Mercurial > cpdt > repo
diff src/Firstorder.v @ 155:b31ca896f211
Removed G2 everywhere
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Sun, 02 Nov 2008 13:25:42 -0500 |
parents | 358dcb6e08f2 |
children | be15ed0a8bae |
line wrap: on
line diff
--- a/src/Firstorder.v Sun Nov 02 13:14:08 2008 -0500 +++ b/src/Firstorder.v Sun Nov 02 13:25:42 2008 -0500 @@ -113,10 +113,9 @@ induction G' as [ | [x' t'] tl ]; crush; eauto 9. Qed. - Lemma weaken_lookup : forall G2 x t G', - G' # G2 - -> forall G1, G1 ++ G2 |-v x : t - -> G1 ++ G' ++ G2 |-v x : t. + Lemma weaken_lookup : forall x t G' G1, + G1 |-v x : t + -> G1 ++ G' |-v x : t. Hint Resolve weaken_lookup'. induction G1 as [ | [x' t'] tl ]; crush; @@ -127,27 +126,16 @@ Hint Resolve weaken_lookup. - Lemma hasType_push : forall x t G1 G2 e t', - ((x, t) :: G1) ++ G2 |-e e : t' - -> (x, t) :: G1 ++ G2 |-e e : t'. - trivial. - Qed. - - Hint Resolve hasType_push. - Theorem weaken_hasType' : forall G' G e t, G |-e e : t - -> forall G1 G2, G = G1 ++ G2 - -> G' # G2 - -> G1 ++ G' ++ G2 |-e e : t. + -> G ++ G' |-e e : t. induction 1; crush; eauto. Qed. - Theorem weaken_hasType : forall G e t, - G |-e e : t - -> forall G', G' # G - -> G' ++ G |-e e : t. - intros; change (G' ++ G) with (nil ++ G' ++ G); + Theorem weaken_hasType : forall e t, + nil |-e e : t + -> forall G', G' |-e e : t. + intros; change G' with (nil ++ G'); eapply weaken_hasType'; eauto. Qed. @@ -157,15 +145,11 @@ intros; rewrite (app_nil_end G); apply weaken_hasType; auto. Qed. - Theorem weaken_hasType1 : forall G e t, - G |-e e : t - -> forall x t', x ## G - -> (x, t') :: G |-e e : t. - intros; change ((x, t') :: G) with (((x, t') :: nil) ++ G); - apply weaken_hasType; crush; - match goal with - | [ H : (_, _) = (_, _) |- _ ] => injection H - end; crush; eauto. + Theorem weaken_hasType1 : forall e t, + nil |-e e : t + -> forall x t', (x, t') :: nil |-e e : t. + intros; change ((x, t') :: nil) with (((x, t') :: nil) ++ nil); + apply weaken_hasType; crush. Qed. Hint Resolve weaken_hasType_closed weaken_hasType1. @@ -198,10 +182,10 @@ inversion 2; crush; elimtype False; eauto. Qed. - Lemma subst_lookup : forall x' t G2, + Lemma subst_lookup : forall x' t, x <> x' - -> forall G1, G1 ++ (x, xt) :: G2 |-v x' : t - -> G1 ++ G2 |-v x' : t. + -> forall G1, G1 ++ (x, xt) :: nil |-v x' : t + -> G1 |-v x' : t. induction G1 as [ | [x'' t'] tl ]; crush; match goal with | [ H : _ |-v _ : _ |- _ ] => inversion H @@ -210,20 +194,22 @@ Hint Resolve subst_lookup. - Lemma subst_lookup'' : forall G2 x' t, - x' ## G2 - -> forall G1, x' ## G1 - -> G1 ++ (x, xt) :: G2 |-v x' : t - -> t = xt. + Lemma subst_lookup'' : forall x' t G1, + x' ## G1 + -> G1 ++ (x, xt) :: nil |-v x' : t + -> t = xt. Hint Resolve subst_lookup'. induction G1 as [ | [x'' t'] tl ]; crush; eauto; match goal with | [ H : _ |-v _ : _ |- _ ] => inversion H - end; crush; elimtype False; eauto. + end; crush; elimtype False; eauto; + match