640 mt4' =
|
adamc@147
|
641 fun H : True /\ True /\ True /\ True /\ True /\ True /\ False =>
|
adamc@147
|
642 and_ind
|
adamc@147
|
643 (fun (_ : True) (H1 : True /\ True /\ True /\ True /\ True /\ False) =>
|
adamc@147
|
644 and_ind
|
adamc@147
|
645 (fun (_ : True) (H3 : True /\ True /\ True /\ True /\ False) =>
|
adamc@147
|
646 and_ind
|
adamc@147
|
647 (fun (_ : True) (H5 : True /\ True /\ True /\ False) =>
|
adamc@147
|
648 and_ind
|
adamc@147
|
649 (fun (_ : True) (H7 : True /\ True /\ False) =>
|
adamc@147
|
650 and_ind
|
adamc@147
|
651 (fun (_ : True) (H9 : True /\ False) =>
|
adamc@147
|
652 and_ind (fun (_ : True) (H11 : False) => False_ind False H11)
|
adamc@147
|
653 H9) H7) H5) H3) H1) H
|
adamc@147
|
654 : True /\ True /\ True /\ True /\ True /\ True /\ False -> False
|
adam@302
|
655 ]]
|
adam@360
|
656
|
adam@360
|
657 The traditional [tauto] tactic introduces a quadratic blow-up in the size of the proof term, whereas proofs produced by [my_tauto] always have linear size. *)
|
adamc@147
|
658
|
adam@361
|
659 (** ** Manual Reification of Terms with Variables *)
|
adam@361
|
660
|
adam@362
|
661 (* begin thide *)
|
adam@361
|
662 (** The action of the [quote] tactic above may seem like magic. Somehow it performs equality comparison between subterms of arbitrary types, so that these subterms may be represented with the same reified variable. While [quote] is implemented in OCaml, we can code the reification process completely in Ltac, as well. To make our job simpler, we will represent variables as [nat]s, indexing into a simple list of variable values that may be referenced.
|
adam@361
|
663
|
adam@361
|
664 Step one of the process is to crawl over a term, building a duplicate-free list of all values that appear in positions we will encode as variables. A useful helper function adds an element to a list, maintaining lack of duplicates. Note how we use Ltac pattern matching to implement an equality test on Gallina terms; this is simple syntactic equality, not even the richer definitional equality. We also represent lists as nested tuples, to allow different list elements to have different Gallina types. *)
|
adam@361
|
665
|
adam@361
|
666 Ltac inList x xs :=
|
adam@361
|
667 match xs with
|
adam@361
|
668 | tt => false
|
adam@361
|
669 | (x, _) => true
|
adam@361
|
670 | (_, ?xs') => inList x xs'
|
adam@361
|
671 end.
|
adam@361
|
672
|
adam@361
|
673 Ltac addToList x xs :=
|
adam@361
|
674 let b := inList x xs in
|
adam@361
|
675 match b with
|
adam@361
|
676 | true => xs
|
adam@361
|
677 | false => constr:(x, xs)
|
adam@361
|
678 end.
|
adam@361
|
679
|
adam@361
|
680 (** Now we can write our recursive function to calculate the list of variable values we will want to use to represent a term. *)
|
adam@361
|
681
|
adam@361
|
682 Ltac allVars xs e :=
|
adam@361
|
683 match e with
|
adam@361
|
684 | True => xs
|
adam@361
|
685 | False => xs
|
adam@361
|
686 | ?e1 /\ ?e2 =>
|
adam@361
|
687 let xs := allVars xs e1 in
|
adam@361
|
688 allVars xs e2
|
adam@361
|
689 | ?e1 \/ ?e2 =>
|
adam@361
|
690 let xs := allVars xs e1 in
|
adam@361
|
691 allVars xs e2
|
adam@361
|
692 | ?e1 -> ?e2 =>
|
adam@361
|
693 let xs := allVars xs e1 in
|
adam@361
|
694 allVars xs e2
|
adam@361
|
695 | _ => addToList e xs
|
adam@361
|
696 end.
