Mercurial > cpdt > repo
diff src/Firstorder.v @ 152:8157e8e28e2e
Proved concrete substitution
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Sun, 02 Nov 2008 12:16:55 -0500 |
parents | |
children | 8c19768f1a1a |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Firstorder.v Sun Nov 02 12:16:55 2008 -0500 @@ -0,0 +1,299 @@ +(* Copyright (c) 2008, Adam Chlipala + * + * This work is licensed under a + * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 + * Unported License. + * The license text is available at: + * http://creativecommons.org/licenses/by-nc-nd/3.0/ + *) + +(* begin hide *) +Require Import List String. + +Require Import Tactics. + +Set Implicit Arguments. +(* end hide *) + + +(** %\section{Formalizing Programming Languages and Compilers} + + \chapter{First-Order Variable Representations}% *) + +(** TODO: Prose for this chapter *) + + +(** * Concrete Binding *) + +Module Concrete. + + Definition var := string. + Definition var_eq := string_dec. + + Inductive exp : Set := + | Const : bool -> exp + | Var : var -> exp + | App : exp -> exp -> exp + | Abs : var -> exp -> exp. + + Inductive type : Set := + | Bool : type + | Arrow : type -> type -> type. + + Infix "-->" := Arrow (right associativity, at level 60). + + Definition ctx := list (var * type). + + Reserved Notation "G |-v x : t" (no associativity, at level 90, x at next level). + + Inductive lookup : ctx -> var -> type -> Prop := + | First : forall x t G, + (x, t) :: G |-v x : t + | Next : forall x t x' t' G, + x <> x' + -> G |-v x : t + -> (x', t') :: G |-v x : t + + where "G |-v x : t" := (lookup G x t). + + Hint Constructors lookup. + + Reserved Notation "G |-e e : t" (no associativity, at level 90, e at next level). + + Inductive hasType : ctx -> exp -> type -> Prop := + | TConst : forall G b, + G |-e Const b : Bool + | TVar : forall G v t, + G |-v v : t + -> G |-e Var v : t + | TApp : forall G e1 e2 dom ran, + G |-e e1 : dom --> ran + -> G |-e e2 : dom + -> G |-e App e1 e2 : ran + | TAbs : forall G x e' dom ran, + (x, dom) :: G |-e e' : ran + -> G |-e Abs x e' : dom --> ran + + where "G |-e e : t" := (hasType G e t). + + Hint Constructors hasType. + + Notation "x ## G" := (forall t' : type, In (x, t') G -> False) (no associativity, at level 90). + + Notation "G' # G" := (forall (x : var) (t : type), In (x, t) G -> x ## G') (no associativity, at level 90). + + Lemma lookup_In : forall G x t, + G |-v x : t + -> In (x, t) G. + induction 1; crush. + Qed. + + Hint Resolve lookup_In. + + Lemma disjoint_invert1 : forall G x t G' x' t', + G |-v x : t + -> (x', t') :: G' # G + -> x <> x'. + crush; eauto. + Qed. + + Lemma disjoint_invert2 : forall G' G p, + p :: G' # G + -> G' # G. + firstorder. + Qed. + + Hint Resolve disjoint_invert1 disjoint_invert2. + Hint Extern 1 (_ <> _) => (intro; subst). + + Lemma weaken_lookup' : forall G x t, + G |-v x : t + -> forall G', G' # G + -> G' ++ G |-v x : t. + induction G' as [ | [x' t'] tl ]; crush; eauto 9. + Qed. + + Lemma weaken_lookup : forall G2 x t G', + G' # G2 + -> forall G1, G1 ++ G2 |-v x : t + -> G1 ++ G' ++ G2 |-v x : t. + Hint Resolve weaken_lookup'. + + induction G1 as [ | [x' t'] tl ]; crush; + match goal with + | [ H : _ |-v _ : _ |- _ ] => inversion H; crush + end. + Qed. + + Hint Resolve weaken_lookup. + + Lemma hasType_push : forall x t G1 G2 e t', + ((x, t) :: G1) ++ G2 |-e e : t' + -> (x, t) :: G1 ++ G2 |-e e : t'. + trivial. + Qed. + + Hint Resolve hasType_push. + + Theorem weaken_hasType' : forall G' G e t, + G |-e e : t + -> forall G1 G2, G = G1 ++ G2 + -> G' # G2 + -> G1 ++ G' ++ G2 |-e e : t. + induction 1; crush; eauto. + Qed. + + Theorem