Mercurial > cpdt > repo
diff src/Firstorder.v @ 246:cca30734ab40
Proved progress for LocallyNameless
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Fri, 11 Dec 2009 10:18:45 -0500 |
parents | 4b001a611e79 |
children | ecfa8eec3852 |
line wrap: on
line diff
--- a/src/Firstorder.v Wed Dec 09 15:26:22 2009 -0500 +++ b/src/Firstorder.v Fri Dec 11 10:18:45 2009 -0500 @@ -136,16 +136,10 @@ Fixpoint subst (e2 : exp) : exp := match e2 with - | Const b => Const b - | Var x' => - if var_eq x' x - then e1 - else Var x' + | Const _ => e2 + | Var x' => if var_eq x' x then e1 else e2 | App e1 e2 => App (subst e1) (subst e2) - | Abs x' e' => - Abs x' (if var_eq x' x - then e' - else subst e') + | Abs x' e' => Abs x' (if var_eq x' x then e' else subst e') end. (** We can prove a few theorems about substitution in well-typed terms, where we assume that [e1] is closed and has type [xt]. *) @@ -434,11 +428,8 @@ Fixpoint subst (x : var) (e2 : exp) : exp := match e2 with - | Const b => Const b - | Var x' => - if var_eq x' x - then e1 - else Var x' + | Const _ => e2 + | Var x' => if var_eq x' x then e1 else e2 | App e1 e2 => App (subst x e1) (subst x e2) | Abs e' => Abs (subst (S x) e') end. @@ -577,3 +568,281 @@ Qed. End DeBruijn. + + +(** * Locally Nameless Syntax *) + +Module LocallyNameless. + + Definition free_var := string. + Definition bound_var := nat. + + Inductive exp : Set := + | Const : bool -> exp + | FreeVar : free_var -> exp + | BoundVar : bound_var -> exp + | App : exp -> exp -> exp + | Abs : exp -> exp. + + Inductive type : Set := + | Bool : type + | Arrow : type -> type -> type. + + Infix "-->" := Arrow (right associativity, at level 60). + + Definition ctx := list (free_var * type). + + Reserved Notation "G |-v x : t" (no associativity, at level 90, x at next level). + + Reserved Notation "G |-v x : t" (no associativity, at level 90, x at next level). + + Inductive lookup : ctx -> free_var -> type -> Prop := + | First : forall x t G, + (x, t) :: G |-v x : t + | Next : forall x t x' t' G, + x <> x' + -> G |-v x : t + -> (x', t') :: G |-v x : t + + where "G |-v x : t" := (lookup G x t). + + Hint Constructors lookup. + + Reserved Notation "G |-e e : t" (no associativity, at level 90, e at next level). + + Section open. + Variable x : free_var. + + Fixpoint open (n : bound_var) (e : exp) : exp := + match e with + | Const _ => e + | FreeVar _ => e + | BoundVar n' => + if eq_nat_dec n' n + then FreeVar x + else if le_lt_dec n' n + then e + else BoundVar (pred n') + | App e1 e2 => App (open n e1) (open n e2) + | Abs e1 => Abs (open (S n) e1) + end. + End open. + + Inductive notFreeIn (x : free_var) : exp -> Prop := + | NfConst : forall c, notFreeIn x (Const c) + | NfFreeVar : forall y, y <> x -> notFreeIn x (FreeVar y) + | NfBoundVar : forall y, notFreeIn x (BoundVar y) + | NfApp : forall e1 e2, notFreeIn x e1 -> notFreeIn x e2 -> notFreeIn x (App e1 e2) + | NfAbs : forall e1, (forall y, y <> x -> notFreeIn x (open y O e1)) -> notFreeIn x (Abs e1). + + Hint Constructors notFreeIn. + + Inductive hasType : ctx -> exp -> type -> Prop := + | TConst : forall G b, + G |-e Const b : Bool + | TFreeVar : forall G v t, + G |-v v : t + -> G |-e FreeVar v : t + | TApp : forall G e1 e2 dom ran, + G |-e e1 : dom --> ran + -> G |-e e2 : dom + -> G |-e App e1 e2 : ran + | TAbs : forall G e' dom ran, + (forall x, notFreeIn x e' -> (x, dom) :: G |-e open x O e' : ran) + -> G |-e Abs e' : dom --> ran + + where "G |-e e : t" := (hasType G e t). + + Hint Constructors hasType. + + (** We prove roughly the same weakening theorems as before. *) + + Lemma weaken_lookup : forall G' v t G, + G |-v v : t + -> G ++ G' |-v v : t. + induction 1; crush. + Qed. + + Hint Resolve weaken_lookup. + + Theorem weaken_hasType' : forall G' G e t, + G |-e e : t + -> G ++ G' |-e e : t. + induction 1; crush; eauto. + Qed. + + Theorem weaken_hasType : forall e t, + nil |-e e : t + -> forall G', G' |-e e : t. + intros; change G' with (nil ++ G'); + eapply weaken_hasType'; eauto. + Qed. + + Hint Resolve weaken_hasType. + + Section subst. + Variable x : free_var. + Variable e1 : exp. + + Fixpoint subst (e2 : exp) : exp := + match e2 with + | Const _ => e2 + | FreeVar x' => if string_dec x' x then e1 else e2 + | BoundVar _ => e2 + | App e1 e2 => App (subst e1) (subst e2) + | Abs e' => Abs (subst e') + end. + End subst. + + + Notation "[ x ~> e1 ] e2" := (subst x e1 e2) (no associativity, at level 80). + + Inductive val : exp -> Prop := + | VConst : forall b, val (Const b) + | VAbs : forall e, val (Abs e). + + Hint Constructors val. + + Reserved Notation "e1 ==> e2" (no associativity, at level 90). + + Inductive step : exp -> exp -> Prop := + | Beta : forall x e1 e2, + val e2 + -> notFreeIn x e1 + -> App (Abs e1) e2 ==> [x ~> e2] (open x O e1) + | Cong1 : forall e1 e2 e1', + e1 ==> e1' + -> App e1 e2 ==> App e1' e2 + | Cong2 : forall e1 e2 e2', + val e1 + -> e2 ==> e2' + -> App e1 e2 ==> App e1 e2' + + where "e1 ==> e2" := (step e1 e2). + + Hint Constructors step. + + Open Scope string_scope. + + Fixpoint vlen (e : exp) : nat := + match e with + | Const _ => 0 + | FreeVar x => String.length x + | BoundVar _ => 0 + | App e1 e2 => vlen e1 + vlen e2 + | Abs e1 => vlen e1 + end. + + Opaque le_lt_dec. + + Hint Extern 1 (@eq exp _ _) => f_equal. + + Lemma open_comm : forall x1 x2 e n1 n2, + open x1 n1 (open x2 (S n2 + n1) e) + = open x2 (n2 + n1) (open x1 n1 e). + induction e; crush; + repeat (match goal with + | [ |- context[if ?E then _ else _] ] => destruct E + end; crush). + + replace (S (n2 + n1)) with (n2 + S n1); auto. + Qed. + + Hint Rewrite plus_0_r : cpdt. + + Lemma open_comm0 : forall x1 x2 e n, + open x1 0 (open x2 (S n) e) + = open x2 n (open x1 0 e). + intros; generalize (open_comm x1 x2 e 0 n); crush. + Qed. + + Hint Extern 1 (notFreeIn _ (open _ 0 (open _ (S _) _))) => rewrite open_comm0. + + Lemma notFreeIn_open : forall x y, + x <> y + -> forall e, + notFreeIn x e + -> forall n, notFreeIn x (open y n e). + induction 2; crush; + repeat (match goal with + | [ |- context[if ?E then _ else _] ] => destruct E + end; crush). + Qed. + + Hint Resolve notFreeIn_open. + + Lemma infVar : forall x y, String.length x > String.length y + -> y <> x. + intros; destruct (string_dec x y); intros; subst; crush. + Qed. + + Hint Resolve infVar. + + Lemma inf' : forall x e, String.length x > vlen e -> notFreeIn x e. + induction e; crush; eauto. + Qed. + + Fixpoint primes (n : nat) : string := + match n with + | O => "x" + | S n' => primes n' ++ "'" + end. + + Lemma length_app : forall s2 s1, String.length (s1 ++ s2) = String.length s1 + String.length s2. + induction s1; crush. + Qed. + + Hint Rewrite length_app : cpdt. + + Lemma length_primes : forall n, String.length (primes n) = S n. + induction n; crush. + Qed. + + Hint Rewrite length_primes : cpdt. + + Lemma inf : forall e, exists x, notFreeIn x e. + intro; exists (primes (vlen e)); apply inf'; crush. + Qed. + + Lemma progress_Abs : forall e1 e2, + val e2 + -> exists e', App (Abs e1) e2 ==> e'. + intros; destruct (inf e1); eauto. + Qed. + + Hint Resolve progress_Abs. + + Lemma progress' : forall G e t, G |-e e : t + -> G = nil + -> val e \/ exists e', e ==> e'. + induction 1; crush; eauto; + try match goal with + | [ H : _ |-e _ : _ --> _ |- _ ] => inversion H + end; + repeat match goal with + | [ H : _ |- _ ] => solve [ inversion H; crush; eauto ] + end. + Qed. + + Theorem progress : forall e t, nil |-e e : t + -> val e \/ exists e', e ==> e'. + intros; eapply progress'; eauto. + Qed. + + (*Lemma preservation' : forall G e t, G |-e e : t + -> G = nil + -> forall e', e ==> e' + -> nil |-e e' : t. + induction 1; inversion 2; crush; eauto; + match goal with + | [ H : _ |-e Abs _ : _ |- _ ] => inversion H + end; eauto. + Qed. + + Theorem preservation : forall e t, nil |-e e : t + -> forall e', e ==> e' + -> nil |-e e' : t. + intros; eapply preservation'; eauto. + Qed.*) + +End LocallyNameless.