Mercurial > cpdt > repo
comparison src/DataStruct.v @ 108:7abf5535baab
STLC interp
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Mon, 13 Oct 2008 13:20:57 -0400 |
parents | 924d77a177e8 |
children | fe6cfbae86b9 |
comparison
equal
deleted
inserted
replaced
107:924d77a177e8 | 108:7abf5535baab |
---|---|
112 end (get ls') | 112 end (get ls') |
113 end. | 113 end. |
114 End ilist. | 114 End ilist. |
115 | 115 |
116 Implicit Arguments Nil [A]. | 116 Implicit Arguments Nil [A]. |
117 | 117 Implicit Arguments First [n]. |
118 (** Our [get] function is quite easy to reason about. We show how with a short example about an analogue to the list [map] function. *) | 118 |
119 (** A few examples show how to make use of these definitions. *) | |
120 | |
121 Check Cons 0 (Cons 1 (Cons 2 Nil)). | |
122 (** [[ | |
123 | |
124 Cons 0 (Cons 1 (Cons 2 Nil)) | |
125 : ilist nat 3 | |
126 ]] *) | |
127 Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First. | |
128 (** [[ | |
129 | |
130 = 0 | |
131 : nat | |
132 ]] *) | |
133 Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First). | |
134 (** [[ | |
135 | |
136 = 1 | |
137 : nat | |
138 ]] *) | |
139 Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)). | |
140 (** [[ | |
141 | |
142 = 2 | |
143 : nat | |
144 ]] *) | |
145 | |
146 (** Our [get] function is also quite easy to reason about. We show how with a short example about an analogue to the list [map] function. *) | |
119 | 147 |
120 Section ilist_map. | 148 Section ilist_map. |
121 Variables A B : Set. | 149 Variables A B : Set. |
122 Variable f : A -> B. | 150 Variable f : A -> B. |
123 | 151 |
181 | MFirst _ => fun x _ => x | 209 | MFirst _ => fun x _ => x |
182 | MNext _ _ mem' => fun _ get_mls' => get_mls' mem' | 210 | MNext _ _ mem' => fun _ get_mls' => get_mls' mem' |
183 end x (hget mls') | 211 end x (hget mls') |
184 end. | 212 end. |
185 End hlist. | 213 End hlist. |
214 | |
215 Implicit Arguments MNil [A B]. | |
216 Implicit Arguments MCons [A B x ls]. | |
217 | |
218 Implicit Arguments MFirst [A elm ls]. | |
219 Implicit Arguments MNext [A elm x ls]. | |
220 | |
221 (** By putting the parameters [A] and [B] in [Type], we allow some very higher-order uses. For instance, one use of [hlist] is for the simple heterogeneous lists that we referred to earlier. *) | |
222 | |
223 Definition someTypes : list Set := nat :: bool :: nil. | |
224 | |
225 Example someValues : hlist (fun T : Set => T) someTypes := | |
226 MCons 5 (MCons true MNil). | |
227 | |
228 Eval simpl in hget someValues MFirst. | |
229 (** [[ | |
230 | |
231 = 5 | |
232 : (fun T : Set => T) nat | |
233 ]] *) | |
234 Eval simpl in hget someValues (MNext MFirst). | |
235 (** [[ | |
236 | |
237 = true | |
238 : (fun T : Set => T) bool | |
239 ]] *) | |
240 | |
241 (** We can also build indexed lists of pairs in this way. *) | |
242 | |
243 Example somePairs : hlist (fun T : Set => T * T)%type someTypes := | |
244 MCons (1, 2) (MCons (true, false) MNil). | |
245 | |
246 (** ** A Lambda Calculus Interpreter *) | |
247 | |
248 (** Heterogeneous lists are very useful in implementing interpreters for functional programming languages. Using the types and operations we have already defined, it is trivial to write an interpreter for simply-typed lambda calculus. Our interpreter can alternatively be thought of as a denotational semantics. | |
249 | |
250 We start with an algebraic datatype for types. *) | |
251 | |
252 Inductive type : Set := | |
253 | Unit : type | |
254 | Arrow : type -> type -> type. | |
255 | |
