adamc@158
|
1 (* Copyright (c) 2008, Adam Chlipala
|
adamc@158
|
2 *
|
adamc@158
|
3 * This work is licensed under a
|
adamc@158
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@158
|
5 * Unported License.
|
adamc@158
|
6 * The license text is available at:
|
adamc@158
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@158
|
8 *)
|
adamc@158
|
9
|
adamc@158
|
10 (* begin hide *)
|
adamc@158
|
11 Require Import Arith Eqdep String List.
|
adamc@158
|
12
|
adamc@158
|
13 Require Import Tactics.
|
adamc@158
|
14
|
adamc@158
|
15 Set Implicit Arguments.
|
adamc@158
|
16 (* end hide *)
|
adamc@158
|
17
|
adamc@158
|
18
|
adamc@158
|
19 (** %\chapter{Higher-Order Abstract Syntax}% *)
|
adamc@158
|
20
|
adamc@158
|
21 (** TODO: Prose for this chapter *)
|
adamc@158
|
22
|
adamc@158
|
23
|
adamc@158
|
24 (** * Parametric Higher-Order Abstract Syntax *)
|
adamc@158
|
25
|
adamc@158
|
26 Inductive type : Type :=
|
adamc@158
|
27 | Bool : type
|
adamc@158
|
28 | Arrow : type -> type -> type.
|
adamc@158
|
29
|
adamc@158
|
30 Infix "-->" := Arrow (right associativity, at level 60).
|
adamc@158
|
31
|
adamc@158
|
32 Section exp.
|
adamc@158
|
33 Variable var : type -> Type.
|
adamc@158
|
34
|
adamc@158
|
35 Inductive exp : type -> Type :=
|
adamc@158
|
36 | Const' : bool -> exp Bool
|
adamc@158
|
37 | Var : forall t, var t -> exp t
|
adamc@158
|
38 | App' : forall dom ran, exp (dom --> ran) -> exp dom -> exp ran
|
adamc@158
|
39 | Abs' : forall dom ran, (var dom -> exp ran) -> exp (dom --> ran).
|
adamc@158
|
40 End exp.
|
adamc@158
|
41
|
adamc@158
|
42 Implicit Arguments Const' [var].
|
adamc@158
|
43 Implicit Arguments Var [var t].
|
adamc@158
|
44 Implicit Arguments Abs' [var dom ran].
|
adamc@158
|
45
|
adamc@158
|
46 Definition Exp t := forall var, exp var t.
|
adamc@158
|
47 Definition Exp1 t1 t2 := forall var, var t1 -> exp var t2.
|
adamc@158
|
48
|
adamc@158
|
49 Definition Const (b : bool) : Exp Bool :=
|
adamc@158
|
50 fun _ => Const' b.
|
adamc@158
|
51 Definition App dom ran (F : Exp (dom --> ran)) (X : Exp dom) : Exp ran :=
|
adamc@158
|
52 fun _ => App' (F _) (X _).
|
adamc@158
|
53 Definition Abs dom ran (B : Exp1 dom ran) : Exp (dom --> ran) :=
|
adamc@158
|
54 fun _ => Abs' (B _).
|
adamc@158
|
55
|
adamc@158
|
56 Section flatten.
|
adamc@158
|
57 Variable var : type -> Type.
|
adamc@158
|
58
|
adamc@158
|
59 Fixpoint flatten t (e : exp (exp var) t) {struct e} : exp var t :=
|
adamc@158
|
60 match e in exp _ t return exp _ t with
|
adamc@158
|
61 | Const' b => Const' b
|
adamc@158
|
62 | Var _ e' => e'
|
adamc@158
|
63 | App' _ _ e1 e2 => App' (flatten e1) (flatten e2)
|
adamc@158
|
64 | Abs' _ _ e' => Abs' (fun x => flatten (e' (Var x)))
|
adamc@158
|
65 end.
