Mercurial > cpdt > repo
diff src/MoreDep.v @ 94:affdf00759d8
Red-black insert
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Tue, 07 Oct 2008 20:15:12 -0400 |
parents | a08e82c646a5 |
children | 7804f9d5249f |
line wrap: on
line diff
--- a/src/MoreDep.v Tue Oct 07 16:50:46 2008 -0400 +++ b/src/MoreDep.v Tue Oct 07 20:15:12 2008 -0400 @@ -344,6 +344,167 @@ Qed. +(** Dependently-Typed Red-Black Trees *) + +Inductive color : Set := Red | Black. + +Inductive rbtree : color -> nat -> Set := +| Leaf : rbtree Black 0 +| RedNode : forall n, rbtree Black n -> nat-> rbtree Black n -> rbtree Red n +| BlackNode : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rbtree Black (S n). + +Inductive rtree : nat -> Set := +| RedNode' : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rtree n. + +Notation "{< x >}" := (existT _ _ x). + +Definition balance1 n (a : rtree n) (data : nat) c2 := + match a in rtree n return rbtree c2 n -> { c : color & rbtree c (S n) } with + | RedNode' _ _ _ t1 y t2 => + match t1 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with + | RedNode _ a x b => fun c d => {<RedNode (BlackNode a x b) y (BlackNode c data d)>} + | t1' => fun t2 => + match t2 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with + | RedNode _ b x c => fun a d => {<RedNode (BlackNode a y b) x (BlackNode c data d)>} + | b => fun a t => {<BlackNode a data b>} + end t1' + end t2 + end. + +Definition balance2 n (a : rtree n) (data : nat) c2 := + match a in rtree n return rbtree c2 n -> { c : color & rbtree c (S n) } with + | RedNode' _ _ _ t1 z t2 => + match t1 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with + | RedNode _ b y c => fun d a => {<RedNode (BlackNode a data b) y (BlackNode c z d)>} + | t1' => fun t2 => + match t2 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with + | RedNode _ c z' d => fun b a => {<RedNode (BlackNode a data b) z (BlackNode c z' d)>} + | b => fun t a => {<BlackNode a data b>} + end t1' + end t2 + end. + +Section insert. + Variable x : nat. + + Definition insResult c n := + match c with + | Red => rtree n + | Black => { c' : color & rbtree c' n } + end. + + Fixpoint ins c n (t : rbtree c n) {struct t} : insResult c n := + match t in (rbtree c n) return (insResult c n) with + | Leaf => {< RedNode Leaf x Leaf >} + | RedNode _ a y b => + if le_lt_dec x y + then RedNode' (projT2 (ins a)) y b + else RedNode' a y (projT2 (ins b)) + | BlackNode c1 c2 _ a y b => + if le_lt_dec x y + then + match c1 return insResult c1 _ -> _ with + | Red => fun ins_a => balance1 ins_a y b + | _ => fun ins_a => {< BlackNode (projT2 ins_a) y b >} + end (ins a) + else + match c2 return insResult c2 _ -> _ with + | Red => fun ins_b => balance2 ins_b y a + | _ => fun ins_b => {< BlackNode a y (projT2 ins_b) >} + end (ins b) + end. + + Definition insertResult c n := + match c with + | Red => rbtree Black (S n) + | Black => { c' : color & rbtree c' n } + end. + + Definition makeBlack c n : insResult c n -> insertResult c n := + match c return insResult c n -> insertResult c n with + | Red => fun r => + match r in rtree n return insertResult Red n with + | RedNode' _ _ _ a x b => BlackNode a x b + end + | Black => fun r => r + end. + + Implicit Arguments makeBlack [c n]. + + Definition insert c n (t : rbtree c n) : insertResult c n := + makeBlack (ins t). + + Fixpoint present c n (t : rbtree c n) {struct t} : bool := + match t with + | Leaf => false + | RedNode _ a y b => + if eq_nat_dec x y + then true + else if le_lt_dec x y + then present a + else present b + | BlackNode _ _ _ a y b => + if eq_nat_dec x y + then true + else if le_lt_dec x y + then present a + else present b + end. + + Definition rpresent n (t : rtree n) : bool := + match t with + | RedNode' _ _ _ a y b => + if eq_nat_dec x y + then true + else if le_lt_dec x y + then present a + else present b + end. +End insert. + + +Require Import Max Min. + +Section depth. + Variable f : nat -> nat -> nat. + + Fixpoint depth c n (t : rbtree c n) {struct t} : nat := + match t with + | Leaf => 0 + | RedNode _ t1 _ t2 => S (f (depth t1) (depth t2)) + | BlackNode _ _ _ t1 _ t2 => S (f (depth t1) (depth t2)) + end. +End depth. + +Theorem depth_min : forall c n (t : rbtree c n), depth min t >= n. + induction t; crush; + match goal with + | [ |- context[min ?X ?Y] ] => destruct (min_dec X Y) + end; crush. +Qed. + +Lemma depth_max' : forall c n (t : rbtree c n), match c with + | Red => depth max t <= 2 * n + 1 + | Black => depth max t <= 2 * n + end. + induction t; crush; + match goal with + | [ |- context[max ?X ?Y] ] => destruct (max_dec X Y) + end; crush. + + destruct c1; crush. + destruct c2; crush. +Qed. + +Theorem depth_max : forall c n (t : rbtree c n), depth max t <= 2 * n + 1. + intros; generalize (depth_max' t); destruct c; crush. +Qed. + +Theorem balanced : forall c n (t : rbtree c n), 2 * depth min t + 1 >= depth max t. + intros; generalize (depth_min t); generalize (depth_max t); crush. +Qed. + + (** * A Certified Regular Expression Matcher *) (** Another interesting example is regular expressions with dependent types that express which predicates over strings particular regexps implement. We can then assign a dependent type to a regular expression matching function, guaranteeing that it always decides the string property that we expect it to decide.