diff src/StackMachine.v @ 328:cbeccef45f4e

Pass over Match
author Adam Chlipala <adam@chlipala.net>
date Sun, 25 Sep 2011 13:20:56 -0400
parents 2aaff91f5258
children 7e57c909f0f2
line wrap: on
line diff
--- a/src/StackMachine.v	Thu Sep 22 11:27:33 2011 -0400
+++ b/src/StackMachine.v	Sun Sep 25 13:20:56 2011 -0400
@@ -505,7 +505,7 @@
   induction e; crush.
 Qed.
 
-(** We need only to state the basic inductive proof scheme and call a tactic that automates the tedious reasoning in between.  In contrast to the period tactic terminator from our last proof, the %\index{tacticals!semicolon}%semicolon tactic separator supports structured, compositional proofs.  The tactic [t1; t2] has the effect of running [t1] and then running [t2] on each remaining subgoal.  The semicolon is one of the most fundamental building blocks of effective proof automation.  The period terminator is very useful for exploratory proving, where you need to see intermediate proof states, but final proofs of any serious complexity should have just one period, terminating a single compound tactic that probably uses semicolons.
+(** We need only to state the basic inductive proof scheme and call a tactic that automates the tedious reasoning in between.  In contrast to the period tactic terminator from our last proof, the %\index{tactics!semicolon}%semicolon tactic separator supports structured, compositional proofs.  The tactic [t1; t2] has the effect of running [t1] and then running [t2] on each remaining subgoal.  The semicolon is one of the most fundamental building blocks of effective proof automation.  The period terminator is very useful for exploratory proving, where you need to see intermediate proof states, but final proofs of any serious complexity should have just one period, terminating a single compound tactic that probably uses semicolons.
 
 The [crush] tactic comes from the library associated with this book and is not part of the Coq standard library.  The book's library contains a number of other tactics that are especially helpful in highly-automated proofs.