Mercurial > cpdt > repo
diff src/MoreDep.v @ 91:4a57a4922af5
Add star to regexp matcher; need to automate a bit more
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Tue, 07 Oct 2008 14:52:15 -0400 |
parents | 939add5a7db9 |
children | 41392e5acbf5 |
line wrap: on
line diff
--- a/src/MoreDep.v Tue Oct 07 10:50:36 2008 -0400 +++ b/src/MoreDep.v Tue Oct 07 14:52:15 2008 -0400 @@ -349,13 +349,26 @@ Require Import Ascii String. Open Scope string_scope. +Section star. + Variable P : string -> Prop. + + Inductive star : string -> Prop := + | Empty : star "" + | Iter : forall s1 s2, + P s1 + -> star s2 + -> star (s1 ++ s2). +End star. + Inductive regexp : (string -> Prop) -> Type := | Char : forall ch : ascii, regexp (fun s => s = String ch "") | Concat : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2), regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2) | Or : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2), - regexp (fun s => P1 s \/ P2 s). + regexp (fun s => P1 s \/ P2 s) +| Star : forall P (r : regexp P), + regexp (star P). Open Scope specif_scope. @@ -416,12 +429,12 @@ induction s1; crush. Qed. -Hint Rewrite substring_app_fst substring_app_snd using assumption : cpdt. +Hint Rewrite substring_app_fst substring_app_snd using (trivial; fail) : cpdt. Section split. Variables P1 P2 : string -> Prop. - Variable P1_dec : forall s, {P1 s} + {~P1 s}. - Variable P2_dec : forall s, {P2 s} + {~P2 s}. + Variable P1_dec : forall s, {P1 s} + { ~P1 s}. + Variable P2_dec : forall s, {P2 s} + { ~P2 s}. Variable s : string. @@ -453,6 +466,231 @@ Implicit Arguments split [P1 P2]. +Lemma app_empty_end : forall s, s ++ "" = s. + induction s; crush. +Qed. + +Hint Rewrite app_empty_end : cpdt. + +Lemma substring_self : forall s n, + n <= 0 + -> substring n (length s - n) s = s. + induction s; substring. +Qed. + +Lemma substring_empty : forall s n m, + m <= 0 + -> substring n m s = "". + induction s; substring. +Qed. + +Hint Rewrite substring_self substring_empty using omega : cpdt. + +Lemma substring_split' : forall s n m, + substring n m s ++ substring (n + m) (length s - (n + m)) s + = substring n (length s - n) s. + Hint Rewrite substring_split : cpdt. + + induction s; substring. +Qed. + +Lemma substring_stack : forall s n2 m1 m2, + m1 <= m2 + -> substring 0 m1 (substring n2 m2 s) + = substring n2 m1 s. + induction s; substring. +Qed. + +Ltac substring' := + crush; + repeat match goal with + | [ |- context[match ?N with O => _ | S _ => _ end] ] => case_eq N; crush + end. + +Lemma substring_stack' : forall s n1 n2 m1 m2, + n1 + m1 <= m2 + -> substring n1 m1 (substring n2 m2 s) + = substring (n1 + n2) m1 s. + induction s; substring'; + match goal with + | [ |- substring ?N1 _ _ = substring ?N2 _ _ ] => + replace N1 with N2; crush + end. +Qed. + +Lemma substring_suffix : forall s n, + n <= length s + -> length (substring n (length s - n) s) = length s - n. + induction s; substring. +Qed. + +Lemma substring_suffix_emp' : forall s n m, + substring n (S m) s = "" + -> n >= length s. + induction s; crush; + match goal with + | [ |- ?N >= _ ] => destruct N; crush + end; + match goal with + [ |- S ?N >= S ?E ] => assert (N >= E); [ eauto | omega ] + end. +Qed. + +Lemma substring_suffix_emp : forall s n m, + m > 0 + -> substring n m s = "" + -> n >= length s. + destruct m as [| m]; [crush | intros; apply substring_suffix_emp' with m; assumption]. +Qed. + +Hint Rewrite substring_stack substring_stack' substring_suffix + using omega : cpdt. + +Lemma minus_minus : forall n m1 m2, + m1 + m2 <= n + -> n - m1 - m2 = n - (m1 + m2). + intros; omega. +Qed. + +Lemma plus_n_Sm' : forall n m : nat, S (n + m) = m + S n. + intros; omega. +Qed. + +Hint Rewrite minus_minus using omega : cpdt. + +Section dec_star. + Variable P : string -> Prop. + Variable P_dec : forall s, {P s} + { ~P s}. + + Hint Constructors star. + + Lemma star_empty : forall s, + length s = 0 + -> star P s. + destruct s; crush. + Qed. + + Lemma star_singleton : forall s, P s -> star P s. + intros; rewrite <- (app_empty_end s); auto. + Qed. + + Lemma star_app : forall s n m, + P (substring n m s) + -> star P (substring (n + m) (length