Mercurial > cpdt > repo
diff src/MoreDep.v @ 95:7804f9d5249f
Correctness of insertion
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Tue, 07 Oct 2008 21:49:35 -0400 |
parents | affdf00759d8 |
children | b78a55b30f4a |
line wrap: on
line diff
--- a/src/MoreDep.v Tue Oct 07 20:15:12 2008 -0400 +++ b/src/MoreDep.v Tue Oct 07 21:49:35 2008 -0400 @@ -353,6 +353,48 @@ | RedNode : forall n, rbtree Black n -> nat-> rbtree Black n -> rbtree Red n | BlackNode : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rbtree Black (S n). +Require Import Max Min. + +Section depth. + Variable f : nat -> nat -> nat. + + Fixpoint depth c n (t : rbtree c n) {struct t} : nat := + match t with + | Leaf => 0 + | RedNode _ t1 _ t2 => S (f (depth t1) (depth t2)) + | BlackNode _ _ _ t1 _ t2 => S (f (depth t1) (depth t2)) + end. +End depth. + +Theorem depth_min : forall c n (t : rbtree c n), depth min t >= n. + induction t; crush; + match goal with + | [ |- context[min ?X ?Y] ] => destruct (min_dec X Y) + end; crush. +Qed. + +Lemma depth_max' : forall c n (t : rbtree c n), match c with + | Red => depth max t <= 2 * n + 1 + | Black => depth max t <= 2 * n + end. + induction t; crush; + match goal with + | [ |- context[max ?X ?Y] ] => destruct (max_dec X Y) + end; crush. + + destruct c1; crush. + destruct c2; crush. +Qed. + +Theorem depth_max : forall c n (t : rbtree c n), depth max t <= 2 * n + 1. + intros; generalize (depth_max' t); destruct c; crush. +Qed. + +Theorem balanced : forall c n (t : rbtree c n), 2 * depth min t + 1 >= depth max t. + intros; generalize (depth_min t); generalize (depth_max t); crush. +Qed. + + Inductive rtree : nat -> Set := | RedNode' : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rtree n. @@ -366,7 +408,7 @@ | t1' => fun t2 => match t2 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with | RedNode _ b x c => fun a d => {<RedNode (BlackNode a y b) x (BlackNode c data d)>} - | b => fun a t => {<BlackNode a data b>} + | b => fun a t => {<BlackNode (RedNode a y b) data t>} end t1' end t2 end. @@ -379,11 +421,27 @@ | t1' => fun t2 => match t2 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with | RedNode _ c z' d => fun b a => {<RedNode (BlackNode a data b) z (BlackNode c z' d)>} - | b => fun t a => {<BlackNode a data b>} + | b => fun a t => {<BlackNode t data (RedNode a z b)>} end t1' end t2 end. +Section present. + Variable x : nat. + + Fixpoint present c n (t : rbtree c n) {struct t} : Prop := + match t with + | Leaf => False + | RedNode _ a y b => present a \/ x = y \/ present b + | BlackNode _ _ _ a y b => present a \/ x = y \/ present b + end. + + Definition rpresent n (t : rtree n) : Prop := + match t with + | RedNode' _ _ _ a y b => present a \/ x = y \/ present b + end. +End present. + Section insert. Variable x : nat. @@ -434,77 +492,110 @@ Definition insert c n (t : rbtree c n) : insertResult c n := makeBlack (ins t). - Fixpoint present c n (t : rbtree c n) {struct t} : bool := - match t with - | Leaf => false - | RedNode _ a y b => - if eq_nat_dec x y - then true - else if le_lt_dec x y - then present a - else present b - | BlackNode _ _ _ a y b => - if eq_nat_dec x y - then true - else if le_lt_dec x y - then present a - else present b - end. + Record rbtree' : Set := Rbtree' { + rtC : color; + rtN : nat; + rtT : rbtree rtC rtN + }. - Definition rpresent n (t : rtree n) : bool := - match t with - | RedNode' _ _ _ a y b => - if eq_nat_dec x y - then true - else if le_lt_dec x y - then present a - else present b - end. + Section present. + Variable z : nat. + + Lemma present_balance1 : forall n (a : rtree n) (y : nat) c2 (b : rbtree c2 n) , + present z (projT2 (balance1 a y b)) + <-> rpresent z a \/ z = y \/ present z b. + destruct a; crush; + repeat match goal with + | [ H : context[match ?T with + | Leaf => _ + | RedNode _ _ _ _ => _ + | BlackNode _ _ _ _ _ _ => _ + end] |- _ ] => pose T; dep_destruct T; crush + | [ |- context[match ?T with + | Leaf => _ + | RedNode _ _ _ _ => _ + | BlackNode _ _ _ _ _ _ => _ + end] ] => pose T; dep_destruct T; crush + end. + Qed. + + Lemma present_balance2 : forall n (a : rtree n) (y : nat) c2 (b : rbtree c2 n) , + present z (projT2 (balance2 a y b)) + <-> rpresent z a \/ z = y \/ present z b. + destruct a; crush; + repeat match goal with + | [ H : context[match ?T with + | Leaf => _ + | RedNode _ _ _ _ => _ + | BlackNode _ _ _ _ _ _ => _ + end] |- _ ] => pose T; dep_destruct T; crush + | [ |- context[match ?T with + | Leaf => _ + | RedNode _ _ _ _ => _ + | BlackNode _ _ _ _ _ _ => _ + end] ] => pose T; dep_destruct T; crush + end. + Qed. + + Definition present_insResult c n := + match c return (rbtree c n -> insResult c n -> Prop) with + | Red => fun t r => rpresent z r <-> z = x \/ present z t + | Black => fun t r => present z (projT2 r) <-> z = x \/ present z t + end. + + Theorem present_ins : forall c n (t : rbtree c n), + present_insResult t (ins t). + induction t; crush; + repeat (match goal with + | [ H : context[if ?E then _ else _] |- _ ] => destruct E + | [ |- context[if ?E then _ else _] ] => destruct E + | [ H : context[match ?C with Red => _ | Black => _ end] |- _ ] => destruct C + end; crush); + try match goal with + | [ H : context[balance1 ?A ?B ?C] |- _ ] => + generalize (present_balance1 A B C) + end; + try match goal with + | [ H : context[balance2 ?A ?B ?C] |- _ ] => + generalize (present_balance2 A B C) + end; + try match goal with + | [ |- context[balance1 ?A ?B ?C] ] => + generalize (present_balance1 A B C) + end; + try match goal with + | [ |- context[balance2 ?A ?B ?C] ] => + generalize (present_balance2 A B C) + end; + intuition; + match goal with + | [ z : nat, x : nat |- _ ] => + match goal with + | [ H : z = x |- _ ] => rewrite H in *; clear H + end + end; + tauto. + Qed. + + Theorem present_insert_Red : forall n (t : rbtree Red n), + present z (insert t) + <-> (z = x \/ present z t). + unfold insert; inversion t; + generalize (present_ins t); simpl; + dep_destruct (ins t); tauto. + Qed. + + Theorem present_insert_Black : forall n (t : rbtree Black n), + present z (projT2 (insert t)) + <-> (z = x \/ present z t). + unfold insert; inversion t; + generalize (present_ins t); simpl; + dep_destruct (ins t); tauto. + Qed. + End present. End insert. -Require Import Max Min. - -Section depth. - Variable f : nat -> nat -> nat. - - Fixpoint depth c n (t : rbtree c n) {struct t} : nat := - match t with - | Leaf => 0 - | RedNode _ t1 _ t2 => S (f (depth t1) (depth t2)) - | BlackNode _ _ _ t1 _ t2 => S (f (depth t1) (depth t2)) - end. -End depth. - -Theorem depth_min : forall c n (t : rbtree c n), depth min t >= n. - induction t; crush; - match goal with - | [ |- context[min ?X ?Y] ] => destruct (min_dec X Y) - end; crush. -Qed. - -Lemma depth_max' : forall c n (t : rbtree c n), match c with - | Red => depth max t <= 2 * n + 1 - | Black => depth max t <= 2 * n - end. - induction t; crush; - match goal with - | [ |- context[max ?X ?Y] ] => destruct (max_dec X Y) - end; crush. - - destruct c1; crush. - destruct c2; crush. -Qed. - -Theorem depth_max : forall c n (t : rbtree c n), depth max t <= 2 * n + 1. - intros; generalize (depth_max' t); destruct c; crush. -Qed. - -Theorem balanced : forall c n (t : rbtree c n), 2 * depth min t + 1 >= depth max t. - intros; generalize (depth_min t); generalize (depth_max t); crush. -Qed. - - (** * A Certified Regular Expression Matcher *) (** Another interesting example is regular expressions with dependent types that express which predicates over strings particular regexps implement. We can then assign a dependent type to a regular expression matching function, guaranteeing that it always decides the string property that we expect it to decide.