Mercurial > cpdt > repo
diff src/Hoas.v @ 160:56e205f966cc
Interderivability of big and small step
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Mon, 03 Nov 2008 14:47:46 -0500 |
parents | 8b2b652ab0ee |
children | df02642f93b8 |
line wrap: on
line diff
--- a/src/Hoas.v Mon Nov 03 09:50:22 2008 -0500 +++ b/src/Hoas.v Mon Nov 03 14:47:46 2008 -0500 @@ -10,7 +10,7 @@ (* begin hide *) Require Import Arith Eqdep String List. -Require Import Tactics. +Require Import Axioms DepList Tactics. Set Implicit Arguments. (* end hide *) @@ -86,7 +86,8 @@ Inductive Step : forall t, Exp t -> Exp t -> Prop := | Beta : forall dom ran (B : Exp1 dom ran) (X : Exp dom), - App (Abs B) X ==> Subst X B + Val X + -> App (Abs B) X ==> Subst X B | AppCong1 : forall dom ran (F : Exp (dom --> ran)) (X : Exp dom) F', F ==> F' -> App F X ==> App F' X @@ -101,7 +102,8 @@ E1 ==> E1' -> Plus E1 E2 ==> Plus E1' E2 | PlusCong2 : forall E1 E2 E2', - E2 ==> E2' + Val E1 + -> E2 ==> E2' -> Plus E1 E2 ==> Plus E1 E2' where "E1 ==> E2" := (Step E1 E2). @@ -124,12 +126,43 @@ Axiom closed : forall t (E : Exp t), Closed E. -Ltac my_crush := +Ltac my_crush' := crush; repeat (match goal with | [ H : _ |- _ ] => generalize (inj_pairT2 _ _ _ _ _ H); clear H end; crush). +Ltac my_crush := + my_crush'; + try (match goal with + | [ H : ?F = ?G |- _ ] => + match goal with + | [ _ : F (fun _ => unit) = G (fun _ => unit) |- _ ] => fail 1 + | _ => + let H' := fresh "H'" in + assert (H' : F (fun _ => unit) = G (fun _ => unit)); [ congruence + | discriminate || injection H' ]; + clear H' + end + end; my_crush'); + repeat match goal with + | [ H : ?F = ?G, H2 : ?X (fun _ => unit) = ?Y (fun _ => unit) |- _ ] => + match X with + | Y => fail 1 + | _ => + assert (X = Y); [ unfold Exp; apply ext_eq; intro var; + let H' := fresh "H'" in + assert (H' : F var = G var); [ congruence + | match type of H' with + | ?X = ?Y => + let X := eval hnf in X in + let Y := eval hnf in Y in + change (X = Y) in H' + end; injection H'; clear H'; my_crush' ] + | my_crush'; clear H2 ] + end + end. + Lemma progress' : forall t (E : Exp t), Closed E -> Val E \/ exists E', E ==> E'. @@ -144,3 +177,194 @@ intros; apply progress'; apply closed. Qed. + +(** * Big-Step Semantics *) + +Reserved Notation "E1 ===> E2" (no associativity, at level 90). + +Inductive BigStep : forall t, Exp t -> Exp t -> Prop := +| SConst : forall n, + Const n ===> Const n +| SPlus : forall E1 E2 n1 n2, + E1 ===> Const n1 + -> E2 ===> Const n2 + -> Plus E1 E2 ===> Const (n1 + n2) + +| SApp : forall dom ran (E1 : Exp (dom --> ran)) E2 B V2 V, + E1 ===> Abs B + -> E2 ===> V2 + -> Subst V2 B ===> V + -> App E1 E2 ===> V +| SAbs : forall dom ran (B : Exp1 dom ran), + Abs B ===> Abs B + + where "E1 ===> E2" := (BigStep E1 E2). + +Hint Constructors BigStep. + +Reserved Notation "E1 ==>* E2" (no associativity, at level 90). + +Inductive MultiStep : forall t, Exp t -> Exp t -> Prop := +| Done : forall t (E : Exp t), E ==>* E +| OneStep : forall t (E E' E'' : Exp t), + E ==> E' + -> E' ==>* E'' + -> E ==>* E'' + + where "E1 ==>* E2" := (MultiStep E1 E2). + +Hint Constructors MultiStep. + +Theorem MultiStep_trans : forall t (E1 E2 E3 : Exp t), + E1 ==>* E2 + -> E2 ==>* E3 + -> E1 ==>* E3. + induction 1; eauto. +Qed. + +Hint Resolve MultiStep_trans. + +Theorem Big_Val : forall t (E V : Exp t), + E ===> V + -> Val V. + induction 1; crush. +Qed. + +Theorem Val_Big : forall t (V : Exp t), + Val V + -> V ===> V. + destruct 1; crush. +Qed. + +Hint Resolve Big_Val Val_Big. + +Ltac uiper := + repeat