comparison src/Predicates.v @ 58:1946586b9da7

First two exercises
author Adam Chlipala <adamc@hcoop.net>
date Mon, 29 Sep 2008 14:38:21 -0400
parents 8d7a97b3bb91
children 1a664ff9d2d1
comparison
equal deleted inserted replaced
57:6f7142e082c0 58:1946586b9da7
853 intros; eapply propify_holds'; eauto. 853 intros; eapply propify_holds'; eauto.
854 Qed. 854 Qed.
855 (* end thide *) 855 (* end thide *)
856 856
857 (* end hide *) 857 (* end hide *)
858
859
860 (** * Exercises *)
861
862 (** %\begin{enumerate}%#<ol>#
863
864 %\item%#<li># Prove these tautologies of propositional logic, using only the tactics [apply], [assumption], [constructor], [destruct], [intro], [intros], [left], [right], [split], and [unfold].
865 %\begin{enumerate}%#<ol>#
866 %\item%#<li># [(True \/ False) /\ (False \/ True)]#</li>#
867 %\item%#<li># [P -> ~ ~P]#</li>#
868 %\item%#<li># [P /\ (Q \/ R) -> (P /\ Q) \/ (P /\ R)]#</li>#
869 #</ol> </li>#%\end{enumerate}% *)
870
871 (** remove printing exists*)
872 (** %\item%#<li># Prove the following tautology of first-order logic, using only the tactics [apply], [assert], [assumption], [destruct], [eapply], [eassumption], and [exists]. You will probably find [assert] useful for stating and proving an intermediate lemma, enabling a kind of "forward reasoning," in contrast to the "backward reasoning" that is the default for Coq tactics. [eassumption] is a version of [assumption] that will do matching of unification variables. Let some variable [T] of type [Set] be the set of individuals. [x] is a constant symbol, [p] is a unary predicate symbol, [q] is a binary predicate symbol, and [f] is a unary function symbol. **)
873 (** printing exists $\exists$ *)
874 (** %\begin{enumerate}%#<ol>#
875 %\item%#<li># [p x -> (forall x, p x -> exists y, q x y) -> (forall x y, q x y -> q y (f y)) -> exists z, q z (f z)]#</li>#
876 #</ol> </li>#%\end{enumerate}%
877
878 #</ol>#%\end{enumerate}% *)