goal with + | [ H : nil |-v _ : _ |- _ ] => inversion H + end. Qed. - Implicit Arguments subst_lookup'' [G2 x' t G1]. + Implicit Arguments subst_lookup'' [x' t G1]. Lemma disjoint_cons : forall x x' t (G : ctx), x ## G @@ -237,10 +223,10 @@ Hint Resolve disjoint_cons. - Lemma shadow_lookup : forall G2 v t t' G1, + Lemma shadow_lookup : forall v t t' G1, G1 |-v x : t' - -> G1 ++ (x, xt) :: G2 |-v v : t - -> G1 ++ G2 |-v v : t. + -> G1 ++ (x, xt) :: nil |-v v : t + -> G1 |-v v : t. induction G1 as [ | [x'' t''] tl ]; crush; match goal with | [ H : nil |-v _ : _ |- _ ] => inversion H @@ -249,11 +235,11 @@ end. Qed. - Lemma shadow_hasType' : forall G2 G e t, + Lemma shadow_hasType' : forall G e t, G |-e e : t - -> forall G1, G = G1 ++ (x, xt) :: G2 + -> forall G1, G = G1 ++ (x, xt) :: nil -> forall t'', G1 |-v x : t'' - -> G1 ++ G2 |-e e : t. + -> G1 |-e e : t. Hint Resolve shadow_lookup. induction 1; crush; eauto; @@ -261,12 +247,12 @@ | [ H : (?x0, _) :: _ ++ (x, _) :: _ |-e _ : _ |- _ ] => destruct (var_eq x0 x); subst; eauto end. - Qed. + Qed. - Lemma shadow_hasType : forall G1 G2 e t t'', - G1 ++ (x, xt) :: G2 |-e e : t + Lemma shadow_hasType : forall G1 e t t'', + G1 ++ (x, xt) :: nil |-e e : t -> G1 |-v x : t'' - -> G1 ++ G2 |-e e : t. + -> G1 |-e e : t. intros; eapply shadow_hasType'; eauto. Qed. @@ -274,25 +260,23 @@ Theorem subst_hasType : forall G e2 t, G |-e e2 : t - -> forall G1 G2, G = G1 ++ (x, xt) :: G2 + -> forall G1, G = G1 ++ (x, xt) :: nil -> x ## G1 - -> x ## G2 - -> G1 ++ G2 |-e subst e2 : t. + -> G1 |-e subst e2 : t. induction 1; crush; try match goal with | [ |- context[if ?E then _ else _] ] => destruct E end; crush; eauto 6; match goal with - | [ H1 : x ## _, H2 : x ## _, H3 : _ |-v x : _ |- _ ] => - rewrite (subst_lookup'' H2 H1 H3) + | [ H1 : x ## _, H2 : _ |-v x : _ |- _ ] => + rewrite (subst_lookup'' H1 H2) end; crush. Qed. Theorem subst_hasType_closed : forall e2 t, (x, xt) :: nil |-e e2 : t -> nil |-e subst e2 : t. - intros; change (nil ++ nil |-e subst e2 : t); - eapply subst_hasType; eauto. + intros; eapply subst_hasType; eauto. Qed. End subst. @@ -323,7 +307,7 @@ Hint Constructors step. - Theorem progress : forall G e t, G |-e e : t + Lemma progress' : forall G e t, G |-e e : t -> G = nil -> val e \/ exists e', e ==> e'. induction 1; crush; eauto; @@ -335,14 +319,25 @@ end. Qed. - Theorem preservation : forall G e t, G |-e e : t + Theorem progress : forall e t, nil |-e e : t + -> val e \/ exists e', e ==> e'. + intros; eapply progress'; eauto. + Qed. + + Lemma preservation' : forall G e t, G |-e e : t -> G = nil -> forall e', e ==> e' - -> G |-e e' : t. + -> nil |-e e' : t. induction 1; inversion 2; crush; eauto; match goal with | [ H : _ |-e Abs _ _ : _ |- _ ] => inversion H end; eauto. Qed. + Theorem preservation : forall e t, nil |-e e : t + -> forall e', e ==> e' + -> nil |-e e' : t. + intros; eapply preservation'; eauto. + Qed. + End Concrete.