match goal with + | [ pf : _ = _ |- _ ] => + generalize pf; subst; intro; + rewrite (UIP_refl _ _ pf); simpl; + repeat match goal with + | [ H : forall pf : ?X = ?X, _ |- _ ] => + generalize (H (refl_equal _)); clear H; intro H + end + end. + +Lemma Multi_PlusCong1' : forall E2 t (pf : t = Nat) (E1 E1' : Exp t), + E1 ==>* E1' + -> Plus (match pf with refl_equal => E1 end) E2 + ==>* Plus (match pf with refl_equal => E1' end) E2. + induction 1; crush; uiper; eauto. +Qed. + +Lemma Multi_PlusCong1 : forall E1 E2 E1', + E1 ==>* E1' + -> Plus E1 E2 ==>* Plus E1' E2. + intros; generalize (Multi_PlusCong1' E2 (refl_equal _)); auto. +Qed. + +Lemma Multi_PlusCong2' : forall E1 (_ : Val E1) t (pf : t = Nat) (E2 E2' : Exp t), + E2 ==>* E2' + -> Plus E1 (match pf with refl_equal => E2 end) + ==>* Plus E1 (match pf with refl_equal => E2' end). + induction 2; crush; uiper; eauto. +Qed. + +Lemma Multi_PlusCong2 : forall E1 E2 E2', + Val E1 + -> E2 ==>* E2' + -> Plus E1 E2 ==>* Plus E1 E2'. + intros E1 E2 E2' H; generalize (Multi_PlusCong2' H (refl_equal _)); auto. +Qed. + +Lemma Multi_AppCong1' : forall dom ran E2 t (pf : t = dom --> ran) (E1 E1' : Exp t), + E1 ==>* E1' + -> App (match pf in _ = t' return Exp t' with refl_equal => E1 end) E2 + ==>* App (match pf in _ = t' return Exp t' with refl_equal => E1' end) E2. + induction 1; crush; uiper; eauto. +Qed. + +Lemma Multi_AppCong1 : forall dom ran (E1 : Exp (dom --> ran)) E2 E1', + E1 ==>* E1' + -> App E1 E2 ==>* App E1' E2. + intros; generalize (Multi_AppCong1' (ran := ran) E2 (refl_equal _)); auto. +Qed. + +Lemma Multi_AppCong2 : forall dom ran (E1 : Exp (dom --> ran)) E2 E2', + Val E1 + -> E2 ==>* E2' + -> App E1 E2 ==>* App E1 E2'. + induction 2; crush; eauto. +Qed. + +Hint Resolve Multi_PlusCong1 Multi_PlusCong2 Multi_AppCong1 Multi_AppCong2. + +Theorem Big_Multi : forall t (E V : Exp t), + E ===> V + -> E ==>* V. + induction 1; crush; eauto 8. +Qed. + +Lemma Big_Val' : forall t (V1 V2 : Exp t), + Val V2 + -> V1 = V2 + -> V1 ===> V2. + crush. +Qed. + +Hint Resolve Big_Val'. + +Lemma Multi_Big' : forall t (E E' : Exp t), + E ==> E' + -> forall E'', E' ===> E'' + -> E ===> E''. + induction 1; crush; eauto; + match goal with + | [ H : _ ===> _ |- _ ] => inversion H; my_crush; eauto + end. +Qed. + +Hint Resolve Multi_Big'. + +Theorem Multi_Big : forall t (E V : Exp t), + E ==>* V + -> Val V + -> E ===> V. + induction 1; crush; eauto. +Qed. + + +(** * Constant folding *) + +Section cfold. + Variable var : type -> Type. + + Fixpoint cfold t (e : exp var t) {struct e} : exp var t := + match e in exp _ t return exp _ t with + | Const' n => Const' n + | Plus' e1 e2 => + let e1' := cfold e1 in + let e2' := cfold e2 in + match e1', e2' with + | Const' n1, Const' n2 => Const' (n1 + n2) + | _, _ => Plus' e1' e2' + end + + | Var _ x => Var x + | App' _ _ e1 e2 => App' (cfold e1) (cfold e2) + | Abs' _ _ e' => Abs' (fun x => cfold (e' x)) + end. +End cfold. + +Definition Cfold t (E : Exp t) : Exp t := fun _ => cfold (E _). + + +Definition ExpN (G : list type) (t : type) := forall var, hlist var G -> exp var t. + +Definition ConstN G (n : nat) : ExpN G Nat := + fun _ _ => Const' n. +Definition PlusN G (E1 E2 : ExpN G Nat) : ExpN G Nat := + fun _ s => Plus' (E1 _ s) (E2 _ s). +Definition AppN G dom ran (F : ExpN G (dom --> ran)) (X : ExpN G dom) : ExpN G ran := + fun _ s => App' (F _ s) (X _ s). +Definition AbsN G dom ran (B : ExpN (dom :: G) ran) : ExpN G (dom --> ran) := + fun _ s => Abs' (fun x => B _ (x ::: s)). \ No newline at end of file