Mercurial > cpdt > repo
diff src/Interps.v @ 171:b00b6a9b6b58
PSLC
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Sun, 09 Nov 2008 13:59:51 -0500 |
parents | f8353e2a21d6 |
children | 653c03f6061e |
line wrap: on
line diff
--- a/src/Interps.v Sun Nov 09 13:44:31 2008 -0500 +++ b/src/Interps.v Sun Nov 09 13:59:51 2008 -0500 @@ -61,7 +61,7 @@ Notation "# v" := (Var v) (at level 70). Notation "^ n" := (Const n) (at level 70). - Infix "++" := Plus. + Infix "+^" := Plus (left associativity, at level 79). Infix "@" := App (left associativity, at level 77). Notation "\ x , e" := (Abs (fun x => e)) (at level 78). @@ -99,7 +99,7 @@ let e2' := cfold e2 in match e1', e2' with | Const n1, Const n2 => ^(n1 + n2) - | _, _ => e1' ++ e2' + | _, _ => e1' +^ e2' end | App _ _ e1 e2 => cfold e1 @ cfold e2 @@ -122,3 +122,166 @@ unfold ExpDenote, Cfold; intros; apply cfold_correct. Qed. End STLC. + + +(** * Adding Products and Sums *) + +Module PSLC. + Inductive type : Type := + | Nat : type + | Arrow : type -> type -> type + | Prod : type -> type -> type + | Sum : type -> type -> type. + + Infix "-->" := Arrow (right associativity, at level 62). + Infix "**" := Prod (right associativity, at level 61). + Infix "++" := Sum (right associativity, at level 60). + + Section vars. + Variable var : type -> Type. + + Inductive exp : type -> Type := + | Var : forall t, + var t + -> exp t + + | Const : nat -> exp Nat + | Plus : exp Nat -> exp Nat -> exp Nat + + | App : forall t1 t2, + exp (t1 --> t2) + -> exp t1 + -> exp t2 + | Abs : forall t1 t2, + (var t1 -> exp t2) + -> exp (t1 --> t2) + + | Pair : forall t1 t2, + exp t1 + -> exp t2 + -> exp (t1 ** t2) + | Fst : forall t1 t2, + exp (t1 ** t2) + -> exp t1 + | Snd : forall t1 t2, + exp (t1 ** t2) + -> exp t2 + + | Inl : forall t1 t2, + exp t1 + -> exp (t1 ++ t2) + | Inr : forall t1 t2, + exp t2 + -> exp (t1 ++ t2) + | SumCase : forall t1 t2 t, + exp (t1 ++ t2) + -> (var t1 -> exp t) + -> (var t2 -> exp t) + -> exp t. + End vars. + + Definition Exp t := forall var, exp var t. + + Implicit Arguments Var [var t]. + Implicit Arguments Const [var]. + Implicit Arguments Abs [var t1 t2]. + Implicit Arguments Inl [var t1 t2]. + Implicit Arguments Inr [var t1 t2]. + + Notation "# v" := (Var v) (at level 70). + + Notation "^ n" := (Const n) (at level 70). + Infix "+^" := Plus (left associativity, at level 79). + + Infix "@" := App (left associativity, at level 77). + Notation "\ x , e" := (Abs (fun x => e)) (at level 78). + Notation "\ ! , e" := (Abs (fun _ => e)) (at level 78). + + Notation "[ e1 , e2 ]" := (Pair e1 e2). + Notation "#1 e" := (Fst e) (at level 75). + Notation "#2 e" := (Snd e) (at level 75). + + Notation "'case' e 'of' x => e1 | y => e2" := (SumCase e (fun x => e1) (fun y => e2)) + (at level 79). + + Fixpoint typeDenote (t : type) : Set := + match t with + | Nat => nat + | t1 --> t2 => typeDenote t1 -> typeDenote t2 + | t1 ** t2 => typeDenote t1 * typeDenote t2 + | t1 ++ t2 => typeDenote t1 + typeDenote t2 + end%type. + + Fixpoint expDenote t (e : exp typeDenote t) {struct e} : typeDenote t := + match e in (exp _ t) return (typeDenote t) with + | Var _ v => v + + | Const n => n + | Plus e1 e2 => expDenote e1 + expDenote e2 + + | App _ _ e1 e2 => (expDenote e1) (expDenote e2) + | Abs _ _ e' => fun x => expDenote (e' x) + + | Pair _ _ e1 e2 => (expDenote e1, expDenote e2) + | Fst _ _ e' => fst (expDenote e') + | Snd _ _ e' => snd (expDenote e') + + | Inl _ _ e' => inl _ (expDenote e') + | Inr _ _ e' => inr _ (expDenote e') + | SumCase _ _ _ e' e1 e2 => + match expDenote e' with + | inl v => expDenote (e1 v) + | inr v => expDenote (e2 v) + end + end. + + Definition ExpDenote t (e : Exp t) := expDenote (e _). + + Section cfold. + Variable var : type -> Type. + + Fixpoint cfold t (e : exp var t) {struct e} : exp var t := + match e in exp _ t return exp _ t with + | Var _ v => #v + + | Const n => ^n + | Plus e1 e2 => + let e1' := cfold e1 in + let e2' := cfold e2 in + match e1', e2' with + | Const n1, Const n2 => ^(n1 + n2) + | _, _ => e1' +^ e2' + end + + | App _ _ e1 e2 => cfold e1 @ cfold e2 + | Abs _ _ e' => Abs (fun x => cfold (e' x)) + + | Pair _ _ e1 e2 => [cfold e1, cfold e2] + | Fst _ _ e' => #1 (cfold e') + | Snd _ _ e' => #2 (cfold e') + + | Inl _ _ e' => Inl (cfold e') + | Inr _ _ e' => Inr (cfold e') + | SumCase _ _ _ e' e1 e2 => + case cfold e' of + x => cfold (e1 x) + | y => cfold (e2 y) + end. + End cfold. + + Definition Cfold t (E : Exp t) : Exp t := fun _ => cfold (E _). + + Lemma cfold_correct : forall t (e : exp _ t), + expDenote (cfold e) = expDenote e. + induction e; crush; try (ext_eq; crush); + repeat (match goal with + | [ |- context[cfold ?E] ] => dep_destruct (cfold E) + | [ |- match ?E with inl _ => _ | inr _ => _ end = _ ] => destruct E + end; crush). + Qed. + + Theorem Cfold_correct : forall t (E : Exp t), + ExpDenote (Cfold E) = ExpDenote E. + unfold ExpDenote, Cfold; intros; apply cfold_correct. + Qed. +End PSLC.