Mercurial > cpdt > repo
diff src/Intensional.v @ 258:4c9031b62cd0
Wf_wf
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Wed, 16 Dec 2009 16:21:29 -0500 |
parents | 108ec446fbaf |
children | 0c5fb678bfe2 |
line wrap: on
line diff
--- a/src/Intensional.v Wed Dec 16 15:54:50 2009 -0500 +++ b/src/Intensional.v Wed Dec 16 16:21:29 2009 -0500 @@ -8,7 +8,7 @@ *) (* begin hide *) -Require Import List. +Require Import Arith List. Require Import Axioms DepList Tactics. @@ -107,6 +107,8 @@ (forall v1 v2, exp_equiv (existT _ t1 (v1, v2) :: G) (f1 v1) (f2 v2)) -> exp_equiv G (Abs f1) (Abs f2). End exp_equiv. + + Definition Wf t (E : Exp t) := forall var1 var2, exp_equiv nil (E var1) (E var2). End Phoas. (* end hide *) @@ -200,5 +202,81 @@ Qed. End vars. +Theorem Phoasify_wf : forall t (e : DeBruijn.exp nil t), + Wf (Phoasify e). + unfold Wf, Phoasify; intros; + apply (phoasify_wf e (HNil (B := var1)) (HNil (B := var2))). +Qed. + (** * From PHOAS to De Bruijn *) + +Fixpoint lookup (G : list type) (n : nat) : option type := + match G with + | nil => None + | t :: G' => if eq_nat_dec n (length G') then Some t else lookup G' n + end. + +Infix "##" := lookup (left associativity, at level 1). + +Fixpoint wf (ts : list type) t (e : Phoas.exp (fun _ => nat) t) : Prop := + match e with + | Phoas.Var t n => ts ## n = Some t + | Phoas.Const _ => True + | Phoas.Plus e1 e2 => wf ts e1 /\ wf ts e2 + | Phoas.App _ _ e1 e2 => wf ts e1 /\ wf ts e2 + | Phoas.Abs t1 _ e1 => wf (t1 :: ts) (e1 (length ts)) + end. + +Fixpoint makeG (ts : list type) : list { t : type & nat * nat }%type := + match ts with + | nil => nil + | t :: ts' => existT _ t (length ts', length ts') :: makeG ts' + end. + +Opaque eq_nat_dec. +Hint Extern 1 (_ >= _) => omega. + +Lemma lookup_contra' : forall t ts n, + ts ## n = Some t + -> n >= length ts + -> False. + induction ts; crush; + match goal with + | [ _ : context[if ?E then _ else _] |- _ ] => destruct E; crush + end; eauto. +Qed. + +Lemma lookup_contra : forall t ts, + ts ## (length ts) = Some t + -> False. + intros; eapply lookup_contra'; eauto. +Qed. + +Hint Resolve lookup_contra. + +Lemma lookup_In : forall t v1 v2 ts, + In (existT (fun _ : type => (nat * nat)%type) t (v1, v2)) (makeG ts) + -> ts ## v1 = Some t. + induction ts; crush; + match goal with + | [ |- context[if ?E then _ else _] ] => destruct E; crush + end; elimtype False; eauto. +Qed. + +Hint Resolve lookup_In. + +Hint Extern 1 (_ :: _ = makeG (_ :: _)) => reflexivity. + +Lemma Wf_wf' : forall G t e1 (e2 : Phoas.exp (fun _ => nat) t), + exp_equiv G e1 e2 + -> forall ts, G = makeG ts + -> wf ts e1. + induction 1; crush; eauto. +Qed. + +Lemma Wf_wf : forall t (E : Exp t), + Wf E + -> wf nil (E (fun _ => nat)). + intros; eapply Wf_wf'; eauto. +Qed.