Mercurial > cpdt > repo
diff src/Firstorder.v @ 156:be15ed0a8bae
De Bruijn
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Sun, 02 Nov 2008 13:51:51 -0500 |
parents | b31ca896f211 |
children | 2022e3f2aa26 |
line wrap: on
line diff
--- a/src/Firstorder.v Sun Nov 02 13:25:42 2008 -0500 +++ b/src/Firstorder.v Sun Nov 02 13:51:51 2008 -0500 @@ -8,7 +8,7 @@ *) (* begin hide *) -Require Import List String. +Require Import Arith String List. Require Import Tactics. @@ -341,3 +341,232 @@ Qed. End Concrete. + + +(** * De Bruijn Indices *) + +Module DeBruijn. + + Definition var := nat. + Definition var_eq := eq_nat_dec. + + Inductive exp : Set := + | Const : bool -> exp + | Var : var -> exp + | App : exp -> exp -> exp + | Abs : exp -> exp. + + Inductive type : Set := + | Bool : type + | Arrow : type -> type -> type. + + Infix "-->" := Arrow (right associativity, at level 60). + + Definition ctx := list type. + + Reserved Notation "G |-v x : t" (no associativity, at level 90, x at next level). + + Inductive lookup : ctx -> var -> type -> Prop := + | First : forall t G, + t :: G |-v O : t + | Next : forall x t t' G, + G |-v x : t + -> t' :: G |-v S x : t + + where "G |-v x : t" := (lookup G x t). + + Hint Constructors lookup. + + Reserved Notation "G |-e e : t" (no associativity, at level 90, e at next level). + + Inductive hasType : ctx -> exp -> type -> Prop := + | TConst : forall G b, + G |-e Const b : Bool + | TVar : forall G v t, + G |-v v : t + -> G |-e Var v : t + | TApp : forall G e1 e2 dom ran, + G |-e e1 : dom --> ran + -> G |-e e2 : dom + -> G |-e App e1 e2 : ran + | TAbs : forall G e' dom ran, + dom :: G |-e e' : ran + -> G |-e Abs e' : dom --> ran + + where "G |-e e : t" := (hasType G e t). + + Hint Constructors hasType. + + Lemma weaken_lookup : forall G' v t G, + G |-v v : t + -> G ++ G' |-v v : t. + induction 1; crush. + Qed. + + Hint Resolve weaken_lookup. + + Theorem weaken_hasType' : forall G' G e t, + G |-e e : t + -> G ++ G' |-e e : t. + induction 1; crush; eauto. + Qed. + + Theorem weaken_hasType : forall e t, + nil |-e e : t + -> forall G', G' |-e e : t. + intros; change G' with (nil ++ G'); + eapply weaken_hasType'; eauto. + Qed. + + Theorem weaken_hasType_closed : forall e t, + nil |-e e : t + -> forall G, G |-e e : t. + intros; rewrite (app_nil_end G); apply weaken_hasType; auto. + Qed. + + Theorem weaken_hasType1 : forall e t, + nil |-e e : t + -> forall t', t' :: nil |-e e : t. + intros; change (t' :: nil) with ((t' :: nil) ++ nil); + apply weaken_hasType; crush. + Qed. + + Hint Resolve weaken_hasType_closed weaken_hasType1. + + Section subst. + Variable e1 : exp. + + Fixpoint subst (x : var) (e2 : exp) : exp := + match e2 with + | Const b => Const b + | Var x' => + if var_eq x' x + then e1 + else Var x' + | App e1 e2 => App (subst x e1) (subst x e2) + | Abs e' => Abs (subst (S x) e') + end. + + Variable xt : type. + + Lemma subst_eq : forall t G1, + G1 ++ xt :: nil |-v length G1 : t + -> t = xt. + induction G1; inversion 1; crush. + Qed. + + Implicit Arguments subst_eq [t G1]. + + Lemma subst_eq' : forall t G1 x, + G1 ++ xt :: nil |-v x : t + -> x <> length G1 + -> G1 |-v x : t. + induction G1; inversion 1; crush; + match goal with + | [ H : nil |-v _ : _ |- _ ] => inversion H + end. + Qed. + + Hint Resolve subst_eq'. + + Lemma subst_neq : forall v t G1, + G1 ++ xt :: nil |-v v : t + -> v <> length G1 + -> G1 |-e Var v : t. + induction G1; inversion 1; crush. + Qed. + + Hint Resolve subst_neq. + + Hypothesis Ht' : nil |-e e1 : xt. + + Lemma hasType_push : forall dom G1 e' ran, + dom :: G1 |-e subst (length (dom :: G1)) e' : ran + -> dom :: G1 |-e subst (S (length G1)) e' : ran. + trivial. + Qed. + + Hint Resolve hasType_push. + + Theorem subst_hasType : forall G e2 t, + G |-e e2 : t + -> forall G1, G = G1 ++ xt :: nil + -> G1 |-e subst (length G1) e2 : t. + induction 1; crush; + try match goal with + | [ |- context[if ?E then _ else _] ] => destruct E + end; crush; eauto 6; + try match goal with + | [ H : _ |-v _ : _ |- _ ] => + rewrite (subst_eq H) + end; crush. + Qed. + + Theorem subst_hasType_closed : forall e2 t, + xt :: nil |-e e2 : t + -> nil |-e subst O e2 : t. + intros; change O with (length (@nil type)); eapply subst_hasType; eauto. + Qed. + End subst. + + Hint Resolve subst_hasType_closed. + + Notation "[ x ~> e1 ] e2" := (subst e1 x e2) (no associativity, at level 80). + + Inductive val : exp -> Prop := + | VConst : forall b, val (Const b) + | VAbs : forall e, val (Abs e). + + Hint Constructors val. + + Reserved Notation "e1 ==> e2" (no associativity, at level 90). + + Inductive step : exp -> exp -> Prop := + | Beta : forall e1 e2, + App (Abs e1) e2 ==> [O ~> e2] e1 + | Cong1 : forall e1 e2 e1', + e1 ==> e1' + -> App e1 e2 ==> App e1' e2 + | Cong2 : forall e1 e2 e2', + val e1 + -> e2 ==> e2' + -> App e1 e2 ==> App e1 e2' + + where "e1 ==> e2" := (step e1 e2). + + Hint Constructors step. + + Lemma progress' : forall G e t, G |-e e : t + -> G = nil + -> val e \/ exists e', e ==> e'. + induction 1; crush; eauto; + try match goal with + | [ H : _ |-e _ : _ --> _ |- _ ] => inversion H + end; + repeat match goal with + | [ H : _ |- _ ] => solve [ inversion H; crush; eauto ] + end. + Qed. + + Theorem progress : forall e t, nil |-e e : t + -> val e \/ exists e', e ==> e'. + intros; eapply progress'; eauto. + Qed. + + Lemma preservation' : forall G e t, G |-e e : t + -> G = nil + -> forall e', e ==> e' + -> nil |-e e' : t. + induction 1; inversion 2; crush; eauto; + match goal with + | [ H : _ |-e Abs _ : _ |- _ ] => inversion H + end; eauto. + Qed. + + Theorem preservation : forall e t, nil |-e e : t + -> forall e', e ==> e' + -> nil |-e e' : t. + intros; eapply preservation'; eauto. + Qed. + +End DeBruijn.