Mercurial > cpdt > repo
diff book/src/StackMachine.v @ 3:9fea5674367c
Pretty LaTeX generation
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Fri, 29 Aug 2008 14:24:38 -0400 |
parents | book/StackMachine.v@b3f7de74d38f |
children | f913d32a49e4 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/book/src/StackMachine.v Fri Aug 29 14:24:38 2008 -0400 @@ -0,0 +1,121 @@ +(* Copyright (c) 2008, Adam Chlipala + * + * This work is licensed under a + * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 + * Unported License. + * The license text is available at: + * http://creativecommons.org/licenses/by-nc-nd/3.0/ + *) + +(* begin hide *) +Require Import List. + +Require Import Tactics. +(* end hide *) + + +(** * Arithmetic expressions over natural numbers *) + +(* begin hide *) +Module Nat. +(* end hide *) + (** ** Source language *) + + Inductive binop : Set := Plus | Times. + + Inductive exp : Set := + | Const : nat -> exp + | Binop : binop -> exp -> exp -> exp. + + Definition binopDenote (b : binop) : nat -> nat -> nat := + match b with + | Plus => plus + | Times => mult + end. + + Fixpoint expDenote (e : exp) : nat := + match e with + | Const n => n + | Binop b e1 e2 => (binopDenote b) (expDenote e1) (expDenote e2) + end. + + + (** ** Target language *) + + Inductive instr : Set := + | IConst : nat -> instr + | IBinop : binop -> instr. + + Definition prog := list instr. + Definition stack := list nat. + + Definition instrDenote (i : instr) (s : stack) : option stack := + match i with + | IConst n => Some (n :: s) + | IBinop b => + match s with + | arg1 :: arg2 :: s' => Some ((binopDenote b) arg1 arg2 :: s') + | _ => None + end + end. + + Fixpoint progDenote (p : prog) (s : stack) {struct p} : option stack := + match p with + | nil => Some s + | i :: p' => + match instrDenote i s with + | None => None + | Some s' => progDenote p' s' + end + end. + + + (** ** Translation *) + + Fixpoint compile (e : exp) : prog := + match e with + | Const n => IConst n :: nil + | Binop b e1 e2 => compile e2 ++ compile e1 ++ IBinop b :: nil + end. + + + (** ** Translation correctness *) + + Lemma compileCorrect' : forall e s p, progDenote (compile e ++ p) s = + progDenote p (expDenote e :: s). + induction e. + + intros. + unfold compile. + unfold expDenote. + simpl. + reflexivity. + + intros. + unfold compile. + fold compile. + unfold expDenote. + fold expDenote. + rewrite app_ass. + rewrite IHe2. + rewrite app_ass. + rewrite IHe1. + simpl. + reflexivity. + Abort. + + Lemma compileCorrect' : forall e s p, progDenote (compile e ++ p) s = + progDenote p (expDenote e :: s). + induction e; crush. + Qed. + + Theorem compileCorrect : forall e, progDenote (compile e) nil = Some (expDenote e :: nil). + intro. + rewrite (app_nil_end (compile e)). + rewrite compileCorrect'. + reflexivity. + Qed. + +(* begin hide *) +End Nat. +(* end hide *)