Mercurial > cpdt > repo
diff src/Hoas.v @ 162:df02642f93b8
Evaluation contexts ahoy
author | Adam Chlipala <adamc@hcoop.net> |
---|---|
date | Tue, 04 Nov 2008 12:39:28 -0500 |
parents | 56e205f966cc |
children | ba306bf9ec80 |
line wrap: on
line diff
--- a/src/Hoas.v Tue Nov 04 11:23:20 2008 -0500 +++ b/src/Hoas.v Tue Nov 04 12:39:28 2008 -0500 @@ -84,31 +84,45 @@ Hint Constructors Val. +Inductive Ctx : type -> type -> Type := +| AppCong1 : forall (dom ran : type), + Exp dom -> Ctx (dom --> ran) ran +| AppCong2 : forall (dom ran : type), + Exp (dom --> ran) -> Ctx dom ran +| PlusCong1 : Exp Nat -> Ctx Nat Nat +| PlusCong2 : Exp Nat -> Ctx Nat Nat. + +Inductive isCtx : forall t1 t2, Ctx t1 t2 -> Prop := +| IsApp1 : forall dom ran (X : Exp dom), isCtx (AppCong1 ran X) +| IsApp2 : forall dom ran (F : Exp (dom --> ran)), Val F -> isCtx (AppCong2 F) +| IsPlus1 : forall E2, isCtx (PlusCong1 E2) +| IsPlus2 : forall E1, Val E1 -> isCtx (PlusCong2 E1). + +Definition plug t1 t2 (C : Ctx t1 t2) : Exp t1 -> Exp t2 := + match C in Ctx t1 t2 return Exp t1 -> Exp t2 with + | AppCong1 _ _ X => fun F => App F X + | AppCong2 _ _ F => fun X => App F X + | PlusCong1 E2 => fun E1 => Plus E1 E2 + | PlusCong2 E1 => fun E2 => Plus E1 E2 + end. + +Infix "@" := plug (no associativity, at level 60). + Inductive Step : forall t, Exp t -> Exp t -> Prop := | Beta : forall dom ran (B : Exp1 dom ran) (X : Exp dom), Val X -> App (Abs B) X ==> Subst X B -| AppCong1 : forall dom ran (F : Exp (dom --> ran)) (X : Exp dom) F', - F ==> F' - -> App F X ==> App F' X -| AppCong2 : forall dom ran (F : Exp (dom --> ran)) (X : Exp dom) X', - Val F - -> X ==> X' - -> App F X ==> App F X' - | Sum : forall n1 n2, Plus (Const n1) (Const n2) ==> Const (n1 + n2) -| PlusCong1 : forall E1 E2 E1', - E1 ==> E1' - -> Plus E1 E2 ==> Plus E1' E2 -| PlusCong2 : forall E1 E2 E2', - Val E1 - -> E2 ==> E2' - -> Plus E1 E2 ==> Plus E1 E2' +| Cong : forall t t' (C : Ctx t t') E E' E1, + isCtx C + -> E1 = C @ E + -> E ==> E' + -> E1 ==> C @ E' where "E1 ==> E2" := (Step E1 E2). -Hint Constructors Step. +Hint Constructors isCtx Step. Inductive Closed : forall t, Exp t -> Prop := | CConst : forall b, @@ -137,7 +151,7 @@ try (match goal with | [ H : ?F = ?G |- _ ] => match goal with - | [ _ : F (fun _ => unit) = G (fun _ => unit) |- _ ] => fail 1 + (*| [ _ : F (fun _ => unit) = G (fun _ => unit) |- _ ] => fail 1*) | _ => let H' := fresh "H'" in assert (H' : F (fun _ => unit) = G (fun _ => unit)); [ congruence @@ -163,13 +177,15 @@ end end. +Hint Extern 1 (_ = _ @ _) => simpl. + Lemma progress' : forall t (E : Exp t), Closed E -> Val E \/ exists E', E ==> E'. induction 1; crush; repeat match goal with | [ H : Val _ |- _ ] => inversion H; []; clear H; my_crush - end; eauto. + end; eauto 6. Qed. Theorem progress : forall t (E : Exp t), @@ -222,8 +238,6 @@ induction 1; eauto. Qed. -Hint Resolve MultiStep_trans. - Theorem Big_Val : forall t (E V : Exp t), E ===> V -> Val V. @@ -238,70 +252,39 @@ Hint Resolve Big_Val Val_Big. -Ltac uiper := - repeat match goal with - | [ pf : _ = _ |- _ ] => - generalize pf; subst; intro; - rewrite (UIP_refl _ _ pf); simpl; - repeat match goal with - | [ H : forall pf : ?X = ?X, _ |- _ ] => - generalize (H (refl_equal _)); clear H; intro H - end - end. - -Lemma Multi_PlusCong1' : forall E2 t (pf : t = Nat) (E1 E1' : Exp t), - E1 ==>* E1' - -> Plus (match pf with refl_equal => E1 end) E2 - ==>* Plus (match pf with refl_equal => E1' end) E2. - induction 1; crush; uiper; eauto. -Qed. - -Lemma Multi_PlusCong1 : forall E1 E2 E1', - E1 ==>* E1' - -> Plus E1 E2 ==>* Plus E1' E2. - intros; generalize (Multi_PlusCong1' E2 (refl_equal _)); auto. -Qed. - -Lemma Multi_PlusCong2' : forall E1 (_ : Val E1) t (pf : t = Nat) (E2 E2' : Exp t), - E2 ==>* E2' - -> Plus E1 (match pf with refl_equal => E2 end) - ==>* Plus E1 (match pf with refl_equal => E2' end). - induction 2; crush; uiper; eauto. -Qed. - -Lemma Multi_PlusCong2 : forall E1 E2 E2', - Val E1 - -> E2 ==>* E2' - -> Plus E1 E2 ==>* Plus E1 E2'. - intros E1 E2 E2' H; generalize (Multi_PlusCong2' H (refl_equal _)); auto. -Qed. - -Lemma Multi_AppCong1' : forall dom ran E2 t (pf : t = dom --> ran) (E1 E1' : Exp t), - E1 ==>* E1' - -> App (match pf in _ = t' return Exp t' with refl_equal => E1 end) E2 - ==>* App (match pf in _ = t' return Exp t' with refl_equal => E1' end) E2. - induction 1; crush; uiper; eauto. -Qed. - -Lemma Multi_AppCong1 : forall dom ran (E1 : Exp (dom --> ran)) E2 E1', - E1 ==>* E1' - -> App E1 E2 ==>* App E1' E2. - intros; generalize (Multi_AppCong1' (ran := ran) E2 (refl_equal _)); auto. -Qed. - -Lemma Multi_AppCong2 : forall dom ran (E1 : Exp (dom --> ran)) E2 E2', - Val E1 - -> E2 ==>* E2' - -> App E1 E2 ==>* App E1 E2'. +Lemma Multi_Cong : forall t t' (C : Ctx t t'), + isCtx C + -> forall E E', E ==>* E' + -> C @ E ==>* C @ E'. induction 2; crush; eauto. Qed. -Hint Resolve Multi_PlusCong1 Multi_PlusCong2 Multi_AppCong1 Multi_AppCong2. +Lemma Multi_Cong' : forall t t' (C : Ctx t t') E1 E2 E E', + isCtx C + -> E1 = C @ E + -> E2 = C @ E' + -> E ==>* E' + -> E1 ==>* E2. + crush; apply Multi_Cong; auto. +Qed. + +Hint Resolve Multi_Cong'. + +Ltac mtrans E := + match goal with + | [ |- E ==>* _ ] => fail 1 + | _ => apply MultiStep_trans with E; [ solve [ eauto ] | eauto ] + end. Theorem Big_Multi : forall t (E V : Exp t), E ===> V -> E ==>* V. - induction 1; crush; eauto 8. + induction 1; crush; eauto; + repeat match goal with + | [ n1 : _, E2 : _ |- _ ] => mtrans (Plus (Const n1) E2) + | [ n1 : _, n2 : _ |- _ ] => mtrans (Plus (Const n1) (Const n2)) + | [ B : _, E2 : _ |- _ ] => mtrans (App (Abs B) E2) + end. Qed. Lemma Big_Val' : forall t (V1 V2 : Exp t), @@ -320,6 +303,9 @@ induction 1; crush; eauto; match goal with | [ H : _ ===> _ |- _ ] => inversion H; my_crush; eauto + end; + match goal with + | [ H : isCtx _ |- _ ] => inversion H; my_crush; eauto end. Qed. @@ -367,4 +353,4 @@ Definition AppN G dom ran (F : ExpN G (dom --> ran)) (X : ExpN G dom) : ExpN G ran := fun _ s => App' (F _ s) (X _ s). Definition AbsN G dom ran (B : ExpN (dom :: G) ran) : ExpN G (dom --> ran) := - fun _ s => Abs' (fun x => B _ (x ::: s)). \ No newline at end of file + fun _ s => Abs' (fun x => B _ (x ::: s)).