|
adamc@158
|
66 End flatten.
|
adamc@158
|
67
|
adamc@158
|
68 Definition Subst t1 t2 (E1 : Exp t1) (E2 : Exp1 t1 t2) : Exp t2 := fun _ =>
|
adamc@158
|
69 flatten (E2 _ (E1 _)).
|
adamc@158
|
70
|
adamc@158
|
71
|
adamc@158
|
72 (** * A Type Soundness Proof *)
|
adamc@158
|
73
|
adamc@158
|
74 Reserved Notation "E1 ==> E2" (no associativity, at level 90).
|
adamc@158
|
75
|
adamc@158
|
76 Inductive Val : forall t, Exp t -> Prop :=
|
adamc@158
|
77 | VConst : forall b, Val (Const b)
|
adamc@158
|
78 | VAbs : forall dom ran (B : Exp1 dom ran), Val (Abs B).
|
adamc@158
|
79
|
adamc@158
|
80 Hint Constructors Val.
|
adamc@158
|
81
|
adamc@158
|
82 Inductive Step : forall t, Exp t -> Exp t -> Prop :=
|
adamc@158
|
83 | Beta : forall dom ran (B : Exp1 dom ran) (X : Exp dom),
|
adamc@158
|
84 App (Abs B) X ==> Subst X B
|
adamc@158
|
85 | Cong1 : forall dom ran (F : Exp (dom --> ran)) (X : Exp dom) F',
|
adamc@158
|
86 F ==> F'
|
adamc@158
|
87 -> App F X ==> App F' X
|
adamc@158
|
88 | Cong2 : forall dom ran (F : Exp (dom --> ran)) (X : Exp dom) X',
|
adamc@158
|
89 Val F
|
adamc@158
|
90 -> X ==> X'
|
adamc@158
|
91 -> App F X ==> App F X'
|
adamc@158
|
92
|
adamc@158
|
93 where "E1 ==> E2" := (Step E1 E2).
|
adamc@158
|
94
|
adamc@158
|
95 Hint Constructors Step.
|
adamc@158
|
96
|
adamc@158
|
97 Inductive Closed : forall t, Exp t -> Prop :=
|
adamc@158
|
98 | CConst : forall b,
|
adamc@158
|
99 Closed (Const b)
|
adamc@158
|
100 | CApp : forall dom ran (E1 : Exp (dom --> ran)) E2,
|
adamc@158
|
101 Closed E1
|
adamc@158
|
102 -> Closed E2
|
adamc@158
|
103 -> Closed (App E1 E2)
|
adamc@158
|
104 | CAbs : forall dom ran (E1 : Exp1 dom ran),
|
adamc@158
|
105 Closed (Abs E1).
|
adamc@158
|
106
|
adamc@158
|
107 Axiom closed : forall t (E : Exp t), Closed E.
|
adamc@158
|
108
|
adamc@158
|
109 Ltac my_crush :=
|
adamc@158
|
110 crush;
|
adamc@158
|
111 repeat (match goal with
|
adamc@158
|
112 | [ H : _ |- _ ] => generalize (inj_pairT2 _ _ _ _ _ H); clear H
|
adamc@158
|
113 end; crush).
|
adamc@158
|
114
|
adamc@158
|
115 Lemma progress' : forall t (E : Exp t),
|
adamc@158
|
116 Closed E
|
adamc@158
|
117 -> Val E \/ exists E', E ==> E'.
|
adamc@158
|
118 induction 1; crush;
|
adamc@158
|
119 try match goal with
|
adamc@158
|
120 | [ H : @Val (_ --> _) _ |- _ ] => inversion H; my_crush
|
adamc@158
|
121 end; eauto.
|
adamc@158
|
122 Qed.
|
adamc@158
|
123
|
adamc@158
|
124 Theorem progress : forall t (E : Exp t),
|
adamc@158
|
125 Val E \/ exists E', E ==> E'.
|
adamc@158
|
126 intros; apply progress'; apply closed.
|
adamc@158
|
127 Qed.
|
adamc@158
|
128
|