diff src/InductiveTypes.v @ 417:539ed97750bb

Update for Coq trunk version intended for final 8.4 release
author Adam Chlipala <adam@chlipala.net>
date Tue, 17 Jul 2012 16:37:58 -0400
parents d27c0be2c3d4
children 686cf945dd02
line wrap: on
line diff
--- a/src/InductiveTypes.v	Wed Jun 13 11:14:00 2012 -0400
+++ b/src/InductiveTypes.v	Tue Jul 17 16:37:58 2012 -0400
@@ -342,7 +342,7 @@
 
 (** The [injection] tactic refers to a premise by number, adding new equalities between the corresponding arguments of equated terms that are formed with the same constructor.  We end up needing to prove [n = m -> n = m], so it is unsurprising that a tactic named [trivial] is able to finish the proof.
 
-There is also a very useful tactic called %\index{tactics!congruence}%[congruence] that can prove this theorem immediately.  [congruence] generalizes [discriminate] and [injection], and it also adds reasoning about the general properties of equality, such as that a function returns equal results on equal arguments.  That is, [congruence] is a%\index{theory of equality and uninterpreted functions}% _complete decision procedure for the theory of equality and uninterpreted functions_, plus some smarts about inductive types.
+There is also a very useful tactic called %\index{tactics!congruence}%[congruence] that can prove this theorem immediately.  The [congruence] tactic generalizes [discriminate] and [injection], and it also adds reasoning about the general properties of equality, such as that a function returns equal results on equal arguments.  That is, [congruence] is a%\index{theory of equality and uninterpreted functions}% _complete decision procedure for the theory of equality and uninterpreted functions_, plus some smarts about inductive types.
 
 %\medskip%