Mercurial > cpdt > repo
diff src/Large.v @ 235:52b9e43be069
Uncommented functor example
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Fri, 04 Dec 2009 13:44:05 -0500 |
parents | |
children | c8f49f07cead |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Large.v Fri Dec 04 13:44:05 2009 -0500 @@ -0,0 +1,74 @@ +(* Copyright (c) 2009, Adam Chlipala + * + * This work is licensed under a + * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 + * Unported License. + * The license text is available at: + * http://creativecommons.org/licenses/by-nc-nd/3.0/ + *) + +(* begin hide *) +Require Import Tactics. + +Set Implicit Arguments. +(* end hide *) + + +(** %\chapter{Proving in the Large}% *) + + +(** * Modules *) + +Module Type GROUP. + Parameter G : Set. + Parameter f : G -> G -> G. + Parameter e : G. + Parameter i : G -> G. + + Axiom assoc : forall a b c, f (f a b) c = f a (f b c). + Axiom ident : forall a, f e a = a. + Axiom inverse : forall a, f (i a) a = e. +End GROUP. + +Module Type GROUP_THEOREMS. + Declare Module M : GROUP. + + Axiom ident' : forall a, M.f a M.e = a. + + Axiom inverse' : forall a, M.f a (M.i a) = M.e. + + Axiom unique_ident : forall e', (forall a, M.f e' a = a) -> e' = M.e. +End GROUP_THEOREMS. + +Module Group (M : GROUP) : GROUP_THEOREMS. + Module M := M. + + Import M. + + Theorem inverse' : forall a, f a (i a) = e. + intro. + rewrite <- (ident (f a (i a))). + rewrite <- (inverse (f a (i a))) at 1. + rewrite assoc. + rewrite assoc. + rewrite <- (assoc (i a) a (i a)). + rewrite inverse. + rewrite ident. + apply inverse. + Qed. + + Theorem ident' : forall a, f a e = a. + intro. + rewrite <- (inverse a). + rewrite <- assoc. + rewrite inverse'. + apply ident. + Qed. + + Theorem unique_ident : forall e', (forall a, M.f e' a = a) -> e' = M.e. + intros. + rewrite <- (H e). + symmetry. + apply ident'. + Qed. +End Group.