256 (** Now we can define a type family for expressions. An [exp ts t] will stand for an expression that has type [t] and whose free variables have types in the list [ts]. We effectively use the de Bruijn variable representation, which we will discuss in more detail in later chapters. Variables are represented as [member] values; that is, a variable is more or less a constructive proof that a particular type is found in the type environment. *) | |
257 | |
258 Inductive exp : list type -> type -> Set := | |
259 | Const : forall ts, exp ts Unit | |
260 | |
261 | Var : forall ts t, member t ts -> exp ts t | |
262 | App : forall ts dom ran, exp ts (Arrow dom ran) -> exp ts dom -> exp ts ran | |
263 | Abs : forall ts dom ran, exp (dom :: ts) ran -> exp ts (Arrow dom ran). | |
264 | |
265 Implicit Arguments Const [ts]. | |
266 | |
267 (** We write a simple recursive function to translate [type]s into [Set]s. *) | |
268 | |
269 Fixpoint typeDenote (t : type) : Set := | |
270 match t with | |
271 | Unit => unit | |
272 | Arrow t1 t2 => typeDenote t1 -> typeDenote t2 | |
273 end. | |
274 | |
275 (** Now it is straightforward to write an expression interpreter. The type of the function, [expDenote], tells us that we translate expressions into functions from properly-typed environments to final values. An environment for a free variable list [ts] is simply a [hlist typeDenote ts]. That is, for each free variable, the heterogeneous list that is the environment must have a value of the variable's associated type. We use [hget] to implement the [Var] case, and we use [MCons] to extend the environment in the [Abs] case. *) | |
276 | |
277 Fixpoint expDenote ts t (e : exp ts t) {struct e} : hlist typeDenote ts -> typeDenote t := | |
278 match e in exp ts t return hlist typeDenote ts -> typeDenote t with | |
279 | Const _ => fun _ => tt | |
280 | |
281 | Var _ _ mem => fun s => hget s mem | |
282 | App _ _ _ e1 e2 => fun s => (expDenote e1 s) (expDenote e2 s) | |
283 | Abs _ _ _ e' => fun s => fun x => expDenote e' (MCons x s) | |
284 end. | |
285 | |
286 (** Like for previous examples, our interpreter is easy to run with [simpl]. *) | |
287 | |
288 Eval simpl in expDenote Const MNil. | |
289 (** [[ | |
290 | |
291 = tt | |
292 : typeDenote Unit | |
293 ]] *) | |
294 Eval simpl in expDenote (Abs (dom := Unit) (Var MFirst)) MNil. | |
295 (** [[ | |
296 | |
297 = fun x : unit => x | |
298 : typeDenote (Arrow Unit Unit) | |
299 ]] *) | |
300 Eval simpl in expDenote (Abs (dom := Unit) | |
301 (Abs (dom := Unit) (Var (MNext MFirst)))) MNil. | |
302 (** [[ | |
303 | |
304 = fun x _ : unit => x | |
305 : typeDenote (Arrow Unit (Arrow Unit Unit)) | |
306 ]] *) | |
307 Eval simpl in expDenote (Abs (dom := Unit) (Abs (dom := Unit) (Var MFirst))) MNil. | |
308 (** [[ | |
309 | |
310 = fun _ x0 : unit => x0 | |
311 : typeDenote (Arrow Unit (Arrow Unit Unit)) | |
312 ]] *) | |
313 Eval simpl in expDenote (App (Abs (Var MFirst)) Const) MNil. | |
314 (** [[ | |
315 | |
316 = tt | |
317 : typeDenote Unit | |
318 ]] *) | |
319 | |
320 (** We are starting to develop the tools behind dependent typing's amazing advantage over alternative approaches in several important areas. Here, we have implemented complete syntax, typing rules, and evaluation semantics for simply-typed lambda calculus without even needing to define a syntactic substitution operation. We did it all without a single line of proof, and our implementation is manifestly executable. In a later chapter, we will meet other, more common approaches to language formalization. Such approaches often state and prove explicit theorems about type safety of languages. In the above example, we got type safety, termination, and other meta-theorems for free, by reduction to CIC, which we know has those properties. *) | |
321 | |
322 |