weaken_hasType : forall G e t, + G |-e e : t + -> forall G', G' # G + -> G' ++ G |-e e : t. + intros; change (G' ++ G) with (nil ++ G' ++ G); + eapply weaken_hasType'; eauto. + Qed. + + Theorem weaken_hasType_closed : forall e t, + nil |-e e : t + -> forall G, G |-e e : t. + intros; rewrite (app_nil_end G); apply weaken_hasType; auto. + Qed. + + Theorem weaken_hasType1 : forall G e t, + G |-e e : t + -> forall x t', x ## G + -> (x, t') :: G |-e e : t. + intros; change ((x, t') :: G) with (((x, t') :: nil) ++ G); + apply weaken_hasType; crush; + match goal with + | [ H : (_, _) = (_, _) |- _ ] => injection H + end; crush; eauto. + Qed. + + Hint Resolve weaken_hasType_closed weaken_hasType1. + + Section subst. + Variable x : var. + Variable e1 : exp. + + Fixpoint subst (e2 : exp) : exp := + match e2 with + | Const b => Const b + | Var x' => + if var_eq x' x + then e1 + else Var x' + | App e1 e2 => App (subst e1) (subst e2) + | Abs x' e' => + Abs x' (if var_eq x' x + then e' + else subst e') + end. + + Variable xt : type. + Hypothesis Ht' : nil |-e e1 : xt. + + Lemma subst_lookup' : forall G2 x' t, + x' ## G2 + -> (x, xt) :: G2 |-v x' : t + -> t = xt. + inversion 2; crush; elimtype False; eauto. + Qed. + + Lemma subst_lookup : forall x' t G2, + x <> x' + -> forall G1, G1 ++ (x, xt) :: G2 |-v x' : t + -> G1 ++ G2 |-v x' : t. + induction G1 as [ | [x'' t'] tl ]; crush; + match goal with + | [ H : _ |-v _ : _ |- _ ] => inversion H + end; crush. + Qed. + + Hint Resolve subst_lookup. + + Lemma subst_lookup'' : forall G2 x' t, + x' ## G2 + -> forall G1, x' ## G1 + -> G1 ++ (x, xt) :: G2 |-v x' : t + -> t = xt. + Hint Resolve subst_lookup'. + + induction G1 as [ | [x'' t'] tl ]; crush; eauto; + match goal with + | [ H : _ |-v _ : _ |- _ ] => inversion H + end; crush; elimtype False; eauto. + Qed. + + Implicit Arguments subst_lookup'' [G2 x' t G1]. + + Lemma disjoint_cons : forall x x' t (G : ctx), + x ## G + -> x' <> x + -> x ## (x', t) :: G. + firstorder; + match goal with + | [ H : (_, _) = (_, _) |- _ ] => injection H + end; crush. + Qed. + + Hint Resolve disjoint_cons. + + Lemma shadow_lookup : forall G2 v t t' G1, + G1 |-v x : t' + -> G1 ++ (x, xt) :: G2 |-v v : t + -> G1 ++ G2 |-v v : t. + induction G1 as [ | [x'' t''] tl ]; crush; + match goal with + | [ H : nil |-v _ : _ |- _ ] => inversion H + | [ H1 : _ |-v _ : _, H2 : _ |-v _ : _ |- _ ] => + inversion H1; crush; inversion H2; crush + end. + Qed. + + Lemma shadow_hasType' : forall G2 G e t, + G |-e e : t + -> forall G1, G = G1 ++ (x, xt) :: G2 + -> forall t'', G1 |-v x : t'' + -> G1 ++ G2 |-e e : t. + Hint Resolve shadow_lookup. + + induction 1; crush; eauto; + match goal with + | [ H : (?x0, _) :: _ ++ (x, _) :: _ |-e _ : _ |- _ ] => + destruct (var_eq x0 x); subst; eauto + end. + Qed. + + Lemma shadow_hasType : forall G1 G2 e t t'', + G1 ++ (x, xt) :: G2 |-e e : t + -> G1 |-v x : t'' + -> G1 ++ G2 |-e e : t. + intros; eapply shadow_hasType'; eauto. + Qed. + + Hint Resolve shadow_hasType. + + Theorem subst_hasType : forall G e2 t, + G |-e e2 : t + -> forall G1 G2, G = G1 ++ (x, xt) :: G2 + -> x ## G1 + -> x ## G2 + -> G1 ++ G2 |-e subst e2 : t. + induction 1; crush; + try match goal with + | [ |- context[if ?E then _ else _] ] => destruct E + end; crush; eauto 6; + match goal with + | [ H1 : x ## _, H2 : x ## _, H3 : _ |-v x : _ |- _ ] => + rewrite (subst_lookup'' H2 H1 H3) + end; crush. + Qed. + + Theorem subst_hasType_closed : forall e2 t, + (x, xt) :: nil |-e e2 : t + -> nil |-e subst e2 : t. + intros; change (nil ++ nil |-e subst e2 : t); + eapply subst_hasType; eauto. + Qed. + End subst. + +End Concrete.