|
adam@361
|
697
|
adam@361
|
698 (** We will also need a way to map a value to its position in a list. *)
|
adam@361
|
699
|
adam@361
|
700 Ltac lookup x xs :=
|
adam@361
|
701 match xs with
|
adam@361
|
702 | (x, _) => O
|
adam@361
|
703 | (_, ?xs') =>
|
adam@361
|
704 let n := lookup x xs' in
|
adam@361
|
705 constr:(S n)
|
adam@361
|
706 end.
|
adam@361
|
707
|
adam@361
|
708 (** The next building block is a procedure for reifying a term, given a list of all allowed variable values. We are free to make this procedure partial, where tactic failure may be triggered upon attempting to reflect a term containing subterms not included in the list of variables. The output type of the term is a copy of [formula] where [index] is replaced by [nat], in the type of the constructor for atomic formulas. *)
|
adam@361
|
709
|
adam@361
|
710 Inductive formula' : Set :=
|
adam@361
|
711 | Atomic' : nat -> formula'
|
adam@361
|
712 | Truth' : formula'
|
adam@361
|
713 | Falsehood' : formula'
|
adam@361
|
714 | And' : formula' -> formula' -> formula'
|
adam@361
|
715 | Or' : formula' -> formula' -> formula'
|
adam@361
|
716 | Imp' : formula' -> formula' -> formula'.
|
adam@361
|
717
|
adam@361
|
718 (** Note that, when we write our own Ltac procedure, we can work directly with the normal [->] operator, rather than needing to introduce a wrapper for it. *)
|
adam@361
|
719
|
adam@361
|
720 Ltac reifyTerm xs e :=
|
adam@361
|
721 match e with
|
adam@432
|
722 | True => constr:Truth'
|
adam@432
|
723 | False => constr:Falsehood'
|
adam@361
|
724 | ?e1 /\ ?e2 =>
|
adam@361
|
725 let p1 := reifyTerm xs e1 in
|
adam@361
|
726 let p2 := reifyTerm xs e2 in
|
adam@361
|
727 constr:(And' p1 p2)
|
adam@361
|
728 | ?e1 \/ ?e2 =>
|
adam@361
|
729 let p1 := reifyTerm xs e1 in
|
adam@361
|
730 let p2 := reifyTerm xs e2 in
|
adam@361
|
731 constr:(Or' p1 p2)
|
adam@361
|
732 | ?e1 -> ?e2 =>
|
adam@361
|
733 let p1 := reifyTerm xs e1 in
|
adam@361
|
734 let p2 := reifyTerm xs e2 in
|
adam@361
|
735 constr:(Imp' p1 p2)
|
adam@361
|
736 | _ =>
|
adam@361
|
737 let n := lookup e xs in
|
adam@361
|
738 constr:(Atomic' n)
|
adam@361
|
739 end.
|
adam@361
|
740
|
adam@361
|
741 (** Finally, we bring all the pieces together. *)
|
adam@361
|
742
|
adam@361
|
743 Ltac reify :=
|
adam@361
|
744 match goal with
|
adam@361
|
745 | [ |- ?G ] => let xs := allVars tt G in
|
adam@361
|
746 let p := reifyTerm xs G in
|
adam@361
|
747 pose p
|
adam@361
|
748 end.
|
adam@361
|
749
|
adam@361
|
750 (** A quick test verifies that we are doing reification correctly. *)
|
adam@361
|
751
|
adam@361
|
752 Theorem mt3' : forall x y z,
|
adam@361
|
753 (x < y /\ y > z) \/ (y > z /\ x < S y)
|
adam@361
|
754 -> y > z /\ (x < y \/ x < S y).
|
adam@361
|
755 do 3 intro; reify.