s - (n + m)) s) + -> star P (substring n (length s - n) s). + induction n; substring; + match goal with + | [ H : P (substring ?N ?M ?S) |- _ ] => + solve [ rewrite <- (substring_split S M); auto + | rewrite <- (substring_split' S N M); auto ] + end. + Qed. + + Hint Resolve star_empty star_singleton star_app. + + Variable s : string. + + Lemma star_inv : forall s, + star P s + -> s = "" + \/ exists i, i < length s + /\ P (substring 0 (S i) s) + /\ star P (substring (S i) (length s - S i) s). + Hint Extern 1 (exists i : nat, _) => + match goal with + | [ H : P (String _ ?S) |- _ ] => exists (length S); crush + end. + + induction 1; [ + crush + | match goal with + | [ _ : P ?S |- _ ] => destruct S; crush + end + ]. + Qed. + + Lemma star_substring_inv : forall n, + n <= length s + -> star P (substring n (length s - n) s) + -> substring n (length s - n) s = "" + \/ exists l, l < length s - n + /\ P (substring n (S l) s) + /\ star P (substring (n + S l) (length s - (n + S l)) s). + Hint Rewrite plus_n_Sm' : cpdt. + + intros; + match goal with + | [ H : star _ _ |- _ ] => generalize (star_inv H); do 3 crush; eauto + end. + Qed. + + Section dec_star''. + Variable n : nat. + + Variable P' : string -> Prop. + Variable P'_dec : forall n' : nat, n' > n + -> {P' (substring n' (length s - n') s)} + + { ~P' (substring n' (length s - n') s)}. + + Definition dec_star'' (l : nat) + : {exists l', S l' <= l + /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)} + + {forall l', S l' <= l + -> ~P (substring n (S l') s) \/ ~P' (substring (n + S l') (length s - (n + S l')) s)}. + refine (fix F (l : nat) : {exists l', S l' <= l + /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)} + + {forall l', S l' <= l + -> ~P (substring n (S l') s) \/ ~P' (substring (n + S l') (length s - (n + S l')) s)} := + match l return {exists l', S l' <= l + /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)} + + {forall l', S l' <= l -> + ~P (substring n (S l') s) \/ ~P' (substring (n + S l') (length s - (n + S l')) s)} with + | O => _ + | S l' => + (P_dec (substring n (S l') s) && P'_dec (n' := n + S l') _) + || F l' + end); clear F; crush; eauto 7; + match goal with + | [ H : ?X <= S ?Y |- _ ] => destruct (eq_nat_dec X (S Y)); crush + end. + Defined. + End dec_star''. + + Definition dec_star' (n n' : nat) : length s - n' <= n + -> {star P (substring n' (length s - n') s)} + + {~star P (substring n' (length s - n') s)}. + About dec_star''. + + refine (fix F (n n' : nat) {struct n} : length s - n' <= n + -> {star P (substring n' (length s - n') s)} + + {~star P (substring n' (length s - n') s)} := + match n return length s - n' <= n + -> {star P (substring n' (length s - n') s)} + + {~star P (substring n' (length s - n') s)} with + | O => fun _ => Yes + | S n'' => fun _ => + le_gt_dec (length s) n' + || dec_star'' (n := n') (star P) (fun n0 _ => Reduce (F n'' n0 _)) (length s - n') + end); clear F; crush; eauto. + + apply star_substring_inv in H; crush; eauto. + + assert (n' >= length s); [ | omega]. + apply substring_suffix_emp with (length s - n'); crush. + + assert (S x <= length s - n'); [ omega | ]. + apply _1 in H1. + tauto. + Defined. + + Definition dec_star : {star P s} + { ~star P s}. + refine (match s with + | "" => Reduce (dec_star' (n := length s) 0 _) + | _ => Reduce (dec_star' (n := length s) 0 _) + end); crush. + Defined. +End dec_star. + Lemma app_cong : forall x1 y1 x2 y2, x1 = x2 -> y1 = y2 @@ -462,12 +700,15 @@ Hint Resolve app_cong. + + Definition matches P (r : regexp P) s : {P s} + { ~P s}. refine (fix F P (r : regexp P) s : {P s} + { ~P s} := match r with | Char ch => string_dec s (String ch "") | Concat _ _ r1 r2 => Reduce (split (F _ r1) (F _ r2) s) | Or _ _ r1 r2 => F _ r1 s || F _ r2 s + | Star _ r => dec_star _ _ _ end); crush; match goal with | [ H : _ |- _ ] => generalize (H _ _ (refl_equal _)) @@ -484,3 +725,9 @@ Eval simpl in matches a_b "a". Eval simpl in matches a_b "aa". Eval simpl in matches a_b "b". + +Example a_star := Star (Char "a"%char). +Eval simpl in matches a_star "". +Eval simpl in matches a_star "a". +Eval simpl in matches a_star "b". +Eval simpl in matches a_star "aa".