comparison src/Predicates.v @ 59:1a664ff9d2d1

Beefed-up crush, with auto-inversion and lemma instantiation
author Adam Chlipala <adamc@hcoop.net>
date Tue, 30 Sep 2008 13:11:39 -0400
parents 1946586b9da7
children 41ee8f8c9d17
comparison
equal deleted inserted replaced
58:1946586b9da7 59:1a664ff9d2d1
873 (** printing exists $\exists$ *) 873 (** printing exists $\exists$ *)
874 (** %\begin{enumerate}%#<ol># 874 (** %\begin{enumerate}%#<ol>#
875 %\item%#<li># [p x -> (forall x, p x -> exists y, q x y) -> (forall x y, q x y -> q y (f y)) -> exists z, q z (f z)]#</li># 875 %\item%#<li># [p x -> (forall x, p x -> exists y, q x y) -> (forall x y, q x y -> q y (f y)) -> exists z, q z (f z)]#</li>#
876 #</ol> </li>#%\end{enumerate}% 876 #</ol> </li>#%\end{enumerate}%
877 877
878 %\item%#<li># Define an inductive predicate capturing when a natural number is an integer multiple of either 6 or 10. Prove that 13 does not satisfy your predicate, and prove that any number satisfying the predicate is not odd. It is probably easiest to prove the second theorem by indicating "odd-ness" as equality to [2 * n + 1] for some [n].#</li>#
879
878 #</ol>#%\end{enumerate}% *) 880 #</ol>#%\end{enumerate}% *)