|
adam@361
|
756
|
adam@361
|
757 (** Our simple tactic adds the translated term as a new variable:
|
adam@361
|
758 [[
|
adam@361
|
759 f := Imp'
|
adam@361
|
760 (Or' (And' (Atomic' 2) (Atomic' 1)) (And' (Atomic' 1) (Atomic' 0)))
|
adam@361
|
761 (And' (Atomic' 1) (Or' (Atomic' 2) (Atomic' 0))) : formula'
|
adam@361
|
762 ]]
|
adam@361
|
763 *)
|
adam@361
|
764 Abort.
|
adam@361
|
765
|
adam@361
|
766 (** More work would be needed to complete the reflective tactic, as we must connect our new syntax type with the real meanings of formulas, but the details are the same as in our prior implementation with [quote]. *)
|
adam@362
|
767 (* end thide *)
|
adam@378
|
768
|
adam@378
|
769
|
adam@378
|
770 (** * Building a Reification Tactic that Recurses Under Binders *)
|
adam@378
|
771
|
adam@378
|
772 (** All of our examples so far have stayed away from reifying the syntax of terms that use such features as quantifiers and [fun] function abstractions. Such cases are complicated by the fact that different subterms may be allowed to reference different sets of free variables. Some cleverness is needed to clear this hurdle, but a few simple patterns will suffice. Consider this example of a simple dependently typed term language, where a function abstraction body is represented conveniently with a Coq function. *)
|
adam@378
|
773
|
adam@378
|
774 Inductive type : Type :=
|
adam@378
|
775 | Nat : type
|
adam@378
|
776 | NatFunc : type -> type.
|
adam@378
|
777
|
adam@378
|
778 Inductive term : type -> Type :=
|
adam@378
|
779 | Const : nat -> term Nat
|
adam@378
|
780 | Plus : term Nat -> term Nat -> term Nat
|
adam@378
|
781 | Abs : forall t, (nat -> term t) -> term (NatFunc t).
|
adam@378
|
782
|
adam@378
|
783 Fixpoint typeDenote (t : type) : Type :=
|
adam@378
|
784 match t with
|
adam@378
|
785 | Nat => nat
|
adam@378
|
786 | NatFunc t => nat -> typeDenote t
|
adam@378
|
787 end.
|
adam@378
|
788
|
adam@378
|
789 Fixpoint termDenote t (e : term t) : typeDenote t :=
|
adam@378
|
790 match e with
|
adam@378
|
791 | Const n => n
|
adam@378
|
792 | Plus e1 e2 => termDenote e1 + termDenote e2
|
adam@378
|
793 | Abs _ e1 => fun x => termDenote (e1 x)
|
adam@378
|
794 end.
|
adam@378
|
795
|
adam@378
|
796 (** Here is a naive first attempt at a reification tactic. *)
|
adam@378
|
797
|
adam@378
|
798 Ltac refl' e :=
|
adam@378
|
799 match e with
|
adam@378
|
800 | ?E1 + ?E2 =>
|
adam@378
|
801 let r1 := refl' E1 in
|
adam@378
|
802 let r2 := refl' E2 in
|
adam@378
|
803 constr:(Plus r1 r2)
|
adam@378
|
804
|
adam@378
|
805 | fun x : nat => ?E1 =>
|
adam@378
|
806 let r1 := refl' E1 in
|
adam@378
|
807 constr:(Abs (fun x => r1 x))
|
adam@378
|
808
|
adam@378
|
809 | _ => constr:(Const e)
|
adam@378
|
810 end.
|
adam@378
|
811
|
adam@398
|
812 (** Recall that a regular Ltac pattern variable [?X] only matches terms that _do not mention new variables introduced within the pattern_. In our naive implementation, the case for matching function abstractions matches the function body in a way that prevents it from mentioning the function argument! Our code above plays fast and loose with the function body in a way that leads to independent problems, but we could change the code so that it indeed handles function abstractions that ignore their arguments.
|
adam@378
|
813
|
adam@378
|
814 To handle functions in general, we will use the pattern variable form [@?X], which allows [X] to mention newly introduced variables that are declared explicitly. For instance: *)
|
adam@378
|
815
|
adam@378
|
816 Reset refl'.
|
adam@378
|
817 Ltac refl' e :=
|
adam@378
|
818 match e with
|
adam@378
|
819 | ?E1 + ?E2 =>
|
adam@378
|
820 let r1 := refl' E1 in
|
adam@378
|
821 let r2 := refl' E2 in
|
adam@378
|
822 constr:(Plus r1 r2)
|
adam@378
|
823
|
adam@378
|
824 | fun x : nat => @?E1 x =>
|
adam@378
|
825 let r1 := refl' E1 in
|
adam@378
|
826 constr:(Abs r1)
|
adam@378
|
827
|
adam@378
|
828 | _ => constr:(Const e)
|
adam@378
|
829 end.
