Mercurial > cpdt > repo
diff src/Subset.v @ 72:839d159cac5d
Code for type-checking example
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Fri, 03 Oct 2008 12:44:56 -0400 |
parents | db967eff40d7 |
children | 535e1cd17d9a |
line wrap: on
line diff
--- a/src/Subset.v Fri Oct 03 12:02:44 2008 -0400 +++ b/src/Subset.v Fri Oct 03 12:44:56 2008 -0400 @@ -367,3 +367,128 @@ | O -> false | S n1 -> eq_nat_dec' n0 n1) </pre># *) + +(** %\smallskip% + +We can build "smart" versions of the usual boolean operators and put them to good use in certified programming. For instance, here is a [sumbool] version of boolean "or." *) + +Notation "x || y" := (if x then Yes else Reduce y) (at level 50). + +(** Let us use it for building a function that decides list membership. We need to assume the existence of an equality decision procedure for the type of list elements. *) + +Section In_dec. + Variable A : Set. + Variable A_eq_dec : forall x y : A, {x = y} + {x <> y}. + + (** The final function is easy to write using the techniques we have developed so far. *) + + Definition In_dec : forall (x : A) (ls : list A), {In x ls} + { ~In x ls}. + refine (fix f (x : A) (ls : list A) {struct ls} + : {In x ls} + { ~In x ls} := + match ls return {In x ls} + { ~In x ls} with + | nil => No + | x' :: ls' => A_eq_dec x x' || f x ls' + end); crush. + Qed. +End In_dec. + +(** [In_dec] has a reasonable extraction to OCaml. *) + +Extraction In_dec. + +(** %\begin{verbatim} +(** val in_dec : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 list -> bool **) + +let rec in_dec a_eq_dec x = function + | Nil -> false + | Cons (x', ls') -> + (match a_eq_dec x x' with + | true -> true + | false -> in_dec a_eq_dec x ls') +\end{verbatim}% + +#<pre> +(** val in_dec : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 list -> bool **) + +let rec in_dec a_eq_dec x = function + | Nil -> false + | Cons (x', ls') -> + (match a_eq_dec x x' with + | true -> true + | false -> in_dec a_eq_dec x ls') +</pre># *) + + +(** * Partial Subset Types *) + +Inductive maybe (A : Type) (P : A -> Prop) : Set := +| Unknown : maybe P +| Found : forall x : A, P x -> maybe P. + +Notation "{{ x | P }}" := (maybe (fun x => P)). +Notation "??" := (Unknown _). +Notation "[[ x ]]" := (Found _ x _). + +Notation "x <- e1 ; e2" := (match e1 with + | Unknown => ?? + | Found x _ => e2 + end) +(right associativity, at level 60). + +Notation "e1 ;; e2" := (if e1 then e2 else ??) + (right associativity, at level 60). + + +(** * A Type-Checking Example *) + +Inductive exp : Set := +| Nat : nat -> exp +| Plus : exp -> exp -> exp +| Bool : bool -> exp +| And : exp -> exp -> exp. + +Inductive type : Set := TNat | TBool. + +Inductive hasType : exp -> type -> Prop := +| HtNat : forall n, + hasType (Nat n) TNat +| HtPlus : forall e1 e2, + hasType e1 TNat + -> hasType e2 TNat + -> hasType (Plus e1 e2) TNat +| HtBool : forall b, + hasType (Bool b) TBool +| HtAnd : forall e1 e2, + hasType e1 TBool + -> hasType e2 TBool + -> hasType (And e1 e2) TBool. + +Definition eq_type_dec : forall (t1 t2 : type), {t1 = t2} + {t1 <> t2}. + decide equality. +Defined. + +Definition typeCheck (e : exp) : {{t | hasType e t}}. + Hint Constructors hasType. + + refine (fix F (e : exp) : {{t | hasType e t}} := + match e return {{t | hasType e t}} with + | Nat _ => [[TNat]] + | Plus e1 e2 => + t1 <- F e1; + t2 <- F e2; + eq_type_dec t1 TNat;; + eq_type_dec t2 TNat;; + [[TNat]] + | Bool _ => [[TBool]] + | And e1 e2 => + t1 <- F e1; + t2 <- F e2; + eq_type_dec t1 TBool;; + eq_type_dec t2 TBool;; + [[TBool]] + end); crush. +Defined. + +Eval simpl in typeCheck (Nat 0). +Eval simpl in typeCheck (Plus (Nat 1) (Nat 2)). +Eval simpl in typeCheck (Plus (Nat 1) (Bool false)).