|
adam@378
|
830
|
adam@398
|
831 (** Now, in the abstraction case, we bind [E1] as a function from an [x] value to the value of the abstraction body. Unfortunately, our recursive call there is not destined for success. It will match the same abstraction pattern and trigger another recursive call, and so on through infinite recursion. One last refactoring yields a working procedure. The key idea is to consider every input to [refl'] as _a function over the values of variables introduced during recursion_. *)
|
adam@378
|
832
|
adam@378
|
833 Reset refl'.
|
adam@378
|
834 Ltac refl' e :=
|
adam@378
|
835 match eval simpl in e with
|
adam@378
|
836 | fun x : ?T => @?E1 x + @?E2 x =>
|
adam@378
|
837 let r1 := refl' E1 in
|
adam@378
|
838 let r2 := refl' E2 in
|
adam@378
|
839 constr:(fun x => Plus (r1 x) (r2 x))
|
adam@378
|
840
|
adam@378
|
841 | fun (x : ?T) (y : nat) => @?E1 x y =>
|
adam@378
|
842 let r1 := refl' (fun p : T * nat => E1 (fst p) (snd p)) in
|
adam@378
|
843 constr:(fun x => Abs (fun y => r1 (x, y)))
|
adam@378
|
844
|
adam@378
|
845 | _ => constr:(fun x => Const (e x))
|
adam@378
|
846 end.
|
adam@378
|
847
|
adam@378
|
848 (** Note how now even the addition case works in terms of functions, with [@?X] patterns. The abstraction case introduces a new variable by extending the type used to represent the free variables. In particular, the argument to [refl'] used type [T] to represent all free variables. We extend the type to [T * nat] for the type representing free variable values within the abstraction body. A bit of bookkeeping with pairs and their projections produces an appropriate version of the abstraction body to pass in a recursive call. To ensure that all this repackaging of terms does not interfere with pattern matching, we add an extra [simpl] reduction on the function argument, in the first line of the body of [refl'].
|
adam@378
|
849
|
adam@378
|
850 Now one more tactic provides an example of how to apply reification. Let us consider goals that are equalities between terms that can be reified. We want to change such goals into equalities between appropriate calls to [termDenote]. *)
|
adam@378
|
851
|
adam@378
|
852 Ltac refl :=
|
adam@378
|
853 match goal with
|
adam@378
|
854 | [ |- ?E1 = ?E2 ] =>
|
adam@378
|
855 let E1' := refl' (fun _ : unit => E1) in
|
adam@378
|
856 let E2' := refl' (fun _ : unit => E2) in
|
adam@378
|
857 change (termDenote (E1' tt) = termDenote (E2' tt));
|
adam@378
|
858 cbv beta iota delta [fst snd]
|
adam@378
|
859 end.
|
adam@378
|
860
|
adam@378
|
861 Goal (fun (x y : nat) => x + y + 13) = (fun (_ z : nat) => z).
|
adam@378
|
862 refl.
|
adam@378
|
863 (** %\vspace{-.15in}%[[
|
adam@378
|
864 ============================
|
adam@378
|
865 termDenote
|
adam@378
|
866 (Abs
|
adam@378
|
867 (fun y : nat =>
|
adam@378
|
868 Abs (fun y0 : nat => Plus (Plus (Const y) (Const y0)) (Const 13)))) =
|
adam@378
|
869 termDenote (Abs (fun _ : nat => Abs (fun y0 : nat => Const y0)))
|
adam@378
|
870 ]]
|
adam@378
|
871 *)
|
adam@378
|
872
|
adam@378
|
873 Abort.
|
adam@378
|
874
|
adam@378
|
875 (** Our encoding here uses Coq functions to represent binding within the terms we reify, which makes it difficult to implement certain functions over reified terms. An alternative would be to represent variables with numbers. This can be done by writing a slightly smarter reification function that detects variable references by detecting when term arguments are just compositions of [fst] and [snd]; from the order of the compositions we may read off the variable number. We leave the details as an exercise for the reader. *)
|